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Learning frameworks

Full Information Perceptron, .

Bandit Feedback LinUCB, ... ?



Logged bandit feedback is everywhere!

Alice: Want Tech news (9

x, = (Alice, tech)
y1 = (SpaceX)
61 = 1

SpaceX launch

d;: Feedback 1

&




Goal

e Riskof h: X » Y
R(h) = Ex[8(x, h(x))]

 Find h™ € H with minimum risk

* Can we find h* using D = ) collected from hy?

xq, = (Alice, tech)
Y1 = (SpaceX)
81 = 1

x5 = (Alice, sports)

y2 = (F1)
62: 5




Learning by replaying logs?

s = hy(x), not h(x
(9 )‘ o y = hy(x) €9)

x, = (Alice, tech) x1: (Alice,tech) E:;El:

y1 = (SpaceX) {SISS
da =11 iasi=y

.

x, = (Alice, sports) y1: Apple watch j_::g;;

4

v, = (F1)
62 == 5
(}: What would Alice do ??
J J

* Training/evaluation from logged data is counter-factual [Bottou et al]




Stochastic policies to the rescue!

* Sto X AY),y ~ h(x)
il R(h) = ExEy [6(x, y)]
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Counterfactual risk estimators

Basic Importance Sampling [Owen]
[ h(y|x) ]

IEx[ IE:y~h[ 6(x,y) | ] = Ex[ Ey-n, | 6(x¥)

ho(y]x)
Perf of new system Samples from old system Importance weight

* D= { (xlr Y1, 61» pl); (le Y2, 621 Pz); ey (xnr Yn» Snr pn) }
* p; = ho(y;|x;) ... propensity [Rosenbaum et al]
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Story so far

Logged Control Tractable
bandit data variance bound




@ )

x1 = (Alice, sports)
y1 = (F1)

Want: Error bound that captures

variance of importance sampling

ra= v

hl x4 = (Alice, tech) hz
Ry(hy) = 1 R,(hy) = 1.33
7 @ ps =09 4 P ;

N




Logged Control Tractable
bandit data variance bound

Counterfactual Risk Minimization

* Wh.p.inD ~ h

Vh € H, R(h) <RD(h)+0 VarD(h)/n + O(N o (H)/n)

*conditions apply. Refer [Maurer et al]
Variance regularization Capacity control

Learning objective

o Varp(h
h¢’RM = grgmin Rp(h) + A / p(h)
heH n
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Logged Control Tractable
bandit data variance bound

POEM: CRM algorithm for structured prediction

exp(wo(x, Good: Gradient
* CRFs: h,, € H; ; h (YlX) = PWo(x,y)) descent, search

w lin w Z(x;w) e

’ over infinitely

many w
* Policy Optimizer for Exponential Models : Bad: Not convex
in w

n _ Ugly: Resists

. |1 o (yllxl) S Ociesne

w* = argmin|— ) 0; + A SN\ . optimization

n
v =1 \l
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Stochastically optimize \/V/c?r(hw) ?

* Taylor-approximate!

* During epoch: Adagrad with Vh!, + A\/H(AWch‘iA, + ZBWthévVh‘iA,)}

* After epoch: w1 < w, compute 4 B

Wt+1’ “We+1
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Experiment

 Supervised = Bandit MultiLabel [Agarwal et al]
* 5(x,y) = Hamming(y*(x),y) (smaller is better)
* LibSVM Datasets

* Scene (few features, labels and data)
* Yeast (many labels)

* LYRL (many features and data)

 TMC (many features, labels and data)

* Validate hyper-params (A,u) using Rﬂvaz (h)
* Supervised test set expected Hamming loss



Approaches

e Baselines

* hy: Supervised CRF trained on 5% of training data
* Proposed

* |PS (No variance penalty) (extends [Bottou et al])
e Skylines

(independent logit regression)



(1) Does variance regularization help?

Test set expected Hamming Loss

6 5.547

5 4.614 4517
4 3.445
7o)
3 2.822
2 1.543 1.519 1.463
1
0.659
0.222
0
Scene Yeast LYRL TMC

mhO WIPS mPOEM
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(2) Is it efficient?
I O N S

POEM(B) 75.20 94.16 561.12 949.95
POEM(S) 4.71 5.02 120.09 276.13
CRF 4.86 3.28 62.93 99.18

* POEM recovers same performance at fraction of L-BFGS cost
* Scales as supervised CRF, learns from bandit feedback
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(3) Does generalization improve asn — oo?
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(4) Does stochasticity of hg affect learning?

1.6
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w 1.2
1 — e
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—h0 —POEM
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Conclusion

CRM principle to learn from logged bandit feedback

* Variance regularization

POEM for structured output prediction
* Scales as supervised CRF, learns from bandit feedback

Contact: adith@cs.cornell.edu
POEM available at http://www.cs.cornell.edu/~adith/poem/

* Lon paﬁer: Counterfactual risk minimization — Learning from logged bandit
feedback, http://imlr.org/proceedings/papers/v37/swaminathan15.html

e Thanks!
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