Counterfactual Risk Minimization Learning from logged bandit feedback

Adith Swaminathan, Thorsten Joachims

Software: http://www.cs.cornell.edu/~adith/poem/

Learning frameworks

x y	Online	Batch	
Full Information	Perceptron,	SVM,	
Bandit Feedback	LinUCB,	?	

Logged bandit feedback is everywhere!

Goal

• Risk of $h: \mathbb{X} \mapsto \mathbb{Y}$

$$R(h) = \mathbb{E}_{x}[\delta(x, h(x))]$$

• Find $h^* \in \mathcal{H}$ with minimum risk

• Can we find h^* using $\mathcal{D} = \begin{bmatrix} x_1 = (Alice, tech) \\ y_1 = (SpaceX) \\ \delta_1 = 1 \end{bmatrix}$ $x_2 = (Alice, sports) \\ y_2 = (F1) \\ \delta_2 = 5$

collected from h_0 ?

Learning by replaying logs?

• Training/evaluation from logged data is counter-factual [Bottou et al]

Stochastic policies to the rescue!

Counterfactual risk estimators

Basic Importance Sampling [Owen] $\mathbb{E}_{x} \Big[\mathbb{E}_{y \sim h} \big[\delta(x, y) \big] \Big] = \mathbb{E}_{x} \Big[\mathbb{E}_{y \sim h_{o}} \bigg[\delta(x, y) \frac{h(y|x)}{h_{0}(y|x)} \bigg] \Big]$ Perf of new system Samples from old system Importance weight

- $\mathcal{D} = \{ (x_1, y_1, \delta_1, p_1), (x_2, y_2, \delta_2, p_2), ..., (x_n, y_n, \delta_n, p_n) \}$
- $p_i = h_0(y_i|x_i)$... propensity [Rosenbaum et al]

$$\widehat{R_{\mathcal{D}}}(h) = \frac{1}{n} \sum_{i=1}^{n} \delta_{i} \frac{h(y_{i}|x_{i})}{p_{i}}$$

Story so far

Importance sampling causes non-uniform variance!

$$\delta_3 = 2$$
 $p_3 = 0.9$

$$x_4 = (Alice, tech)$$
 $y_4 = (Tesla)$
 $\delta_4 = 1$
 $p_4 = 0.9$

$$h_2 \\ \widehat{R_D}(h_2) = 1.33$$

Logged bandit data

Counterfactual Risk Minimization

• W.h.p. in $\mathcal{D} \sim h_0$

POEM: CRM algorithm for structured prediction

• CRFs:
$$h_w \in \mathcal{H}_{lin}$$
; $h_w(y|x) = \frac{\exp(w\phi(x,y))}{\mathbb{Z}(x;w)}$

• Policy Optimizer for Exponential Models :

$$w^* = \operatorname*{argmin}_{w} \left[\frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{h_w(y_i|x_i)}{p_i} + \lambda \sqrt{\frac{\widehat{Var}(\boldsymbol{h}_w)}{n}} + \mu_{\text{II}} \right] \xrightarrow{\text{Ugly: Resists stochastic optimization}}$$

Good: Gradient descent, search over infinitely many w

Bad: Not convex in w

Stochastically optimize $\sqrt{\widehat{Var}(\boldsymbol{h}_w)}$?

Taylor-approximate!

$$\sqrt{\widehat{Var}(h_w)} \le A_{w_t} \sum_{i=1}^n h_w^i + B_{w_t} \sum_{i=1}^n \{h_w^i\}^2 + C_{w_t}$$

- During epoch: Adagrad with $\nabla h_w^i + \lambda \sqrt{n} (A_{w_t} \nabla h_w^i + 2B_{w_t} h_w^i \nabla h_w^i)$
- After epoch: $w_{t+1} \leftarrow w$, compute $A_{w_{t+1}}, B_{w_{t+1}}$

Experiment

- Supervised → Bandit MultiLabel [Agarwal et al]
- $\delta(x, y) = \text{Hamming}(y^*(x), y)$

(smaller is better)

- LibSVM Datasets
 - Scene (few features, labels and data)
 - Yeast (many labels)
 - LYRL (many features and data)
 - TMC (many features, labels and data)
- Validate hyper-params (λ,μ) using $\widehat{R}_{\mathcal{D}_{val}}(h)$
- Supervised test set expected Hamming loss

Approaches

- Baselines
 - h_0 : Supervised CRF trained on 5% of training data
- Proposed
 - IPS (No variance penalty)
 - POEM
- Skylines
 - Supervised CRF

(extends [Bottou et al])

(independent logit regression)

(1) Does variance regularization help?

(2) Is it efficient?

Avg Time (s)	Scene	Yeast	LYRL	TMC
POEM(B)	75.20	94.16	561.12	949.95
POEM(S)	4.71	5.02	120.09	276.13
CRF	4.86	3.28	62.93	99.18

- POEM recovers same performance at fraction of L-BFGS cost
- Scales as supervised CRF, learns from bandit feedback

(3) Does generalization improve as $n \to \infty$?

(4) Does stochasticity of h_0 affect learning?

Conclusion

- CRM principle to learn from logged bandit feedback
 - Variance regularization
- POEM for structured output prediction
 - Scales as supervised CRF, learns from bandit feedback
- Contact: adith@cs.cornell.edu
- POEM available at http://www.cs.cornell.edu/~adith/poem/
- Long paper: Counterfactual risk minimization Learning from logged bandit feedback, http://jmlr.org/proceedings/papers/v37/swaminathan15.html
- Thanks!

References

- 1. Art B. Owen. 2013. Monte Carlo theory, methods and examples.
- 2. Paul R. Rosenbaum and Donald B. Rubin. 1983. The central role of the propensity score in observational studies for causal effects. *Biometrika 70.* 41-55.
- 3. Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013. Counterfactual reasoning and learning systems: the example of computational advertising. J. Mach. Learn. Res. 14, 1, 3207-3260.
- 4. Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li and Robert Schapire. 2014. Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. Proceedings of the 31st International Conference on Machine Learning. 1638-1646.
- 5. Andreas Maurer and Massimiliano Pontil. 2009. Empirical bernstein bounds and sample-variance penalization. Proceedings of the 22nd Conference on Learning Theory.
- 6. Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual risk minimization: Learning from logged bandit feedback. Proceedings of the 32nd International Conference on Machine Learning.