Large-scale Validation of Counterfactual Learning Methods: A Test-Bed

Damien Lefortier^{1,2}, Adith Swaminathan³, Xiaotao Gu⁴, Thorsten Joachims³, and Maarten de Rijke²

Facebook
 University of Amsterdam
 Cornell University, Ithaca, NY
 Tsinghua University, Beijing, China

Contributions

- ► We provide the **first public dataset with accurately logged propensities** from a production interactive system with recorded user feedback:
 - ▶ The dataset was collected at Criteo;
 - ▶ The dataset enables research into the problem of Batch Learning from Bandit Feedback (BLBF).
- ► We propose new sanity checks and evaluation methodologies when running BLBF experiments.
 - ▶ We provide a standardized test-bed that implements our workflow and benchmark several counterfactual learning algorithms in a sample BLBF task.

Motivation

Figure: BLBF algorithm.

Figure: Concrete example: banner-filling task at Criteo.

This dataset and test-bed will hopefully enable research into:

- ▶ New training objectives, learning algorithms, and regularization mechanisms;
- ► Improved model selection procedures (analogous to cross-validation);
- ▶ Effective and tractable policy classes $\pi \in \Pi$ for the specified task $x \mapsto y$; and
- ► Algorithms that can scale to massive amounts of data.

Dataset

The logging policy π_0 stochastically selects products to construct a banner by first computing non-negative scores f_p for all candidate products $p \in P_c$, and using:

$$P(slot1 = p) = \frac{f_p}{\sum_{\{p' \in P_c\}} f_{p'}} \qquad P(slot2 = p' \mid slot1 = p) = \frac{f_{p'}}{\sum_{\{p' \in P_c \land p^{\dagger} \neq p\}} f_{p^{\dagger}}}, \quad \dots$$

The propensity of a chosen banner ad $\langle p_1, p_2, ... \rangle$ is $P(slot1 = p_1) * P(slot2 = p_2 \mid slot1 = p_1) *$ and our dataset was logged as follows:

example \${exID}: \${hashID} \${wasAdClicked} \${propensity} \${nbSlots}
\${nbCandidates} \${displayFeat1}:\${v_1} ...

\${wasProduct1Clicked} exid:\${exID} \${productFeat1_1}:\${v1_1} ...

\${wasProductMClicked} exid:\${exID} \${productFeatM_1}:\${vM_1} ...

Download our dataset at:

▶ http://www.cs.cornell.edu/~adith/Criteo/index.html

Statistics

Sub-sampling to limit dataset size. Accounted for in the statistics and subsequent evaluation in our code.

#Slots	1	2	3	4	5	6
#Impressions	2.13e + 07	3.55e + 07	2.27e + 07	6.92e + 06	2.95e + 06	1.40e+07
\hat{N}	2.03e + 08	3.39e + 08	2.15e + 08	6.14e+07	2.65e + 07	1.30e + 08
Avg(InvPropensity)	11.96	3.29e + 02	1.87e + 04	2.29e + 06	2.62e + 07	3.51e + 09
Max(InvPropensity)	5.36e+05	3.38e + 08	3.23e + 10	9.78e + 12	2.03e + 12	2.34e + 15

Table: Number of impressions and propensity statistics for slices of traffic with k-slot banners with $1 \le k \le 6$. Estimated sample size (\hat{N}) corrects for 10% sub-sampling of non-clicked impressions.

Consequences:

- ▶ Don't rely on a single point estimate (like IPS), but report multiple estimates.
- ▶ Confidence intervals can mislead (esp. when $k \ge 4$).

Benchmark Learning Algorithms

- ► Slice of traffic can enable logged contextual bandit learning: 1-slot filling task.
 - ▶ Regression to predict CTR of candidates. Pick best estimated CTR;
 - ▶ Off-policy learning method like DRO or POEM.

		Test set estimates					
App	roach	$\hat{R}(\pi_{\epsilon}) \times 10^4$	$\hat{R}(\pi_{\epsilon}) \times 10^4 / \hat{C}(\pi_{\epsilon})$	$\hat{C}(\pi_{\epsilon})$			
Ran	dom	44.676 ± 2.112	45.446 ± 0.001	0.983 ± 0.021			
$ \pi_0 $		53.540 ± 0.224	53.540 ± 0.000	1.000 ± 0.000			
Reg	ression	48.353 ± 3.253	48.162 ± 0.001	1.004 ± 0.041			
IPS		54.125 ± 2.517	53.672 ± 0.001	1.008 ± 0.016			
DRO	С	57.356 ± 14.008	57.086 ± 0.005	1.005 ± 0.025			
POI	EM	58.040 ± 3.407	57.480 ± 0.001	1.010 ± 0.018			
e: Test set p	erforman	ice of policies learnt	using different counterfa	actual learning base			

Where $\hat{C}(\pi) = \frac{1}{\hat{N}} \sum_{i=1}^{N} \frac{\pi(y_i|x_i)}{q_i} \frac{1\{o_i=1\}}{\Pr(O=1|\delta_i)}$ and $\hat{R}(\pi) = \frac{1}{\hat{N}} \sum_{i=1}^{N} \delta_i \frac{\pi(y_i|x_i)}{q_i} \frac{1\{o_i=1\}}{\Pr(O=1|\delta_i)}$.

Grand BLBF challenges

- ▶ Size of the action space: Increase the size of the action space.
- ► Feedback granularity: Use per item feedback.
- ► Contextualization: We can learn a separate model for each banner type or learn a contextualized model across multiple banner types.

We hope you find this first public user impressions dataset with logged propensities useful for your research.

References

- [1] Counterfactual reasoning and learning systems: the example of computational advertising. L. Bottou et al. JMLR 2013.
- [2] Batch learning from logged bandit feedback through counterfactual risk minimization. A. Swaminathan et al. JMLR 2015.
- [3] Doubly Robust Policy Evaluation and Learning. M. Dudik et al. ICML 2011.
- [4] Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms. L. Li et al. WSDM 2011.
- [5] The self-normalized estimator for counterfactual learning. A. Swaminathan et al. NIPS 2015.

What If Workshop NIPS 2016