Shadow Detection and Sun Direction in Photo Collections
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- Appearance modeling in outdoor photo collections is
challenging because many factors affect image intensity. —
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- Existing approaches tend to model many elements at once, nputimage | Detection Laplacian| Dense Pixel-Space
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using complex algorithms and unstable nonlinear optimization. Photo Collection (boints + normals) | | intensity statistics 3D reconstruction points n

- Shadow detection is a simpler, more tractable problem that ’ - -
can nonetheless reveal a lot about the illumination in a scene. Shadow Detection Algorlthm
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Application: Sun Direction Estimation

- Sun direction is an important illumination property linked to Key Idea: Compute illumination ratio among many pairs of ,
capture time and applicable to more detailed lighting points, and aggregate information by voting. Key Idea: Surface normals at attachec.l sha.dow boundaries
estimation, relighting, and other applications. For each point Z: are orthogonal to the sun direction.

Contributions ) ek B other points §1 - - - YKk

. Yj

- Introduction and analysis of the Illlumination Ratio, a quantity - If R(z,y;) >T: casta vote for = being sunlit.
that captures the relative illumination of two scene points in - If R(x,y;) <1/T: castavote for T being shaded.
an image, invariant to albedo and camera exposure. . Otherwise: cast no vote

- An algorithm using the illumination ratio to estimate binary 3. Assign X's label according to majority vote.
shadow labels fgr points in a large Internet pho’Fo collection. 4. Use the Matting Laplacian [Levin et al. 2006] to estimate Algorithm: )

.dAirrzcettir;cr)]doﬁrh:sslzgosparse shadow labels to estimate the dense pixel-space labels from projected 3D point labels 1. Find shadow boundaries: B;(z) = cs;gn ]j:[fi (Cn+ — )

How do we choose T?

The Il ination Rati No ideal value, because cos() and L, /L, both vary and areun- 2+ Use RANSAL to find consensus sun direction,
e inumination natio known a priori. Because of voting, the threshold needs to be cor- discarding cast shadow boundaries and outliers.

rect a majority of the time. T=3 works empirically and is supported OR

by our analysis based on possible values of cos(¢) and L, /L. 2. If scene is georegistered and date is known, test only
1i(2) = poEi[CaiLa cos(¢s.:) + L] ARt PP el hypotheses along the 1D sun path for that place and date.

Image Formation Model:
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Vote sunny
Case A)

Key Properties:
- Invariant to albedo
and exposure
- Captures relative
illumination of x and y.

Sparse Labels
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. Vote shaded . Uninformative
(Case B) (Case Q)

Dense Shadow Map

RANSAC Cons. RANSAC Cons. RANSAC Cons. RANSAC Cons.



