
Supplementary material for “Field-Guide-Inspired Zero-Shot Learning”

1. Overview
In this supplementary material we look at some more re-

sults that could not be presented in the main paper. We show
attributes queried by Sibling-variance on SUN and AWA2
in Sec. 2. Sec. 3 shows the performance of the two acqui-
sition functions on AWA2 and SUN. In Sec. 4 we present
results for when the interactive learner uses a single im-
age for SUN and AWA2. In Sec. 5 we compare the per-
formance of our method with TF-VAEGAN on the AWA2
and SUN. Sec. 6 shows the effect of not using a taxonomy in
Sibling-variance for AWA2 and SUN. In Sec. 7 we show the
learner’s behavior when classes other than the annotators
first choice are chosen for SUN and AWA2. Sec. 8 presents
more t-SNE visualization examples of the learning progres-
sion for novel class descriptors on all three datasets. We
also strongly encourage the reader to refer to the supple-
mentary video for better visualizations of the t-SNE pro-
gression.

2. More Qualitative Evaluation
Figure 1, shows the attributes queried first by the Sibling-

variance method for 2 supercategories of SUN and AWA2.
It also shows the attributes picked by measuring variance
over all the classes. For SUN, attributes like “enclosed/open
area” or “man-made/natural” may help in disambiguating
between very different classes, but within a supercategory
they do not help. For example, for the superclass “Indoor
sports and leisure”, all the classes are closed and man-made.
But attributes like “competing”, “spectating” are more in-
formative. Similarly for indoor workplaces, attributes like
“using tools” and “studying/learning” are very informative.
Similar patterns can be seen on AWA2. Sibling-variance
asks for attributes informative within the superclass.

3. Comparison of Acquisition Functions on
AWA2 and CUB

Figure 2 shows the performance of the two attribute
querying acquisition functions with the CADA-VAE model
on AWA2 and SUN. Our acquisition functions perform sig-
nificantly better than a random acquisition function, show-
ing the value of our field-guide annotation.

While the results for fine-grained dataset such as SUN

Indoor workplace
Workshop Reading room Cubicle office

Sibling-Variance: using tools, studying learning, metal

Indoor sports and leisure
Wrestling ring Jacuzzi Ballroom

Sibling-Variance: competing, spectating, gaming

Total-Variance: enclosed/open area, visible horizon and man-made/natural

Aquatic mammals
Dolphin Killer whale Blue whale

Sibling-Variance: timid/aggressive, bulbous shape, color

Rodents and small mammals
Rat Hamster Racoon

Sibling-Variance: has tail, nocturnal, herbivore

Total-Variance: size (big/small), aquatic,  has paws

Figure 1. Attributes selected by Sibling-variance for a parent class
in the taxonomy and the attributes selected by measuring variance
over all classes (top) for SUN and AWA2.

are similar to that on CUB, for AWA2 Representation-
change performs better than Sibling-variance in the later
stages. This might be because the AWA2 model is trained
for fewer coarse-grained classes with thousands of images
and has a better representation and understanding of chang-
ing representation.

4. Image-based Results for AWA2 and SUN
Figure 3 shows the performance of our approach when

one image is given by the annotator along with the inter-
active attribute annotations for AWA2 and SUN. As for
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Figure 2. Performance of the two acquisition functions with
CADA-VAE on AWA2 and SUN. Both functions perform better
than the random acquisition function. On SUN, Sibling-variance
performs better than Representation-change, but the latter does not
require taxonomy information. Results on AWA2 are different, in
the earlier stages Sibling-variance is better than Representation-
change, but in the later stages Representation-change is better.

CUB, all the methods perform better than the baselines.
For SUN, the Image-based function performs on par with
Sibling-variance without requiring an additional taxonomy.
For AWA2, the Image-based function performs better than
all the methods we propose and the baselines. AWA2 has
more training images and the classes are not very fine-
grained. This might be the reason why Image-based ac-
quisition functions work better for AWA2.

5. Performance of TF-VAEGAN on AWA2 and
SUN

Figure 4 show the performance of our approach when the
base model is TF-VAEGAN on SUN and AWA2. Our field-
guide way of annotation works better then traditional ZSL
baselines for both the dataset, proving the effectiveness and
generalization of our method. For fine-grained classes such
as SUN and CUB, our method is .

6. Performance on AWA2 and SUN Without
Taxonomy

Figure 5 compares the method without taxonomy infor-
mation against the model where the taxonomy is known.
The results follow the conclusion from the main paper.
When there is no taxonomy information available, this
method loses performance because the local variation of a
class cannot be measured, and hence those attributes can-
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Figure 3. Performance of our method under the zero+one-shot set-
ting when the annotator provides a single image for novel class
along with the interactive attribute values for SUN and AWA2.
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Figure 4. Comparison of our method against unsupervised and tra-
ditional ZSL baselines with TF-VAEGAN as the base model. Our
method performs better than tradtional ZSL at the same attribute
annotation cost for both AWA2 and SUN. Similar to results for
CADA-VAE in the main paper, our method works better than the
unsupervised baselines for SUN.

not be selected. But even without the taxonomy the method
performs better than ZSL and is useful for cases when the
taxonomy is not known or difficult to acquire.
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Figure 5. Comparing Sibling-variance against a variant where the
taxonomy is unknown on AWA2 and SUN. The model loses accu-
racy if sibling classes are not used to measure Sibling-variance.

7. Effect on Performance When Changing Sim-
ilar Base Class

The similar class given by the annotator is certainly more
important than each attribute annotation. We look at the
effect of choosing another class: either a random class from
the full set, or a sibling of the expert selection that is closest
to the expert selected sibling in word2vec embedding space.
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Figure 6. Comparing different variants for selecting the similar
class S(y) on CUB dataset. The model is not sensitive to the sim-
ilar class as long as the selected class is not wildly different.

Figure 6 shows Sibling-variance with these annotations
along with the ZSL baseline on CUB. The similar class cho-
sen by annotators performs best. When we choose a class
that is close to this (sibling), the method performs slightly
worse. This shows that although our method performance
is affected if a non-optimal nearest class is chosen, it is not
very sensitive to it. Both these variants do significantly bet-
ter than randomly selecting a similar class. This suggests
that the interactive model will perform well as long as an-

notators do not provide a wildly different looking similar
class.

Figure 7 shows the results for Sibling-variance on AWA2
and SUN. The similar class chosen by annotators performs
similar to when a sibling base class is chosen for AWA2 and
SUN. The performance is again not very sensitive to choos-
ing the similar class as long as they are not very different.

Along with the sensitivity to the choice of the similar
class, we also evaluated our method with sensitivety to at-
tribute values. Note that incorrect or noisy attribute values
will affect not just our proposed active ZSL but also the tra-
ditional non-interactive ZSL. With 10% noise in the novel
attributes, when all attributes are provided, both our method
and traditional ZSL see a ∼ 3% drop in performance. With
partial attribute annotations (5 per class), our proposed an-
notation strategy (∼ 1% drop) fares much better than tradi-
tional ZSL annotation (∼ 5% drop).
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Figure 7. Comparing different variants for selecting the similar
class S(y) on AWA2 and SUN dataset. The model is not sensi-
tive to the similar class as long as the selected class is not wildly
different.

8. t-SNE Visualizations for More Classes and
Dataset

Figure 8 show the progression of Sibling-variance and
random attributes for all 10 AWA2 novel classes. Note that
in the standard split of AWA2, the classes are split in a way
that sometimes no good similar classes could be found. For
example, both seal and walrus are in the test split and hence
the annotators chose beaver and walrus as similar classes.
Similarly no good base class is there for giraffe and bat so
the annotators had to chose zebra and squirrel. Nonetheless



the faster progression towards novel classes’ images and
attributes can be seen for the classes when using Sibling-
variance over random attributes.

Figure 9 and 10 show the progression of Sibling-
variance and random attributes for all 20 novel classes of
CUB (out of 50) and SUN (out of 70). Faster progression
can be seen for Sibling-variance over these classes as well.
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Figure 8. t-SNE visualizations. For all 10 AWA2 novel classes and corresponding similar base classes. Smaller dots represent test images
and larger dots represent class attribute embeddings. Red edges show the progression of novel class attributes as learners interact using
Sibling-variance. Dots with black edges show the progression with the random function. Both methods start at the base class attribute
descriptor, and aim to reach to the novel class descriptor with as few interactions as possible. In most cases Sibling-variance reaches closer
to the novel class descriptor quicker in contrast to random.
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Figure 9. t-SNE visualizations. For 20 SUN novel classes and corresponding similar base classes. Smaller dots represent test images
and larger dots represent class attribute embeddings. Red edges show the progression of novel class attributes as learners interact using
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descriptor, and aim to reach the novel class descriptor with as few interactions as possible. In most cases Sibling-variance reaches closer
to the novel class descriptor quicker in contrast to random.



29

28

27

26

25

24

Yellow headed Blackbird
Hooded Oriole
sibling-variance
random-attribute

7.5

7.0

6.5

6.0

5.5

5.0

4.5

Bronzed Cowbird
Shiny Cowbird

18

19

20

21

22

Brown Creeper
American Three toed Woodpecker

55.0

52.5

50.0

47.5

45.0

42.5

40.0

37.5

35.0

Northern Fulmar
Long tailed Jaeger

37.0

36.5

36.0

35.5

35.0

34.5

34.0

33.5

Pied billed Grebe
Horned Grebe

27

26

25

24

23

22

21

Evening Grosbeak
Hooded Oriole

44.0

44.5

45.0

45.5

46.0

46.5

47.0

Green Violetear
Anna Hummingbird

2

1

0

1

2 Tropical Kingbird
Great Crested Flycatcher

34.5

34.0

33.5

33.0

32.5

32.0
Mallard
Hooded Merganser

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

White breasted Nuthatch
Black throated Blue Warbler

24.0

23.5

23.0

22.5

22.0

21.5

Orchard Oriole
Baltimore Oriole
sibling-variance
random-attribute

47.5

48.0

48.5

49.0

49.5

50.0

50.5

American Pipit
Vesper Sparrow

17.95

18.00

18.05

18.10

18.15

18.20

Loggerhead Shrike
Great Grey Shrike

45

46

47

48

49

50
Baird Sparrow
Vesper Sparrow

44

45

46

47

48

49

50

Henslow Sparrow
Lincoln Sparrow

38.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

Le Conte Sparrow
Grasshopper Sparrow

52.8

52.9

53.0

53.1

53.2

53.3

53.4

53.5

Savannah Sparrow
Song Sparrow

29.25

29.50

29.75

30.00

30.25

30.50

30.75

31.00

31.25

White crowned Sparrow
White throated Sparrow

5.5

5.0

4.5

4.0

3.5

Barn Swallow
Cliff Swallow

36.4

36.2

36.0

35.8

35.6

35.4

35.2

35.0

34.8

Scarlet Tanager
Vermilion Flycatcher

Figure 10. t-SNE visualizations. For 20 CUB novel classes and corresponding similar base classes. Smaller dots represent test images
and larger dots represent class attribute embeddings. Red edges show the progression of novel class attributes as learners interact using
Sibling-variance. Dots with black edges show the progression with the random function. Both methods start at the base class attribute
descriptor, and aim to reach the novel class descriptor with as fewer interactions as possible. In most cases Sibling-variance reaches closer
to the novel class descriptor quicker in contrast to random.


