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Abstract timation techniques are challenged by the statistical adlepe
dencies between the features. In this paper we propose the
use of a discriminative method based on structural SVM
(Tsochantaridis et al., 2005) for learning the parameters
of protein alignment models from a set of training exam-
ples. Unlike approaches based on CRF (Lafferty et al.,
2001, McCallum et al., 2005, Do et al., 2006), our method
allows us to explicitly optimize application specific loss
functions. The method provides a well-founded way of in-
cluding large number of features, and it allows us to build
flexible and highly complex alignment model without hav-
ing to assume conditional independence between features.
Experimental results on the CASP5 data shows that our
method is competitive with some of the best existing al-
gorithms.

Protein threading is the problem of inferring the
structure of a protein from its sequence by match-
ing the sequence against a set of known struc-
tures. Unlike conventional sequence to sequence
alignment tasks, alignment models for threading
can exploit a rich set of features derived from the
geometry of the known structure. To make use of
these complex and interdependent features, we
explore the use of discriminative training with
structural Support Vector Machines. We present
empirical results for the CASP5 dataset and com-
pare against conventional generative training.

1. Introduction 2. Basic Proteomics and Terminology

Protein Structure is essential for understanding the mech-

anism of many biological processes. With the increased’roteins are sequences of amino acids, typically several
availability of experimentally determined protein struc- hundreds long. There are 20 common amino acids, each

tures, comparative modelling techniques for inferring theith different physio-chemical properties. ~Proteins fold

structure of new proteins is gaining in attractiveness. ANt @ stable shape under their usual chemical environ-
important step in comparative modelling is the alignmentme”ts’ and their structure determines their function. Un-

of an unknown target protein sequence to one or more tem(jerstgnd.ing how pr_oteins fold is one.of the ceptral prqb-
plates of known structures. This alignment problem is chal!8ms in biology. While the genome projects provide us with

lenging for structurally similar proteins that neverttese Seduence information for a large number of proteins (DNA
have low sequence similarity. Aligning protein sequence£Cdes amino acids sequence), current methods for deter-
in this low sequence similarity region (below 25%, usually MiNing the structure of proteins experimentally are expen-
referred to as the “twilight zone”) is difficult for traditiml  SIV€ @nd time-consuming. Therefore, it is desirable to pre-
sequence alignment algorithm that uses subsitution matrdict the structure of proteins from the amino acid sequence
ces like BLOSUM or PAM. alone.

Numerous studies show that alignment accuracy within thé&-0mparative modelling of proteins is based on the idea
“twilight zone” can be impoved by including extra infor- that similar amino acid sequences fold into similar shapes.
mation (structure geometry, profile, secondary structures>UPPOSe a sequence of amino acids of unknown structure
etc.). However, this leads to an increase in the number of 9iven, which from here on we refer to as the target se-

parameters in the alignment model. Parameter tuning bguence. A search is performed on this new target sequence

hand becomes very difficult, and traditional generative esl @ database of protein sequences with known structures,

and proteins that we believe to be structurally similar # th
Appearing inProceedings of the ICML Workshop on Learningin ~ target sequence are selected. Then the target sequence is
Sructured Output Spaces, Pittsburgh, PA, 2006. Copyright 2006 aligned against all the templates, and structural models fo

by the author(s)/owner(s). the target sequence are produced from these alignments.
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To produce good structural models, not only do the correct. Learning the Alignment Model
templates need to be found, but the alignments between the

target sequence and templates also need to be as accur
as possible.

ethe above section, the cost vectBrparameterizes the
scoring scheme and has great influence over the quality of
alignments between target and template sequences. The
Alignment errors between target and template is a majoeommonly used substitution matrices are estimated using
source of errors for target-template pairs with less 8t log-likelihoods of aligned protein blocks, while the gap pa
sequence similarity. In this study we attempt to improverameters are usually hand-tuned. We aim to learn all pa-
alignment accuracy by building more complex models oframeters automatically from a training set of "gold stan-
alignments using extra information. The three features thagard” — or ideal — alignments (these alignments are either
we are going to use in this study are residue (amino acid)produced manually or computed by programs using 3D co-
secondary structure, and relative exposed surface area (serdinates). This is known as the inverse alignment problem.
vent accessibility). For the target sequence with no strucBelow we present an algorithm that learns a cost vedtor
tural annotation, secondary structure and solvent accessrom a set of ideal training alignments. The approach is
bilty are predicted using the program SABLE (Adamczakdiscriminative and tries to maximize the score difference
etal., 2004). (margin) between the ideal alignment and alternative align

ments.

3. Sequence Alignment

4.1. Formulation of the Learning Problem
Following discussions from the last section, we begin with o ) )
introducing notations to formuate the alignment problem e denote the training set of ideal alignments&s=
Let z = (zte,zt°) be a pair of target and template se- ((z1,41), (%2, ¥2), ..., (zn,yn)). Each training pattera;
guences (we will use the abbreviatiognsandte for targets IS @ pair of target and template sequences, and we write
and templates extensively in this paper). For an alignment: = (z;",7;°). Each label;(the ideal alignment) is a se-
y of the pair(zt®, zt¢), we writey as a sequence of align- duence of pairg; = (yi,9i, - i), where each alignment
ment operationgy’, 42, ...,y*). Eachy’ is an alignment operationy! is a pair of aligned residues or a gap aligned
operation of the forn{a, b), wherea, b are one of the 20 With a residue.

amino acids or the special gap charactet’ In the framework of structural SVMs (Tsochantaridis et al.,

We consider alignment algorithms that optimizes a linear?2005), training the parameters can be formulated as the fol-
scoring functionD ;(y) = @ - ¥(y)where¥ is a function lowing optimization problem (Joachims et al., 2005).
that maps the alignmentto a feature vector, and is a

given cost vector that parameterizes the scoring function min 1||u';||2 + ¢ Z & (3)
. . . Lo ) n
D. Furthermore, we require thét(y) be linear in the indi- W€ i=1
vidual alignment operationg in y. To be precise, st Vy e Yi\{y;} - @ () —9@) > AWy —&
tength(y) ‘ The objective is the conventional regularized risk used in
V)= > o) (1) SVMs. The constraints state that the scare¥ (y;) of the
j=1 ideal alignmeny; must be greater than the scafe ¥(y)

where¢ is a function that maps each individual alignmentof all alternative alignmentg by a difference oA (y;, y).

operation onto the feature space. To compute the highe& 'S @ 10ss function that measures how different the two
scoring alignment between= (', z¢), we compute alignmentsy; andy are. Intuitively, the larger the loss,
o the further should the score be away from that of the ideal

[ length(y) '| alignment.¢; is a slack variable shared among constraints
argmax [ - ¥(y)] = argmax [o Z d(y?) (2) from the same example, since in general the problem is not
yeAlign(z) yeAlign(z) [ j=1 J separable. Note th3t ¢; is an upper bound on the training

] ) ) ) loss. We will discuss the design of suitable feature vectors
where Align(z) is the set of all possible local alignments , 5 |oss functiom in Section 4.3, a task in which both

betweenz'* andz'*. This is typically computed using the ;5 ngical knowledge and algorithmic considerations play
Smith-Waterman dynamic programming algorithm. Note, oo

that our setting includes the common scenarios of align-
ment With substitution mz?\trices such as _BLOSUM, where4.2. Learning Algorithm
the functiong maps the alignment operatigh = (a, b) to

one of the 400 substitution costs (or the gap cost). In thissiven any two sequences of lengtlandm, the number of
study, however, we consider richer feature mappings thgpossible alignments between them is exponential,im.
include structural information. The number of constraints in optimization problem (3) is
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Input: pairs of target and template sequencés3.1l.lOSSFUNCTION
(xle, zte), ..., (2t 2t¢), ideal alignmentsyi,...,yn,

n n

A natural measure of loss is the number of incorrect align-
tolerated erroe > 0. 9

ment operations. However, since we are dealing with local

-

K=0,0=0£¢=0 alignments, we are more interested in obtaining more cor-
repeat rectly aligned residue pairs than avoiding extraneouspair
e Koy =K Moreover, we are more interested in getting the 'match’ op-

e forifromliton erations rather than the 'gap’ operations correct since the

— § = argmazyey,\y, [AYi.y) +0- (V) — ;)] matches tell us something piologically meaningful and are

via dynamic programming useful for structural modelling. These properties are re-

—if @ (U(y;) — U(y) < Alys,y) — & — e flected in the commonly used Q score, which is the number

« K=KU{@ (y) — @) > Ayi,y) —Ei—e} of correct 'match operatlonslln Y (|.,e., matc_hes in both
y andy;), over the number of 'match’ operatioss in the

—

* (@8 = argming g3 |10l + 5316 reference alignmen
’ su)bject toK . '9 .
until (K = Korg |SiN S|
Output: Ag(y,yi) =1~ 5] (5)

Figure 1.Sparse Approximation Algorithm for the Alignment Note that this loss function based on the Q score is linear in
Prediction task. the alignment operations, making it accessible to dynamic
programming. We also consider a less stringent version of
L . . .this loss function (called the Q4 loss), which counts a cor-
huge and it is infeasible to solve the quadratic program d"rect match for two residues if they align within a window

rectly. However, it has been shown that _th_e cutting plan%f size 4 (which is acceptable for structural modelling).
algorithm in Figure 1 can be used to efficiently approxi-

mate the optimal _sqlutlon of this type of optlmlzatlon prob- 4.3.2. YBSTITUTION MODEL
lem (Tsochantaridis et al., 2005, Joachims et al., 2005).
The algorithm starts with an empty set of constraints, add¥Ve want to define a linear model to determine the cost of
the most violated constraint among the exponentially manyligning target residu&;, with template residu&;., with
during each iteration, and repeats until the desired precithe following extra information:
sione > 0 is reached. It can b_e proved that only a poly- 1. S;., predicted secondary structure of target
nomial number of constraints will be added before conver-
. . . Ste, true secondary structure of template

gence (Tsochantaridis et al., 2005, Joachims et al., 2005}, A dicted sol ibility of
One crucial aspect of the algorithm, however, is the use of," "’ predicted solvent accessi lity of target

) . ’ ) ’ 4. A,., true solvent accessibility of template
an oracle which can pick out the most violated constraint
among the exponentially many in polynomial time. ThatThe usual alignment operations are of the fofmb),

is, we need to compute wherea is a target residue arids a template residue. Now
we consider tuples of features, far= (R, Sta, Ata)s
argmax[A(y;,y) + 4 - (U(y) — ¥(y;))]- (4) b= (Ry, Sie, Ase) All the predicted secondary structures
yeYily: and solvent accessibility for the targets are generatelddoy t

SABLE program (Adamczak et al., 2004), while the true
secondary structures and relative exposed surface area for
the templates are computed using DSSP. In the following

For our problem of sequence alignment we have already a
sumed that the feature mappifgs linear in the individual

alignment operations. If the loss functidnis also linear,

then we can use a variant of the Smith-Waterman algorithrf‘?“sél:uss'On on feature vect_orshwe use the_gfta;t](on Y)

to find the most violated constraint efficiently. The running ©© fenot(;a score megfs?rlng hOW comlpatl et ehstructures
time of the overall learning algorithm is then polynomial X from the target an rom_t e tgmp ate are, w ere

in the number of training examples, the length of the se.andY” can be any of the basic attributes mentioned above,

quences, and(Tsochantaridis et al., 2005, Joachims et al.,O @y combination of them.

2005).
) () SIMPLE Commonly used substitution matrices like

BLOSUM consider only the identity of the residue, and
the substitution score just consist of a single constant
We now turn to the important issue of designing the features(R;,; R:.). Instead, we consider scores of the form
vectors and loss functions. Since the loss function has lesg R:.; Rie) + $(Sta; Ste) + $(Ata; Are) Which take into
variety than the feature vector, we would discuss the lossiccount the compatibility of secondary structure, exposed
function first. surface area at the two sites as well. It is also meaning-

4.3. Alignment Model



Submission and Formatting Instructions for ICML-2006

ful to consider the alignment cost between a residue anih (9).
a surface area typg R:,; A;.), since we know that some , , , - , -
residues are hydrophobic and tend to stay buried inthe core ~ s(Ri,' A R}, A RiT" R].' A R], A RIT)

of the protein while some other_residues are polar and Pré- L s(Si-tASH ASHL ST A SE A SITY (10)
fer to be exposed to water. This leads us to the following i . bl il i 41
substitution cost function: +s(Aje N A NAL Al NAL N AT
$(Ria; Ree) + $(Ria; Sie) + $(Ria; Ate) To reduce dimensionality, we group the set of amino

) ) ) acids into 7 equivalence classes according to their physio-
+5(Sta; Bie) + 5(Sta; Sre) + 5(Sha; Are) ©®)  chemical properties{(<,R,H}, {D,E}, {I,V,M, L},
+5(Ata; Rie) + s(Ata; Ste) + s(Ata; Ate) {CY, {P,S,A,G, T}, {F,W,Y}, {N,Q}) using protein
alphabet compression (Taylor, 1986, Wang & Wang, 1999)

Alternatively, this alignment cost can be written nicely in \ynen considering the window feature for residues.
algebraic notations. If we overload the notation and con-

sider R;, as a binary indicator feature vector of dimen- 4 3 3. Ga\p MoDEL

sion 20 for the residud?;,, S;, of dimension 3 for the

predicted secondary structuré;, of dimension 5 for the In addition to using gap opening and gap extenstion costs,
predicted surface area(we bin the relative exposed surfagie make the gap costs dependent on the specific environ-
area(0-100%) into 5 bins), and likewise for the correspondment. Our gap model follows very closely from the one

ing features in the template. Then the feature vector can bésed in (Qiu & Elber, 2006). First, consider the situation
written out as: of gaps in the target sequence. Suppose when alighing

againstR;., there is a gap betwed®y?, andR};"*, and the
(R:a © S, @ A:a) ® (R_);e © S, @ A:e) (7)  9ap character is aligned B}, of the template. Denoting
the position in the sequence with super-script, the cost of

where is the direct sum operation and is the tensor ~ OPening agap betwedry, andRj;"", with the gap aligned
product operation over vector spaces. to Ry, Is:

n . pn+l n . qgn+l n . An+1
(1) ANOVA2  Our next proposal is to also consider the 9(Biai Bea) + 9(Stai St ) + 9( A5 Ara™) (11)
pairwise combination of features. For example, we can +9(Rrf.) + g(St.) + g(Af.)
have a cost of( B¢, A Sta; Rie ASte ), Which determines the
score of aligning a site with residue tygg, and predicted Where the dyadic termg(X;.; X;i"") measures how easy
secondary structur§,, of the target sequence with another itis to open a gap between the structure tjjg and.X ;"
site with residue type®,. and true secondary structusg.  in the target. The intuition behind such a comples gap-
of the template sequence. We add all possible alignmerfhodel is that, for example, wheXi is the secondary struc-

costs for pairs of basic features. In particular, we conside ture, andX;;, andX;;"" are botha-helix, then it would be
unfavorable to open a gap between the two sites. However

((R1a®Sta) ® (Sta® Ara) @ (Ara ® R1a)) if X7, andX_t’};” are of different secondary structure types
a o S 4 - - (8) or they are in the loop region, then opening a gap is more
QA (Rre@Sie) ® (Sre @ Are) ® (Are @ Rye)) permissible. The monadic terp{Y’) measures how com-

patible a particular template structure is with a gap at that
(1) SIMPLE+ANOVA2  We consider the direct sum of Site. The cost of gap openning at the template is similarly
the two feature vectors in (7) and (8), since it could be addefined, with the role of target and template reversed in the
vantageous to learn from a simpler feature vector befor@bove definition.
learning from more complicated features. In terms of alge-

braic notations it is: 5. Experiments
((Rra®S;a® A0 )B(Bra®S0 )P Sja®Ara B ARy )) We used data from a representative set developed by the
- - (9)  computational biology group at Cornell (Qiu & Elber,

A(BeeDS1eD e JD(ac®She JD(She Dk J( AeB ke )) 2006). After cleaning up missing values and removing ex-

amples which the LOOPP server cannot produce structural
(IV) SIMPLE+ANOVA2+WINDOWS3  Finally, it might  annotations, we have 3169 ideal alignments in total, as pro-
be informative to include information about sites nearbyduced by the CE program based on the structures of the
when aligningR;, with R/_; for example,R:. ', Ri*' and  target and template proteins. Each target-template pair in
RI7' RIT' if we consider a window of size 3. Specifi- the training set shared high structural similarities with C
cally, we add three extra score terms to the feature vectaf score greater than 4.5.
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Q score on CASP 5 Q score on validation set
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Figure 2.Q score on CASP5 test set. Figure 3.Q score on validation set.

We test our models using sequences from the CASP5 conf2P/é 1.Q scores on CASPS.  The numbers of the first three
petition as targets. A set of suitable templates are identiioVs are computed from the alignments in study in (Qiu & El-

. . ber, 2006). The number in brackets are the best performances
fied using the LOOPP server. In the CASPS set we hav entioned in that paper, using a slightly larger CASP5 sét wi

101 aligned pairs from 30 target sequences. Most of thg - pairs.

alignments in this test set fall within the twilight zone thwi Method Q-Score
all but 18 pairs having sequence similarity below 25%. Weg BLOSUMS50 (GAP Open/Ext=10/1) 27.13 (27.1)
trained models for the 4 feature vectors with a different val ZEXEhAST 2?22 g‘llg
ues of(? ﬁnd precisiort = 0.01. Our preliminary findings SIMPLE (C = 0.25) 283
are as follows. ANOVA2 (C = 4) 48.17

; #H SIMPLE+ANOVA2 (C = 8) 47.97
Figure 2 show the Q score of our methqd on CAS_P§ with SIMPLE+ANOVA2+WINDOW3 (€ = 2) | 50.02
the 4 different feature vectors. The horizontal axis is the

regularization parametef, which we train from2—2 to
2
2%, in powers of 2. The general trend seems to be that th%n about 5000 examples, while our method was trained
more complex models perform better than the less com- .
) X . . on only the subset of 3169 examples for which we had
plex feature vectors. In particular, including neighbato

information from the size 3 window seems to be beneficial structural annotations in our database. As baselines, we
included the performances of BLOSUM and PSI-BLAST.

Figure 3 shows the Q score of our method on another set diVe observe that the incorporation of structural infornatio
examples which we call the 'validation set’. The set con-(i.e. our method and SSALN) boosts the alignment accu-
tains 3882 examples and was used in the study (Qiu & Elracy by a substantial amount. Our method is competitive
ber, 2006) for parameter tunning. It is constructed in a simwith SSALN, showing similar performance on the CASP5
ilar manner as the training set, and is independent of theet. However, we achieve this performance without any
training set in the sense that no target sequence appearsneed for manual tuning of parameters.
both training and validation set. The relative performanceSO far we have assumed that our exam .
. o ) ples of proteins
of the different feature vectors are similar to those in theali Aments are independent and identically distributed. |
CASPS5 set, but the curve is slightly smoother due to the 9 P y ;

larger test set size. There are differences in the absolutréaallty the alignment examples are not independent, since

performances on the CASP5 and validation sets due to dif?.ac.h target sequence_usu.ally-has more than one structurally
ferences in their distribution of protein sequences in term similar templates, which implies that the templates them-

S ! o selves are also structurally similar. In addition, ourrirai

of sequence similarities and protein families. . : . .
ing and test sets are mixtures of classes of proteins which

Table 1 compares the performance of our method with exvary in average length and composition of secondary struc-
isting approaches. The performance on CASP5 test set rédres. We performed a set of simple experiments to in-
ported in table 1 is trained with the value@fthat gives the  vestigate the effect of separating these classes in tginin
best performance over a validation set of size 3882 meneur alignment models. The SCOP classification (Murzin
tioned above. SSALN (Qiu & Elber, 2006) is a gener- et al., 1995) is a hierarchical classification of proteinstr
ative method that incorporates structural informatiom int tures into classes, folds, superfamilies and families.- Pro
the subsitution matrices, and are trained using the samiins within the same family share more structural similari
feature set as our algorithm does. SSALN was trainedies than proteins within the same superfamily, which share
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more structural similarities than proteins within the same

fold, which in turn share more structural similarities than Table 2.Q score on validation set by SCOP class split2

proteins within the same class. We used the SCOP clas- SCOP A tg%op B ogcop C SCOPD
sification to divide the training set (3169 examples) into 4 SCOP A| 3459 26.64 23.04 45.65
major classes at the top of the SCOP hierarchy according totrain  SCOP B| 31.69 47.9 29.35 53.59
the class of the target sequence: all alpha proteins (SCOP°" SCOP C| 24.27 22.44 314 43.42

SCOPD| 31.55 30.68 29.06 52.26

A, 648 examples), all beta proteins (SCOP B, 1161 exam- Al 30.92 46.51 30.31 52 69

ples), alpha and beta proteins (SCOP C, 1032 examples),

alpha plus beta proteins (SCOP D, 129 examples). Pro-

teins within the same class have similar secondary strucg. Conclusions and Future Work

ture composition. Examples outside these 4 classes are dis-

carded. We repeat the process for the validation set (388¥/e have explored the use of large-margin training for
examples) to obtain 4 test sets of different classes (505 epuilding alignment models for protein threading. The po-

amples for SCOP A, 1786 examples for SCOP B, 959 extential benefits of such an approach are the ability to learn
amples for SCOP C, 213 examples for SCOP D). In thiscomplex models in a well-founded way, the ability to op-

way we have 4 different train sets divided by SCOP classtimize to application specific loss functions, and the abil-

4 different test sets also divided by SCOP class, and théy to set the gap parameters without need for hand-tuning.

relative size of train sets and test sets by class are similar Our initial experiments show that our method is competi-

i i i __tive with a state-of-the-art generative learning methedne
We trained alignments models on the 4 train sets 'n'withoutyet realizing its full potential.

dividually and tested them on the 4 test sets. We

used the feature vector with best performance “SIM-(Do et al., 2006) considered training alignment models
PLE+ANOVA2+WINDOW3” in training the models, for Wwith conditional random field, and obtained excellent re-
values ofC in the range2—! to 2. We found that the per- Sults compared to traditional generative models. Although
formance of models using different values®dfo be rather  the focus of their study is different from ours, it will be
close (within Q score of 1), and so we only report the per-interesting to compare our SVM approach to their CRF ap-
formance forC = 2 in Table 2. The rows represent the proach and understand the differences between these two

training sets while the columns represent the test sets. Waiscriminative methods.

observe that the table is diagonally dominant, suggesting, 4is work we focused on improving the quality of align-

that training and testing on the same SCOP class gives bertﬁentfor comparative modelling of proteins. An interesting

ter performance. The effectis particularly marked in SCOPprobIem closely related to the current study is homology

B for aII-beta-proteins_, since no other class could achieve detection by alignment. The goal of homology detection
performance close to iton the SCOP B test set. The lastroy v fing structurally similar proteins of a target sequence
is the performance OT a model trained with the whole et 5 gatabase of known protein structures, and the score
of 3169 examples using the same feature vector and saMRad are usually the dynamic programming score or some
Va'“_e ofC\. The performance of that modgl on each teStyormalized versions of it. The quality of alignment itseif i
setis close but slightly worse than the best in the same Coly,ig yroplem is notimportant as long as the score could give
umn, i.e., those models which are trained and tested usingg good discriminating power over whether or not two pro-
the training and test sets from the same SCOP class. Thging are structurally related. Our large-margin approach
difference in performance is consistently maintained $€ro . 14 pe also adapted for this problem by optimizing over
the range of” (2" to 2°) that we explored. a suitable metric instead of the Q score, and we believe
It seems that information on the SCOP classes of the prdhe ability to incorporate many structural features wotdd b
teins gives a small advantage in training alignment modelshelpful in this problem. This would be an interesting direc-
The next natural problem to investigate is to go down thetion for further research.

SCOP hierarchy and look at whether knowing the SCORpe are also investigating how to relax the i.i.d. assump-

fold of a protein would help us train better allgnmentmod—tiOn over the 'golden standard alignments’ used in train-

els. _'Ic'jhes_e_ e>ilpe(rj|_me_|gts cguld help l;shungerstar;fdﬂrlow fg. Since each target sequence usually has more than one
non-identitically-distributed nature of the data affetls  gu,cqyrally similar template, it is wasteful to ignoreghi

performance of our alignment models, perhaps suggesting|ation because the templates themselves are going to be
ways to utilize these information to increase alignment ac'structurally similar as well. One way to tackle this prob-

curacy in future works. lem would be to train models to do multiple alignments di-
rectly, but we need to change the dynamic programming al-
gorithm to approximate alignment algorithms and perform
the corresponding parameter estimation. Our experiments
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on splitting training and test sets by SCOP classes showVang, J., & Wang, W. (1999). A computational approach to
the non-identically-distributed nature of the data, andemo  simplifying the protein folding alphabetNature Struc-
work is needed to investigate its full effect on the perfor- tural Biology, 6(11), 1033—-1038.

mance of alignment models. It would be a major challenge

to model the dependencies between of the different proteins

sequences and their distribution in the fold space due to low

sequence similarity, but a proper modelling of these depen-

dencies could increase the alignment accuracy further.
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