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Abstract

Protein threading is the problem of inferring the
structure of a protein from its sequence by match-
ing the sequence against a set of known struc-
tures. Unlike conventional sequence to sequence
alignment tasks, alignment models for threading
can exploit a rich set of features derived from the
geometry of the known structure. To make use of
these complex and interdependent features, we
explore the use of discriminative training with
structural Support Vector Machines. We present
empirical results for the CASP5 dataset and com-
pare against conventional generative training.

1. Introduction

Protein Structure is essential for understanding the mech-
anism of many biological processes. With the increased
availability of experimentally determined protein struc-
tures, comparative modelling techniques for inferring the
structure of new proteins is gaining in attractiveness. An
important step in comparative modelling is the alignment
of an unknown target protein sequence to one or more tem-
plates of known structures. This alignment problem is chal-
lenging for structurally similar proteins that nevertheless
have low sequence similarity. Aligning protein sequences
in this low sequence similarity region (below 25%, usually
referred to as the “twilight zone”) is difficult for traditional
sequence alignment algorithm that uses subsitution matri-
ces like BLOSUM or PAM.

Numerous studies show that alignment accuracy within the
“twilight zone” can be impoved by including extra infor-
mation (structure geometry, profile, secondary structures,
etc.). However, this leads to an increase in the number of
parameters in the alignment model. Parameter tuning by
hand becomes very difficult, and traditional generative es-
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timation techniques are challenged by the statistical depen-
dencies between the features. In this paper we propose the
use of a discriminative method based on structural SVM
(Tsochantaridis et al., 2005) for learning the parameters
of protein alignment models from a set of training exam-
ples. Unlike approaches based on CRF (Lafferty et al.,
2001, McCallum et al., 2005, Do et al., 2006), our method
allows us to explicitly optimize application specific loss
functions. The method provides a well-founded way of in-
cluding large number of features, and it allows us to build
flexible and highly complex alignment model without hav-
ing to assume conditional independence between features.
Experimental results on the CASP5 data shows that our
method is competitive with some of the best existing al-
gorithms.

2. Basic Proteomics and Terminology

Proteins are sequences of amino acids, typically several
hundreds long. There are 20 common amino acids, each
with different physio-chemical properties. Proteins fold
into a stable shape under their usual chemical environ-
ments, and their structure determines their function. Un-
derstanding how proteins fold is one of the central prob-
lems in biology. While the genome projects provide us with
sequence information for a large number of proteins (DNA
codes amino acids sequence), current methods for deter-
mining the structure of proteins experimentally are expen-
sive and time-consuming. Therefore, it is desirable to pre-
dict the structure of proteins from the amino acid sequence
alone.

Comparative modelling of proteins is based on the idea
that similar amino acid sequences fold into similar shapes.
Suppose a sequence of amino acids of unknown structure
is given, which from here on we refer to as the target se-
quence. A search is performed on this new target sequence
in a database of protein sequences with known structures,
and proteins that we believe to be structurally similar to the
target sequence are selected. Then the target sequence is
aligned against all the templates, and structural models for
the target sequence are produced from these alignments.
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To produce good structural models, not only do the correct
templates need to be found, but the alignments between the
target sequence and templates also need to be as accurate
as possible.

Alignment errors between target and template is a major
source of errors for target-template pairs with less than30%
sequence similarity. In this study we attempt to improve
alignment accuracy by building more complex models of
alignments using extra information. The three features that
we are going to use in this study are residue (amino acid),
secondary structure, and relative exposed surface area (sol-
vent accessibility). For the target sequence with no struc-
tural annotation, secondary structure and solvent accessi-
bilty are predicted using the program SABLE (Adamczak
et al., 2004).

3. Sequence Alignment

Following discussions from the last section, we begin with
introducing notations to formuate the alignment problem.
Let x = (xta; xte) be a pair of target and template se-
quences (we will use the abbreviationsta andte for targets
and templates extensively in this paper). For an alignmenty of the pair(xta; xte), we writey as a sequence of align-
ment operations(y1; y2; :::; yk). Eachyj is an alignment
operation of the form(a; b), wherea; b are one of the 20
amino acids or the special gap character ’�’.

We consider alignment algorithms that optimizes a linear
scoring functionD~w(y) = ~w � 	(y)where	 is a function
that maps the alignmenty to a feature vector, and~w is a
given cost vector that parameterizes the scoring functionD. Furthermore, we require that	(y) be linear in the indi-
vidual alignment operationsyj in y. To be precise,	(y) = length(y)Xj=1 �(yj) (1)

where� is a function that maps each individual alignment
operation onto the feature space. To compute the highest
scoring alignment betweenx = (xta; xte), we computeargmaxy2Align(x)[~w �	(y)℄ = argmaxy2Align(x)24~w �length(y)Xj=1�(yj)35 (2)

whereAlign(x) is the set of all possible local alignments
betweenxta andxte. This is typically computed using the
Smith-Waterman dynamic programming algorithm. Note
that our setting includes the common scenarios of align-
ment with substitution matrices such as BLOSUM, where
the function� maps the alignment operationyj = (a; b) to
one of the 400 substitution costs (or the gap cost). In this
study, however, we consider richer feature mappings that
include structural information.

4. Learning the Alignment Model

In the above section, the cost vector~w parameterizes the
scoring scheme and has great influence over the quality of
alignments between target and template sequences. The
commonly used substitution matrices are estimated using
log-likelihoods of aligned protein blocks, while the gap pa-
rameters are usually hand-tuned. We aim to learn all pa-
rameters automatically from a training set of ”gold stan-
dard” — or ideal — alignments (these alignments are either
produced manually or computed by programs using 3D co-
ordinates). This is known as the inverse alignment problem.
Below we present an algorithm that learns a cost vector~w
from a set of ideal training alignments. The approach is
discriminative and tries to maximize the score difference
(margin) between the ideal alignment and alternative align-
ments.

4.1. Formulation of the Learning Problem

We denote the training set of ideal alignments asZ =((x1; y1); (x2; y2); :::; (xn; yn)). Each training patternxi
is a pair of target and template sequences, and we writexi = (xtai ; xtei ). Each labelyi(the ideal alignment) is a se-
quence of pairsyi = (y1i ; y2i ; :::; yki ), where each alignment
operationyji is a pair of aligned residues or a gap aligned
with a residue.

In the framework of structural SVMs (Tsochantaridis et al.,
2005), training the parameters can be formulated as the fol-
lowing optimization problem (Joachims et al., 2005).min~w;~� 12k~wk2 + Cn nXi=1 �i (3)s:t: 8y 2 Yinfyig : ~w �(	(yi)�	(y)) � �(yi;y)��i
The objective is the conventional regularized risk used in
SVMs. The constraints state that the score~w �	(yi) of the
ideal alignmentyi must be greater than the score~w � 	(y)
of all alternative alignmentsy by a difference of�(yi; y).� is a loss function that measures how different the two
alignmentsyi and y are. Intuitively, the larger the loss,
the further should the score be away from that of the ideal
alignment.�i is a slack variable shared among constraints
from the same example, since in general the problem is not
separable. Note that

P �i is an upper bound on the training
loss. We will discuss the design of suitable feature vectors	 and loss function� in Section 4.3, a task in which both
biological knowledge and algorithmic considerations play
a role.

4.2. Learning Algorithm

Given any two sequences of lengthn andm, the number of
possible alignments between them is exponential inn;m.
The number of constraints in optimization problem (3) is
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Input: pairs of target and template sequences(xta1 ; xte1 ); :::; (xtan ; xten ), ideal alignmentsy1; :::; yn,
tolerated error� � 0.K = ;, ~w = 0, ~� = 0

repeat� Korg = K� for i from 1 to n
– ŷ = argmaxy2Yinyi [�(yi;y)+ ~w�(	(y)�	(yi))℄

via dynamic programming
– if ~w � (	(yi)�	(y)) < �(yi; y)� �i � �� K=K[f~w �(	(yi)�	(y))��(yi;y)��i��g� (~w; ~�) = argmin~w;~� 12k~wk2 + Cn Pni=1 �i

subject toK.
until (K = Korg)
Output: ~w

Figure 1.Sparse Approximation Algorithm for the Alignment
Prediction task.

huge and it is infeasible to solve the quadratic program di-
rectly. However, it has been shown that the cutting plane
algorithm in Figure 1 can be used to efficiently approxi-
mate the optimal solution of this type of optimization prob-
lem (Tsochantaridis et al., 2005, Joachims et al., 2005).
The algorithm starts with an empty set of constraints, adds
the most violated constraint among the exponentially many
during each iteration, and repeats until the desired preci-
sion � > 0 is reached. It can be proved that only a poly-
nomial number of constraints will be added before conver-
gence (Tsochantaridis et al., 2005, Joachims et al., 2005).
One crucial aspect of the algorithm, however, is the use of
an oracle which can pick out the most violated constraint
among the exponentially many in polynomial time. That
is, we need to computeargmaxy2Yinyi [�(yi; y) + ~w � (	(y)�	(yi))℄: (4)

For our problem of sequence alignment we have already as-
sumed that the feature mapping	 is linear in the individual
alignment operations. If the loss function� is also linear,
then we can use a variant of the Smith-Waterman algorithm
to find the most violated constraint efficiently. The running
time of the overall learning algorithm is then polynomial
in the number of training examples, the length of the se-
quences, and� (Tsochantaridis et al., 2005, Joachims et al.,
2005).

4.3. Alignment Model

We now turn to the important issue of designing the feature
vectors and loss functions. Since the loss function has less
variety than the feature vector, we would discuss the loss
function first.

4.3.1. LOSSFUNCTION

A natural measure of loss is the number of incorrect align-
ment operations. However, since we are dealing with local
alignments, we are more interested in obtaining more cor-
rectly aligned residue pairs than avoiding extraneous pairs.
Moreover, we are more interested in getting the ’match’ op-
erations rather than the ’gap’ operations correct since the
matches tell us something biologically meaningful and are
useful for structural modelling. These properties are re-
flected in the commonly used Q score, which is the number
of correct ’match’ operationsS in y (i.e., matches in bothy andyi), over the number of ’match’ operationsSi in the
reference alignmentyi.�Q(y; yi) = 1� jSi \ SjjSij (5)

Note that this loss function based on the Q score is linear in
the alignment operations, making it accessible to dynamic
programming. We also consider a less stringent version of
this loss function (called the Q4 loss), which counts a cor-
rect match for two residues if they align within a window
of size 4 (which is acceptable for structural modelling).

4.3.2. SUBSTITUTION MODEL

We want to define a linear model to determine the cost of
aligning target residueRta with template residueRte, with
the following extra information:

1. Sta, predicted secondary structure of target
2. Ste, true secondary structure of template
3.Ata, predicted solvent accessibility of target
4.Ate, true solvent accessibility of template

The usual alignment operations are of the form(a; b),
wherea is a target residue andb is a template residue. Now
we consider tuples of features, fora = (Rta; Sta; Ata),b = (Rte; Ste; Ate) All the predicted secondary structures
and solvent accessibility for the targets are generated by the
SABLE program (Adamczak et al., 2004), while the true
secondary structures and relative exposed surface area for
the templates are computed using DSSP. In the following
discussion on feature vectors, we use the notations(X ;Y )
to denote a score measuring how compatible the structuresX from the target andY from the template are, whereX
andY can be any of the basic attributes mentioned above,
or any combination of them.

(I) SIMPLE Commonly used substitution matrices like
BLOSUM consider only the identity of the residue, and
the substitution score just consist of a single constants(Rta;Rte). Instead, we consider scores of the forms(Rta;Rte) + s(Sta;Ste) + s(Ata;Ate) which take into
account the compatibility of secondary structure, exposed
surface area at the two sites as well. It is also meaning-
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ful to consider the alignment cost between a residue and
a surface area types(Rta;Ate), since we know that some
residues are hydrophobic and tend to stay buried in the core
of the protein while some other residues are polar and pre-
fer to be exposed to water. This leads us to the following
substitution cost function:s(Rta;Rte) + s(Rta;Ste) + s(Rta;Ate)+s(Sta;Rte) + s(Sta;Ste) + s(Sta;Ate)+s(Ata;Rte) + s(Ata;Ste) + s(Ata;Ate) (6)

Alternatively, this alignment cost can be written nicely in
algebraic notations. If we overload the notation and con-
sider ~Rta as a binary indicator feature vector of dimen-
sion 20 for the residueRta, ~Sta of dimension 3 for the
predicted secondary structure,~Ata of dimension 5 for the
predicted surface area(we bin the relative exposed surface
area(0-100%) into 5 bins), and likewise for the correspond-
ing features in the template. Then the feature vector can be
written out as:( ~Rta � ~Sta � ~Ata)
 ( ~Rte � ~Ste � ~Ate) (7)

where� is the direct sum operation and
 is the tensor
product operation over vector spaces.

(II) ANOVA2 Our next proposal is to also consider the
pairwise combination of features. For example, we can
have a cost ofs(Rta^Sta;Rte^Ste), which determines the
score of aligning a site with residue typeRta and predicted
secondary structureSta of the target sequence with another
site with residue typeRte and true secondary structureSte
of the template sequence. We add all possible alignment
costs for pairs of basic features. In particular, we consider(( ~Rta
 ~Sta)� ( ~Sta
 ~Ata)� ( ~Ata
 ~Rta))
(( ~Rte
 ~Ste)� ( ~Ste
 ~Ate)� ( ~Ate
 ~Rte)) (8)

(III) SIMPLE+ANOVA2 We consider the direct sum of
the two feature vectors in (7) and (8), since it could be ad-
vantageous to learn from a simpler feature vector before
learning from more complicated features. In terms of alge-
braic notations it is:(( ~Rta� ~Sta� ~Ata)�( ~Rta
 ~Sta)�( ~Sta
 ~Ata)�( ~Ata
 ~Rta))
(( ~Rte� ~Ste� ~Ate)�( ~Rte
 ~Ste)�( ~Ste
 ~Ate)�( ~Ate
 ~Rte)) (9)

(IV) SIMPLE+ANOVA2+WINDOW3 Finally, it might
be informative to include information about sites nearby
when aligningRita with Rjte; for example,Ri�1ta ,Ri+1ta andRj�1te , Rj+1te , if we consider a window of size 3. Specifi-
cally, we add three extra score terms to the feature vector

in (9).s(Ri�1ta ^ Rita ^ Ri+1ta ;Rj�1te ^ Rjte ^ Rj+1te )+s(Si�1ta ^ Sita ^ Si+1ta ;Sj�1te ^ Sjte ^ Sj+1te )+s(Ai�1ta ^ Aita ^Ai+1ta ;Aj�1te ^ Ajte ^ Aj+1te ) (10)

To reduce dimensionality, we group the set of amino
acids into 7 equivalence classes according to their physio-
chemical properties (fK;R;Hg, fD;Eg, fI; V;M;Lg,fCg, fP; S;A;G; Tg, fF;W; Y g, fN;Qg) using protein
alphabet compression (Taylor, 1986, Wang & Wang, 1999)
when considering the window feature for residues.

4.3.3. GAP MODEL

In addition to using gap opening and gap extenstion costs,
we make the gap costs dependent on the specific environ-
ment. Our gap model follows very closely from the one
used in (Qiu & Elber, 2006). First, consider the situation
of gaps in the target sequence. Suppose when aligningRta
againstRte, there is a gap betweenRnta andRn+1ta , and the
gap character is aligned toRkte of the template. Denoting
the position in the sequence with super-script, the cost of
opening a gap betweenRnta andRn+1ta , with the gap aligned
toRkte, is:g(Rnta;Rn+1ta ) + g(Snta;Sn+1ta ) + g(Anta;An+1ta )+g(Rkte) + g(Skte) + g(Akte) (11)

where the dyadic termsg(Xnta;Xn+1ta ) measures how easy
it is to open a gap between the structure typeXnta andXn+1ta
in the target. The intuition behind such a comples gap-
model is that, for example, whenX is the secondary struc-
ture, andXnta andXn+1ta are both�-helix, then it would be
unfavorable to open a gap between the two sites. However
if Xnta andXn+1ta are of different secondary structure types
or they are in the loop region, then opening a gap is more
permissible. The monadic termg(Y ) measures how com-
patible a particular template structure is with a gap at that
site. The cost of gap openning at the template is similarly
defined, with the role of target and template reversed in the
above definition.

5. Experiments

We used data from a representative set developed by the
computational biology group at Cornell (Qiu & Elber,
2006). After cleaning up missing values and removing ex-
amples which the LOOPP server cannot produce structural
annotations, we have 3169 ideal alignments in total, as pro-
duced by the CE program based on the structures of the
target and template proteins. Each target-template pair in
the training set shared high structural similarities with CE
Z score greater than 4.5.
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Figure 2.Q score on CASP5 test set.

We test our models using sequences from the CASP5 com-
petition as targets. A set of suitable templates are identi-
fied using the LOOPP server. In the CASP5 set we have
101 aligned pairs from 30 target sequences. Most of the
alignments in this test set fall within the twilight zone, with
all but 18 pairs having sequence similarity below 25%. We
trained models for the 4 feature vectors with a different val-
ues ofC and precision� = 0:01. Our preliminary findings
are as follows.

Figure 2 show the Q score of our method on CASP5 with
the 4 different feature vectors. The horizontal axis is the
regularization parameterC, which we train from2�3 to23, in powers of 2. The general trend seems to be that the
more complex models perform better than the less com-
plex feature vectors. In particular, including neighborhood
information from the size 3 window seems to be beneficial.

Figure 3 shows the Q score of our method on another set of
examples which we call the ’validation set’. The set con-
tains 3882 examples and was used in the study (Qiu & El-
ber, 2006) for parameter tunning. It is constructed in a sim-
ilar manner as the training set, and is independent of the
training set in the sense that no target sequence appears in
both training and validation set. The relative performance
of the different feature vectors are similar to those in the
CASP5 set, but the curve is slightly smoother due to the
larger test set size. There are differences in the absolute
performances on the CASP5 and validation sets due to dif-
ferences in their distribution of protein sequences in terms
of sequence similarities and protein families.

Table 1 compares the performance of our method with ex-
isting approaches. The performance on CASP5 test set re-
ported in table 1 is trained with the value ofC that gives the
best performance over a validation set of size 3882 men-
tioned above. SSALN (Qiu & Elber, 2006) is a gener-
ative method that incorporates structural information into
the subsitution matrices, and are trained using the same
feature set as our algorithm does. SSALN was trained
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Figure 3.Q score on validation set.

Table 1.Q scores on CASP5. The numbers of the first three
rows are computed from the alignments in study in (Qiu & El-
ber, 2006). The number in brackets are the best performances
mentioned in that paper, using a slightly larger CASP5 set with
117 pairs.

Method Q-Score
BLOSUM50 (GAP Open/Ext=10/1) 27.13 (27.1)
PSI-BLAST 35.97 (34.7)
SSALN 47.86 (51.3)
SIMPLE (C = 0:25) 38.53
ANOVA2 (C = 4) 48.17
SIMPLE+ANOVA2 (C = 8) 47.97
SIMPLE+ANOVA2+WINDOW3 (C = 2) 50.02

on about 5000 examples, while our method was trained
on only the subset of 3169 examples for which we had
structural annotations in our database. As baselines, we
included the performances of BLOSUM and PSI-BLAST.
We observe that the incorporation of structural information
(i.e. our method and SSALN) boosts the alignment accu-
racy by a substantial amount. Our method is competitive
with SSALN, showing similar performance on the CASP5
set. However, we achieve this performance without any
need for manual tuning of parameters.

So far we have assumed that our examples of proteins
alignments are independent and identically distributed. In
reality the alignment examples are not independent, since
each target sequence usually has more than one structurally
similar templates, which implies that the templates them-
selves are also structurally similar. In addition, our train-
ing and test sets are mixtures of classes of proteins which
vary in average length and composition of secondary struc-
tures. We performed a set of simple experiments to in-
vestigate the effect of separating these classes in training
our alignment models. The SCOP classification (Murzin
et al., 1995) is a hierarchical classification of protein struc-
tures into classes, folds, superfamilies and families. Pro-
teins within the same family share more structural similari-
ties than proteins within the same superfamily, which share
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more structural similarities than proteins within the same
fold, which in turn share more structural similarities than
proteins within the same class. We used the SCOP clas-
sification to divide the training set (3169 examples) into 4
major classes at the top of the SCOP hierarchy according to
the class of the target sequence: all alpha proteins (SCOP
A, 648 examples), all beta proteins (SCOP B, 1161 exam-
ples), alpha and beta proteins (SCOP C, 1032 examples),
alpha plus beta proteins (SCOP D, 129 examples). Pro-
teins within the same class have similar secondary struc-
ture composition. Examples outside these 4 classes are dis-
carded. We repeat the process for the validation set (3882
examples) to obtain 4 test sets of different classes (505 ex-
amples for SCOP A, 1786 examples for SCOP B, 959 ex-
amples for SCOP C, 213 examples for SCOP D). In this
way we have 4 different train sets divided by SCOP class,
4 different test sets also divided by SCOP class, and the
relative size of train sets and test sets by class are similar.

We trained alignments models on the 4 train sets in-
dividually and tested them on the 4 test sets. We
used the feature vector with best performance “SIM-
PLE+ANOVA2+WINDOW3” in training the models, for
values ofC in the range2�1 to 23. We found that the per-
formance of models using different values ofC to be rather
close (within Q score of 1), and so we only report the per-
formance forC = 2 in Table 2. The rows represent the
training sets while the columns represent the test sets. We
observe that the table is diagonally dominant, suggesting
that training and testing on the same SCOP class gives bet-
ter performance. The effect is particularly marked in SCOP
B for all-beta-proteins, since no other class could achievea
performance close to it on the SCOP B test set. The last row
is the performance of a model trained with the whole set
of 3169 examples using the same feature vector and same
value ofC. The performance of that model on each test
set is close but slightly worse than the best in the same col-
umn, i.e., those models which are trained and tested using
the training and test sets from the same SCOP class. The
difference in performance is consistently maintained across
the range ofC (2�1 to 23) that we explored.

It seems that information on the SCOP classes of the pro-
teins gives a small advantage in training alignment models.
The next natural problem to investigate is to go down the
SCOP hierarchy and look at whether knowing the SCOP
fold of a protein would help us train better alignment mod-
els. These experiments could help us understand how the
non-identitically-distributed nature of the data affectsthe
performance of our alignment models, perhaps suggesting
ways to utilize these information to increase alignment ac-
curacy in future works.

Table 2.Q score on validation set by SCOP class split,C=2
test on

SCOP A SCOP B SCOP C SCOP D
SCOP A 34.59 26.64 23.04 45.65

train SCOP B 31.69 47.9 29.35 53.59
on SCOP C 24.27 22.44 31.4 43.42

SCOP D 31.55 30.68 29.06 52.26
All 30.92 46.51 30.31 52.69

6. Conclusions and Future Work

We have explored the use of large-margin training for
building alignment models for protein threading. The po-
tential benefits of such an approach are the ability to learn
complex models in a well-founded way, the ability to op-
timize to application specific loss functions, and the abil-
ity to set the gap parameters without need for hand-tuning.
Our initial experiments show that our method is competi-
tive with a state-of-the-art generative learning method, even
without yet realizing its full potential.

(Do et al., 2006) considered training alignment models
with conditional random field, and obtained excellent re-
sults compared to traditional generative models. Although
the focus of their study is different from ours, it will be
interesting to compare our SVM approach to their CRF ap-
proach and understand the differences between these two
discriminative methods.

In this work we focused on improving the quality of align-
ment for comparative modelling of proteins. An interesting
problem closely related to the current study is homology
detection by alignment. The goal of homology detection
is to find structurally similar proteins of a target sequence
from a database of known protein structures, and the score
used are usually the dynamic programming score or some
normalized versions of it. The quality of alignment itself in
this problem is not important as long as the score could give
us good discriminating power over whether or not two pro-
teins are structurally related. Our large-margin approach
could be also adapted for this problem by optimizing over
a suitable metric instead of the Q score, and we believe
the ability to incorporate many structural features would be
helpful in this problem. This would be an interesting direc-
tion for further research.

We are also investigating how to relax the i.i.d. assump-
tion over the ’golden standard alignments’ used in train-
ing. Since each target sequence usually has more than one
structurally similar template, it is wasteful to ignore this
relation because the templates themselves are going to be
structurally similar as well. One way to tackle this prob-
lem would be to train models to do multiple alignments di-
rectly, but we need to change the dynamic programming al-
gorithm to approximate alignment algorithms and perform
the corresponding parameter estimation. Our experiments



Submission and Formatting Instructions for ICML-2006

on splitting training and test sets by SCOP classes show
the non-identically-distributed nature of the data, and more
work is needed to investigate its full effect on the perfor-
mance of alignment models. It would be a major challenge
to model the dependencies between of the different proteins
sequences and their distribution in the fold space due to low
sequence similarity, but a proper modelling of these depen-
dencies could increase the alignment accuracy further.

Acknowledgements

We thank Dr. Jaroslaw Pillardy for his help with the data
and his many suggestions on the project. We also thank
the anonymous reviewers for their comments. This work is
supported by NIH Grants IS10RR020889, GM67823 and
by the NSF Award IIS-0412894.

References

Adamczak, R., Porollo, A., & Meller, J. (2004). Ac-
curate prediction of solvent accessibility using neural
networks-based regression.Proteins, 56, 753–67.

Do, C. B., Gross, S. S., & Batzoglou, S. (2006). CON-
TRAlign: Discriminative training for protein sequence
alignment.RECOMB 2006.

Joachims, T., Galor, T., & Elber, R. (2005). Learning to
align sequences: A maximum-margin approach. In B.
Leimkuhler et al. (Ed.),New algorithms for macromolec-
ular simulation, vol. 49 ofLNCS, 57–68. Springer.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: probabilistic modeling for seg-
menting and labeling sequence data.ICML 2001.

McCallum, A., Bellare, K., & Pereira, F. (2005). A con-
ditional random field for discriminatively-trained finite-
state string edit distance.UAI 2005.

Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia,
C. (1995). SCOP: A structural classification of proteins
database for the investigation of sequences and struc-
tures. Journal of Molecular Biology (JMB), 247, 536–
540.

Qiu, J., & Elber, R. (2006). SSALN: an alignment al-
gorithm using structure-dependent substitution matrices
and gap penalties learned from structurally aligned pro-
tein pairs.Proteins, 62, 881–91.

Taylor, W. R. (1986). Classification of amino acid conser-
vation. Journal of Theoretical Biology, 119, 205–258.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y.
(2005). Large margin methods for structured and inter-
dependent output variables.Journal of Machine Learn-
ing Research (JMLR), 6, 1453 – 1484.

Wang, J., & Wang, W. (1999). A computational approach to
simplifying the protein folding alphabet.Nature Struc-
tural Biology, 6(11), 1033–1038.


