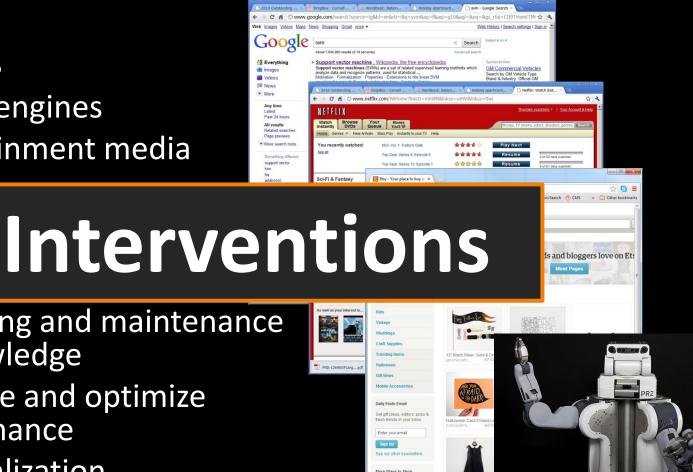
Learning from User Interactions through Interventions

Josef Broder, Olivier Chapelle, Geri Gay, Arpita Ghosh, Laura Granka, <u>Thorsten Joachims</u>, Bobby Kleinberg, Madhu Kurup, <u>Filip Radlinski</u>, <u>Karthik Raman</u>, <u>Tobias Schnabel</u>, Pannaga Shivaswamy, <u>Adith Swaminathan</u>, <u>Yisong Yue</u>

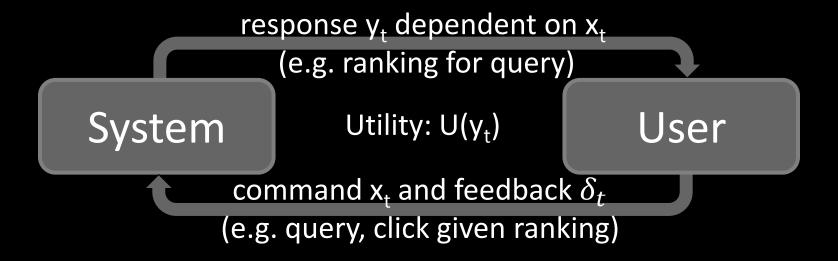
> Department of Computer Science Department of Information Science Cornell University

Interactive Learning Systems

- Examples
 - Search engines
 - Entertainment media
 - E-co
 - Sma
- Learni
 - Gathering and maintenance of knowledge
 - Measure and optimize performance
 - Personalization



Interactive Learning System



- Designing Information Elicitation Interventions
 - Online Learning with Interventions
 - Offline Learning with Logged Intervention Data

Decide between two Ranking Functions

Distribution P(x) of x=(user, query)

: (tj,"SVM") :

Retrieval Function 1 $f_1(x) \rightarrow y_1$

Which one is better?

Retrieval Function 2 $f_2(x) \rightarrow y_2$

- 1. Kernel Machines http://svm.first.gmd.de/
- 2. SVM-Light Support Vector Machine http://svmlight.joachims.org/
- School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 4. An Introduction to Support Vector Machines http://www.support-vector.net/
- 5. Service Master Company http://www.servicemaster.com/

- 1. School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 2. Service Master Company http://www.servicemaster.com/
- 3. Support Vector Machine http://jbolivar.freeservers.com/
- 4. Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT...
- SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/

U(tj,"SVM",y₁)

U(tj,"SVM",y₂)

Measuring Utility

Name	Description	Aggre- gation	Hypothesized Change with Decreased Quality
Abandonment Rate	% of queries with no click	N/A	Increase
Reformulation Rate	% of queries that are followed by reformulation	N/A	Increase
Queries per Session	Session = no interruption of more than 30 minutes	Mean	Increase
Clicks per Query	Number of clicks	Mean	Decrease
Click@1	% of queries with clicks at position 1	N/A	Decrease
Max Reciprocal Rank*	1/rank for highest click	Mean	Decrease
Mean Reciprocal Rank*	Mean of 1/rank for all clicks	Mean	Decrease
Time to First Click*	Seconds before first click	Median	Increase
Time to Last Click*	Seconds before final click	Median	Decrease

(*) only queries with at least one click count

ArXiv.org: User Study

User Study in ArXiv.org

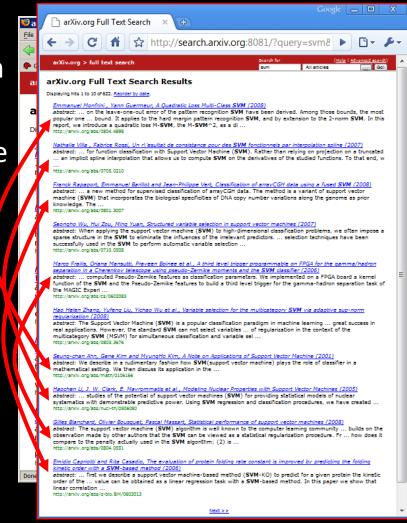
- Natural user and query population
- User in natural context, not lab
- Live and operational search engine
- Ground truth by construction

ORIG > SWAP2 > SWAP4

- ORIG: Hand-tuned fielded
- SWAP2: ORIG with 2 pairs swapped
- Swap4: Orig with 4 pairs swapped

 $ORIG \succ FLAT \succ RAND$

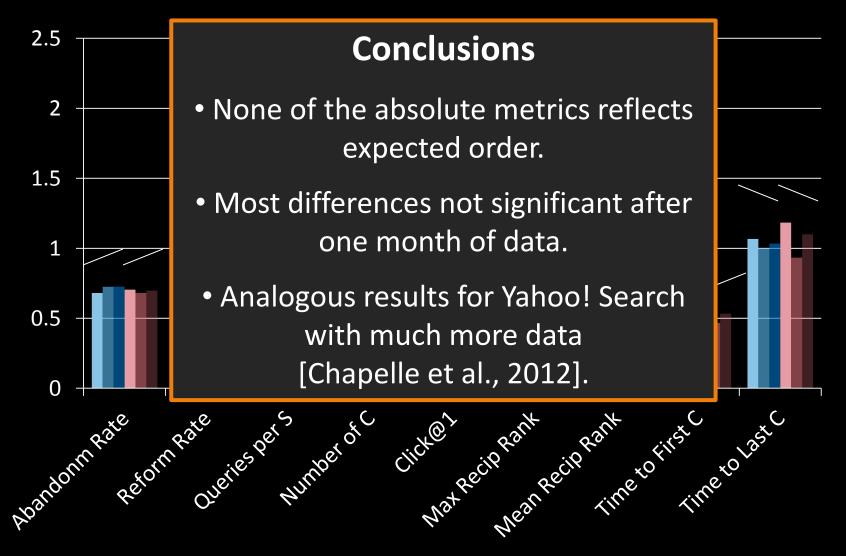
- ORIG: Hand-tuned fielded
- FLAT: No field weights
- RAND: Top 10 of FLAT shuffled



ArXiv.org: Experiment Setup

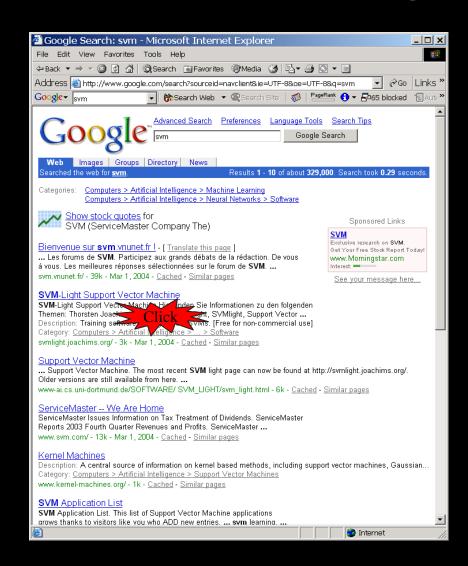
- Experiment Setup
 - Phase I: 36 days
 - Users randomly receive ranking from Orig, Flat, Rand
 - Phase II: 30 days
 - Users randomly receive ranking from Orig, Swap2, Swap4
 - User are permanently assigned to one experimental condition based on IP address and browser.
- Basic Statistics
 - ~700 queries per day / ~300 distinct users per day
- Quality Control and Data Cleaning
 - Test run for 32 days
 - Heuristics to identify bots and spammers
 - All evaluation code was written twice and cross-validated

Arxiv.org: Results



Economic Models of Decision Making

- Rational Choice
 - Alternatives ${\cal Y}$
 - Utility function U(y)
 - Decision $y^* = \operatorname{argmax}_{y \in \mathcal{Y}} \{U(y)\}$
- Bounded Rationality
 - Time constraints
 - Computation constraints
 - Approximate U(y)
- Behavioral Economics
 - Framing
 - Fairness
 - Loss aversion
 - Handling uncertainty



A Model of how Users Click in Search

- Model of clicking:
 - Users explore ranking to position k
 - Users click on most relevant (looking) links in top k
 - Users stop clicking when time budget up or other action more promising (e.g. reformulation)
 - Empirically supported by [Granka et al., 2004]

Decide between two Ranking Functions

Distribution P(x) of x=(user, query)

: (tj,"SVM") :

Retrieval Function 1 $f_1(x) \rightarrow y_1$

Which one is better?

Retrieval Function 2 $f_2(x) \rightarrow y_2$

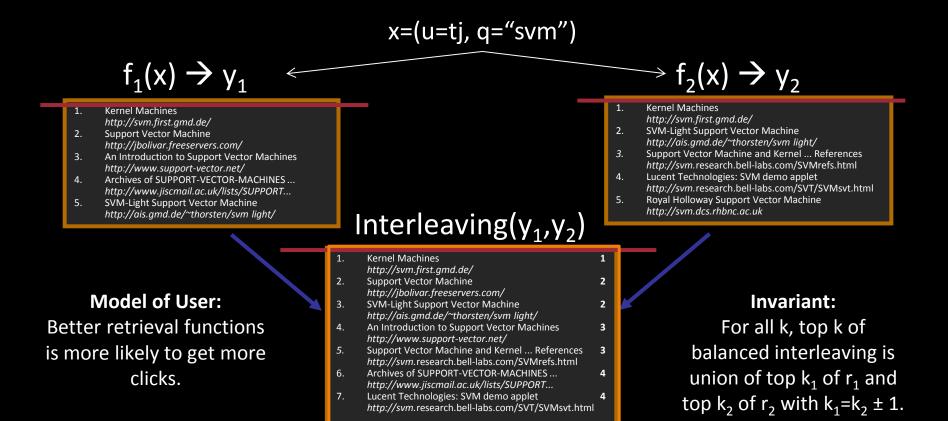
- 1. Kernel Machines http://svm.first.gmd.de/
- 2. SVM-Light Support Vector Machine http://svmlight.joachims.org/
- School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 4. An Introduction to Support Vector Machines http://www.support-vector.net/
- 5. Service Master Company http://www.servicemaster.com/

- School of Veterinary Medicine at UPenn http://www.vet.upenn.edu/
- 2. Service Master Company http://www.servicemaster.com/
- 3. Support Vector Machine http://jbolivar.freeservers.com/
- 4. Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT...
- SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/

U(tj,"SVM",y₁)

U(tj,"SVM",y₂)

Balanced Interleaving

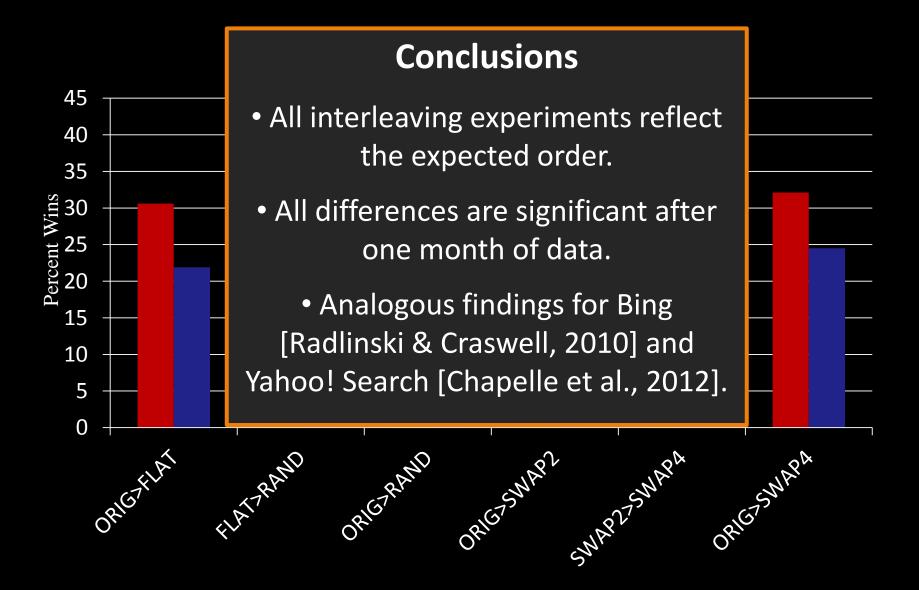


Interpretation: $(y_1 \succ y_2) \leftrightarrow \text{clicks(topk(y_1))} > \text{clicks(topk(y_2))}$ $\rightarrow \text{ see also [Radlinski, Craswell, 2012] [Hofmann, 2012]}$

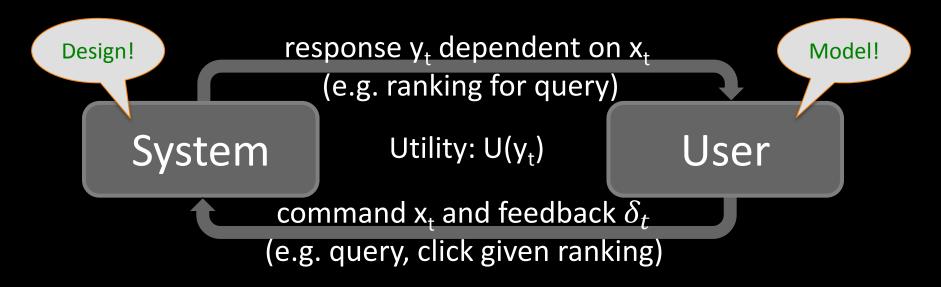
Arxiv.org: Interleaving Experiment

- Experiment Setup
 - Phase I: 36 days
 - Balanced Interleaving of (Orig, Flat) (Flat, Rand)
 (Orig, Rand)
 - Phase II: 30 days
 - Balanced Interleaving of (Orig, Swap2) (Swap2, Swap4)
 (Orig, Swap4)
- Quality Control and Data Cleaning
 - Same as for absolute metrics

Arxiv.org: Interleaving Results

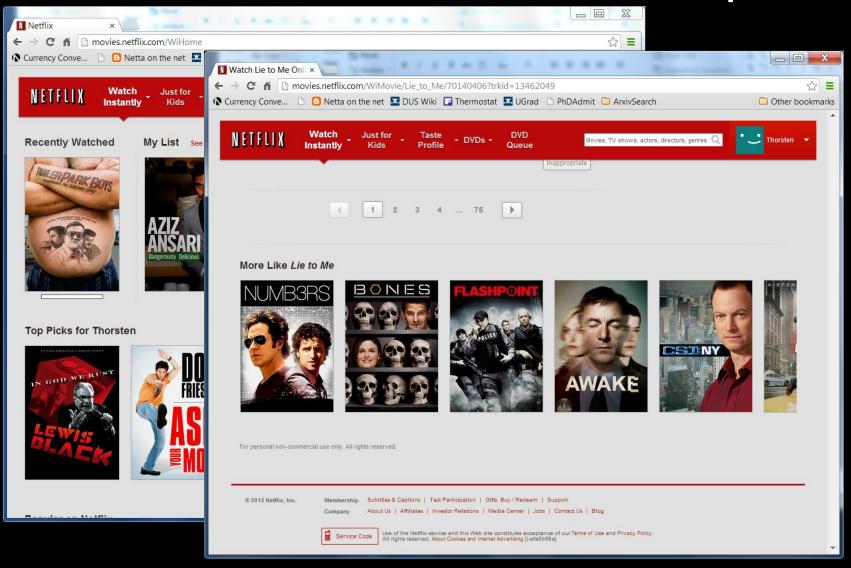


Interactive Learning System



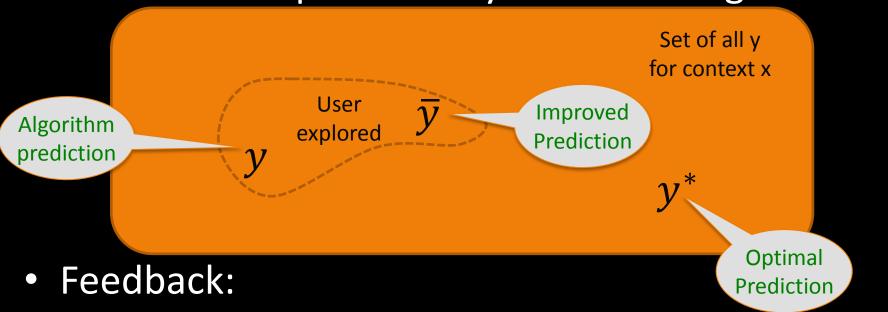
- Designing Information Elicitation Interventions
 - Model user's decision process → derive intervention design
- Online Learning with Interventions
 - Offline Learning with Logged Intervention Data

Coactive Exploration Example 1



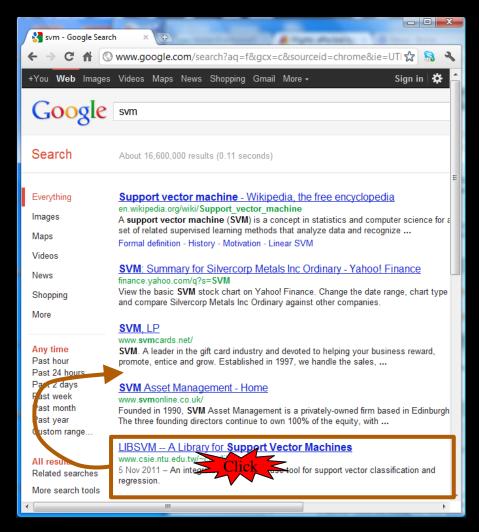
Coactive Feedback Model

Intervention: prediction y and browsing network

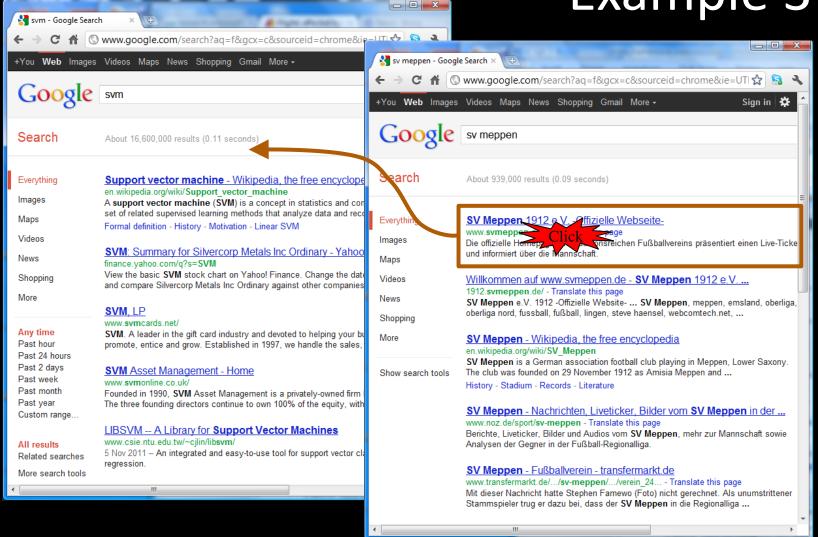


- Improved prediction \bar{y}_t $U(\bar{y}_t|x_t) > U(y_t|x_t)$
- Supervised learning: optimal prediction y_t^* $y_t^* = \operatorname{argmax}_y U(y|x_t)$

Coactive Exploration Example 2



Coactive Exploration Example 3



Coactive Exploration Machine Translation

X.

We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user.

y_t

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die gemeinsame Ziel, die Ergebnisse der maximalen Nutzen für den Benutzer.

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung des Dialogs zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die beide das gemeinsame Ziel haben, die Ergebnisse der maximalen Nutzen für den Benutzer zu liefern.

Coactive Preference Perceptron

- Model
 - Linear model of user utility: $U(y|x) = w^T \phi(x,y)$
- Algorithm
 - FOR t = 1 TO T DO
 - Observe x_t
 - Present $y_t = \operatorname{argmax}_y \{ w_t^T \phi(x_t, y) \}$
 - Obtain feedback \bar{y}_t from user
 - Update $W_{t+1} = W_t + \phi(X_t, \overline{y}_t) \phi(X_t, y_t)$
- This may look similar to a multi-class Perceptron, but
 - Feedback \bar{y}_t is different (not get the correct class label)
 - Regret is different (misclassifications vs. utility difference)

$$R(A) = \frac{1}{T} \sum_{t=1}^{I} [U(y_t^*|x) - U(y_t|x)]$$

Never revealed:

- cardinal feedback
- optimal y*

Coactive Perceptron: Regret Bound

- Model
 - $U(y|x) = w^T \phi(x,y)$, where w is unknown
- Feedback: ξ -Approximately α -Informative

$$E[U(x_t, \overline{y}_t)] \ge U(x_t, y_t) + \alpha \left(U(x_t, y_t^*) - U(x_t, y_t)\right) - \xi_t$$

Theorem

user feedback

system prediction

gap to optimal

model error

For user feedback \bar{y} that is α -informative in expectation, the expected average regret of the Preference Perceptron is bounded by

$$E\left[\frac{1}{T}\sum_{t=1}^{T}U(y_{t}^{*}|x) - U(y_{t}|x)\right] \leq \frac{1}{\alpha T}\sum_{t=1}^{T}\xi_{t} + \frac{2R||w||}{\alpha\sqrt{T}} \xrightarrow{\text{zero}}$$

Preference Perceptron: Experiment

Experiment:

Automatically optimize Arxiv.org Fulltext Search

Analogous to DCG

Model

• Utility of ranking y for query x: $U_t(y|x) = \sum_i \gamma_i w_t^T \phi(x,y^{(i)})$ [~1000 features] • Omputing argmax ranking: sort by $w_t^T \phi(x,y^{(i)})$

Feedback

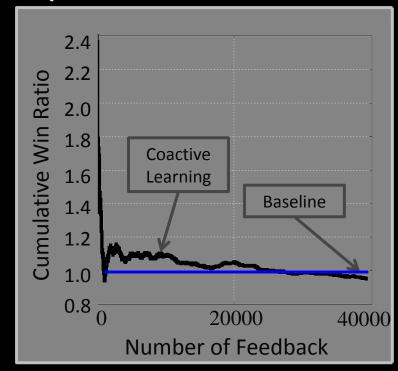
• Construct \bar{y}_t from y_t by moving clicked links one position higher.

Baseline

• Handtuned w_{base} for $U_{base}(y|x)$

Evaluation

 Interleaving of ranking from U_t(y|x) and U_{base}(y|x)



Why did it fail?

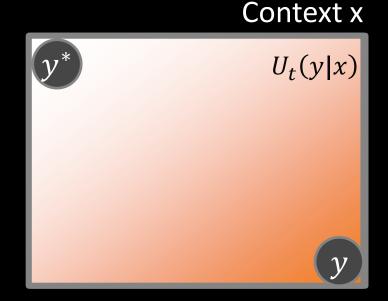
Assume

$$U_t(y|x) = U(y|x)$$

Prediction

$$y = y^* = \operatorname{argmax}_y U_t(y|x)$$

Feedback quality



$$E[U(x,\bar{y})] \ge U(x,y) + \alpha (U(x,y^*) - U(x,y)) - \xi$$

= $U(x,y^*) - \xi$

- \rightarrow any presence of click noise implies $\xi > 0$
- → biased gradient

Optimizing the User Feedback

Assume

$$U_t(y|x) = U(y|x)$$

Prediction

$$y = y^* = \operatorname{argmax}_y U_t(y|x)$$

Intervention

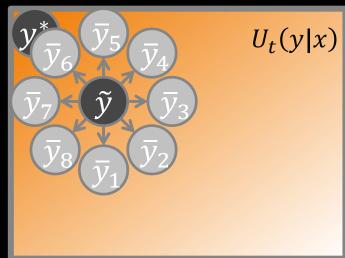
Present
$$\tilde{y} = Perturb(y)$$

Feedback quality

$$E[U(x,\bar{y})] \ge U(x,\tilde{y}) + \alpha \big(U(x,y^*) - U(x,\tilde{y}) \big) - \xi$$

- $\rightarrow \xi = 0$ (or small)
- \rightarrow unbiased gradient at cost $U(x, y^*) U(x, \tilde{y})$

Context x



FairPair Perturbation

- Idea
 - Perturb by swapping adjacent pairs
 - Generate preferences only within pair
- Randomizes out bias from presentation and feedback generation

Preference Perceptron: Experiment

Experiment:

Automatically optimize Arxiv.org Fulltext Search

Model

• Utility of ranking y for query x: $U_t(y|x) = \sum_i \gamma_i w_t^T \phi(x,y^{(i)})$ [~1000 features] • Omputing argmax ranking: sort by $w_t^T \phi(x,y^{(i)})$

Feedback

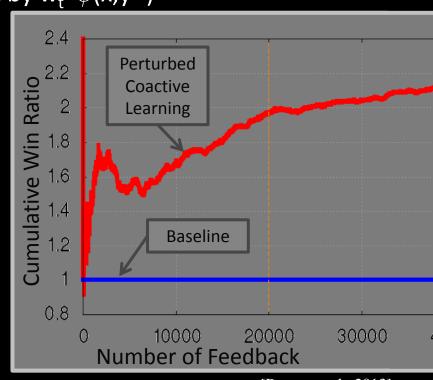
- FairPair Perturbation
- Construct \bar{y}_t from y_t by moving clicked links one position higher.

Baseline

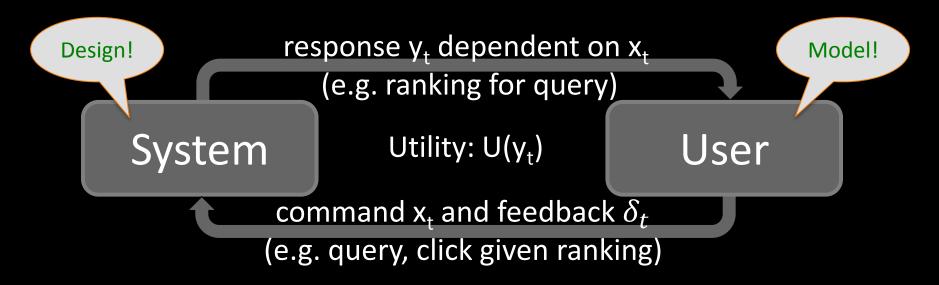
Handtuned w_{base} for U_{base}(y|x)

Evaluation

• Interleaving of ranking from $U_t(y|x)$ and $U_{base}(y|x)$



Interactive Learning System



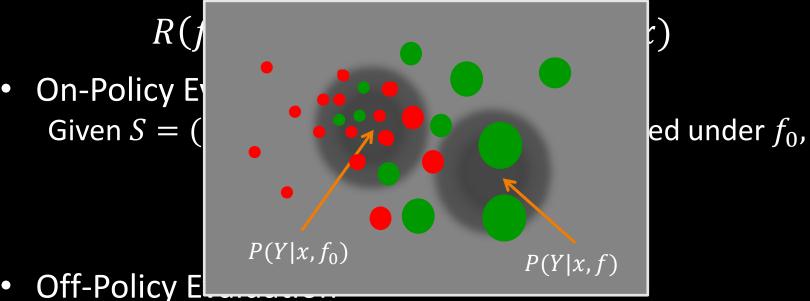
- Designing Information Elicitation Interventions
 - Model user's decision process → derive intervention design
- Online Learning with Interventions
 - Design space: LearningSystem = { Algorithm } x { Interventions }
- Offline Learning with Logged Intervention Data

Information in Interaction Logs

- Partial Information (aka "Bandit") Feedback
 - Search engine f_0 interleaves ranking y for query x with baseline ranker and observes win/loss δ
 - News recommender f_0 presents set y of articles for user x and observes that user reads δ minutes
 - Ad system f_0 presents ad y to user x and observe click/no-click δ
 - MT system f_0 predicts translation y for x and receives rating δ

Changing History

• Expected Performance of Stochastic Policy f: P(y|x, f)

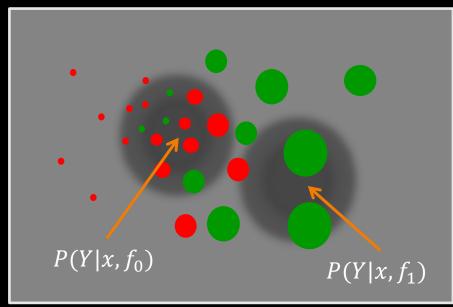


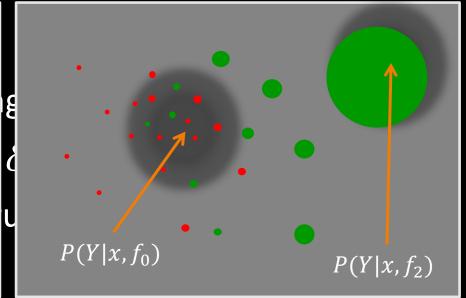
Given $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ collected under f_0 ,

$$\widehat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{P(y_i|x_i, f)}{P(y_i|x_i, f_0)}$$

Propensity weight

Partial Information Empirical Risk Minimization



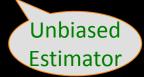


$$\hat{f} \coloneqq \operatorname{argmax}_{f \in H} \sum_{i}^{n} \frac{P(y_i|x_i, h)}{p_i} \delta_i$$

Counterfactual Risk Minimization

- Theorem [Generalization Error Bound]
 - For any bounded capacity H, for all $f \in H$ with probability $1-\eta$

$$U(f) \ge \widehat{Mean}\left(\frac{P(y_i|x_i,f)}{p_i}\delta_i\right) - O\left(\sqrt{\widehat{Var}\left(\frac{P(y_i|x_i,f)}{p_i}\delta_i\right)}\right)$$



- Intuition
 - De-bias estimator through propensity weighting
 - Correct for differences in variance of estimator for $f \in H$
- Constructive principle for designing learning algorithms: Counterfactual Risk Minimization (CRM)

CoStA Learning Algorithm

- Counterfactual Stochastic Approximator (CoStA)
 - Hypothesis space

•
$$P(y|x,w) = \exp(w \cdot \phi(x,y))/Z(x)$$

Training objective

$$w = \operatorname*{argmax}_{w \in \Re^N} \left[\widehat{Mean} \left(\frac{P(y_i|x_i, w)}{p_i} \delta_i \right) - \lambda_1 \sqrt{\widehat{Var} \left(\frac{P(y_i|x_i, w)}{p_i} \delta_i \right)} \right]$$
Unbiased

Estimator

- Optimization
 - successive Taylor majorization → stochastic gradient

Control

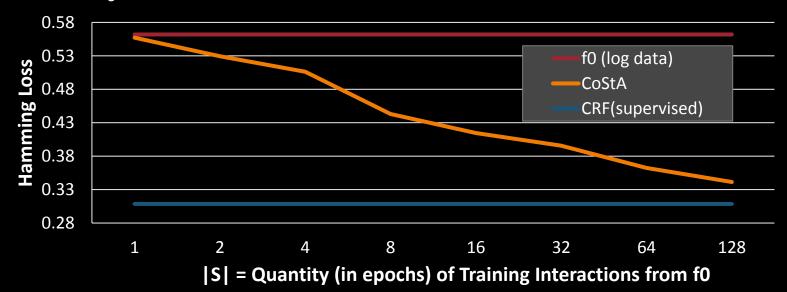
CoStA Experiment

Experiment Setup

- x: Reuters RCV1 text document
- -y: label vector with 4 binary labels
- $-\delta$: number of incorrect labels
- H: Isomorphic to CRF with one weight vector per label

Results

Use f₀ to collect logs and train CoStA



Learning from User Interactions Conclusions

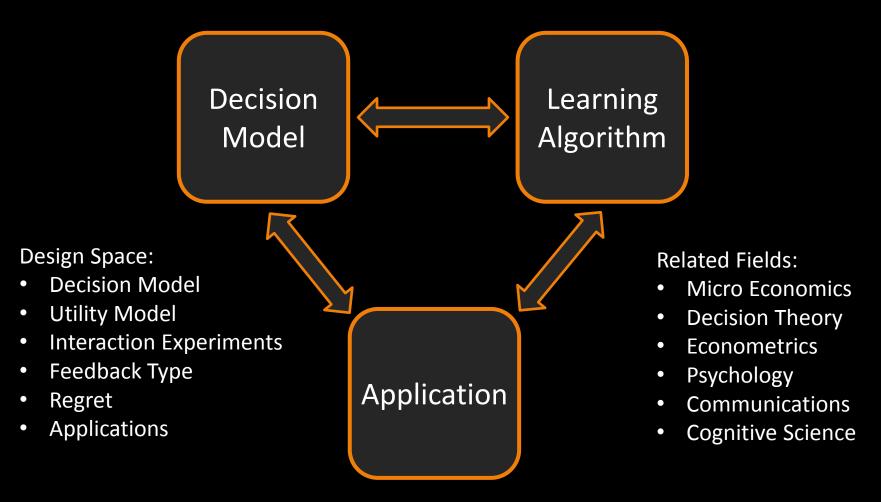
The state of the

ML =

Algorithm + Interventions

- Counterfactual NISK Millimization and Costa Algorithm

Learning from Human Decisions



Contact: tj@cs.cornell.edu

Software + Papers: <u>www.joachims.org</u>