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ABSTRACT
Students in online courses generate large amounts of data
that can be used to personalize the learning process and im-
prove quality of education. In this paper, we present the
Latent Skill Embedding (LSE), a probabilistic model of stu-
dents and educational content that can be used to recom-
mend personalized sequences of lessons with the goal of help-
ing students prepare for specific assessments. Akin to col-
laborative filtering for recommender systems, the algorithm
does not require students or content to be described by fea-
tures, but it learns a representation using access traces. We
formulate this problem as a regularized maximum-likelihood
embedding of students, lessons, and assessments from his-
torical student-content interactions. An empirical evalua-
tion on large-scale data from Knewton, an adaptive learning
technology company, shows that this approach predicts as-
sessment results competitively with benchmark models and
is able to discriminate between lesson sequences that lead to
mastery and failure.

CCS Concepts
•Mathematics of computing → Probabilistic repre-
sentations; •Computing methodologies → Learning
in probabilistic graphical models; •Applied comput-
ing → Computer-assisted instruction;

Keywords
Probabilistic Embedding; Sequence Recommendation; Adap-
tive Learning

1. INTRODUCTION
The popularity of online education platforms has soared in

recent years. Companies like Coursera and EdX offer Mas-
sive Open Online Courses (MOOCs) that attract millions of
students and high-calibre instructors. Khan Academy has
become a hugely popular repository of videos and interactive
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materials on a wide range of subjects. E-learning products
offered by universities and textbook publishers are also gain-
ing traction. These platforms improve access to high quality
educational content for anyone connected to the Internet. As
a result, people who would otherwise lack the opportunity
are able to consume materials like video lectures and prob-
lem sets from courses offered at top universities. However,
in these online environments learners often lack the person-
alized instruction and coaching that can potentially lead to
significant improvements in educational outcomes. Further-
more, the educational content may be contributed by many
authors without a formal underlying structure. Intelligent
systems that learn about the educational properties of the
content, guide learners through custom lesson plans, and
quickly adapt through feedback could help learners take ad-
vantage of large and heterogeneous collections of educational
content to achieve their goals.

The extensive literature on intelligent tutoring systems
(ITS) and computer-assisted instruction (CAI) dates back
to the 1960s. Early efforts focused on approximating the
behavior of a human tutor through rule-based systems that
taught students South American geography [3], electronics
troubleshooting [13], and programming in Lisp [5]. Today’s
online education platforms differ from early ITSes in their
ability to gather data at scale, which facilitates the use of
machine learning techniques to improve the educational ex-
perience. Relatively little academic work has been done to
design systems that use the massive amounts of data gen-
erated by students in online courses to provide personalized
learning tools. Learning and content analytics [12], instruc-
tional scaffolding in educational games [16], hint generation
[20], and feedback propagation [19] are a few topics currently
being explored in the personalized learning space.

Our aim is to build a domain-agnostic framework for mod-
eling students and content that can be used in many online
learning products for personalized lesson sequence recom-
mendation. A common data source available in products is
a stream of interaction data, or access traces that log stu-
dent interactions with modules of course content. These
access traces have the form Student A completed Lesson B
and Student C passed assessment D. Lessons are content
modules that introduce or reinforce concepts; for example,
an animation of cellular respiration or a paragraph of text
on Newton’s first law of motion. Assessments are content
modules with pass-fail results that test student skills; for
example, a true-or-false question halfway through a video
lecture. By relying on a coarse-grained, binary assessment
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result, we are able to gracefully handle many types of as-
sessments (e.g., free response and multiple choice) as long
as a student response can be labelled as correct or incorrect.

We use access traces to embed students, lessons, and as-
sessments together in a joint semantic space, yielding a rep-
resentation that can be used to reason about the relationship
between students and content (e.g., the likelihood of pass-
ing an assessment, or the skill gains achieved by completing
a lesson). The model is evaluated on simple synthetic sce-
narios, as well as large-scale real data from Knewton, an
education technology company that offers personalized rec-
ommendations and activity analytics for online courses [10].
The data set consists of 2.18 million access traces from over
7,000 students, recorded in 1,939 classrooms over a combined
period of 5 months.

2. RELATED WORK
Our work builds on the existing literature in psychometric

user modeling. The Rasch model estimates the probability
of a student passing an assessment using latent concept pro-
ficiency and assessment difficulty parameters [23]. The two-
parameter logistic item response theory (2PL IRT) model
adds an assessment discriminability parameter to the result
likelihood [14]. Both models assume that a map from assess-
ments to a small number of underlying concepts is known
a priori. We propose a data-driven method of learning con-
tent representation that does not require a priori knowledge
of content-to-concept mapping. Though this approach sac-
rifices the interpretability of expert ratings, it has two ad-
vantages: 1) it does not require labor-intensive expert an-
notation of content and 2) it can evolve the representation
over time as existing content is modified or new content is
introduced.

Lan et al. propose a sparse factor analysis (SPARFA)
approach to modeling graded learner responses that uses
assessment-concept associations, concept proficiencies, and
assessment difficulty [12]. The algorithm does not rely on an
expert concept map, but instead learns assessment-concept
associations from the data. Multi-dimensional item response
theory [24] also learns these assocations from the data. We
extend the ideas behind SPARFA and multi-dimensional
item response theory to include a model of student learning
from lesson modules, which is a key prerequisite for recom-
mending personalized lesson sequences.

Bayesian Knowledge Tracing (BKT) uses a Hidden Markov
Model to model the evolution of student knowledge (which is
discretized into a finite number of states) over time [5]. Fur-
ther work has modified the BKT framework to include the
effects of lessons through an input-output Hidden Markov
Model [8, 18, 17]. Similarly, SPARFA has been extended
to model time-varying student knowledge and the effects of
lesson modules [11]. Item response theory has also been
extended to capture temporal changes in student knowl-
edge [6, 27]. Recurrent neural networks have been used to
trace student knowledge over time and model lesson effects
[21]. Similar ideas for estimating temporal student knowl-
edge from binary-valued responses have appeared in the cog-
nitive modeling literature [22, 26]. We extend this work in
a multi-dimensional setting where student knowledge lies in
a continuous state space and lesson prerequisites modulate
knowledge gains from lesson modules.

Our model also builds on previous work that uses tempo-
ral embeddings to predict music playlists [15]. While Moore
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Figure 1: A graphical model of student learning and
testing, i.e. a continuous state space Hidden Markov
Model with inputs and outputs. ~s = student knowl-

edge state, ~̀ = lesson skill gains, ~q = lesson pre-
requisites, ~a = assessment requirements, and R =
result.

et al. focused on embedding objects (songs) in a metric
space, we propose a non-metric embedding where the dis-
tances between objects (students, assessments, and lessons)
are not symmetric, capturing the natural progression in dif-
ficulty of assessments and the positive growth of student
knowledge.

3. EMBEDDING MODEL
We now describe the Latent Skill Embedding, a proba-

bilistic model that places students, lessons, and assessments
in a joint semantic space that we call the latent skill space.
Students have trajectories through the latent skill space,
while assessments and lessons are placed at fixed locations.
Formally, a student is represented as a set of d latent skill
levels ~s ∈ Rd

+; a lesson module is represented as a vector of

skill gains ~̀∈ Rd
+ and a set of prerequisite skill requirements

~q ∈ Rd
+; an assessment module is represented as a set of skill

requirements ~a ∈ Rd
+.

Students interact with lessons and assessments in the fol-
lowing way. First, a student can be tested on an assessment
module with a pass-fail result R ∈ {0, 1}, where the likeli-
hood of passing is high when a student has skill levels that
exceed the assessment requirements and vice-versa. Second,
a student can work on lesson modules to improve skill levels
over time. To fully realize the skill gains associated with
completing a lesson module, a student must satisfy prereq-
uisites (only partly fulfilling the prerequisites will result in
relatively smaller gains, see Equation 3 for details). Time is
discretized such that at every timestep t ∈ N, a student com-
pletes a lesson and may complete zero or many assessments.
The evolution of student knowledge can be formalized as the
graphical model in Figure 1, and the following subsections
elaborate on the details of this model.

3.1 Modeling Assessment Results
For student ~s, assessment ~a, and result R,

R ∼ Bernoulli(φ(∆(~s, ~a))) (1)

where φ is the logistic function and ∆(~s, ~a) = ~s·~a
||~a|| −



Figure 2: Geometric intuition underlying the
parametrization of the assessment result likelihood
(Equation 1). Only the length of the projection of
the student’s skills ~s onto the assessment vector ~a
affects the pass likelihood of that assessment, mean-
ing only the “relevant” skills (with respect to the
assessment) should determine the result.

||~a|| + γs + γa. ~s and ~a are constrained to be non-negative
(for details see the Parameter Estimation section). A pass
result is indicated by R = 1, and a fail by R = 0. The term
~s·~a
||~a|| can be rewritten as ||~s||cos(θ), where θ is the angle be-

tween ~s and ~a; it can be interpreted as “relevant skill”. The
term ||~a|| can be interpreted as general (i.e. not concept-
specific) assessment difficulty. The expression ~s·~a

||~a|| − ||~a|| is

visualized in Figure 2. The bias term γs is a student-specific
term that captures a student’s general (assessment-invariant
and time-invariant) ability to pass; it can be interpreted as
a measure of how well the student guesses correct answers.
The bias term γa is a module-specific term that captures an
assessment’s general (student-invariant and time-invariant)
difficulty. γa differs from the ||~a|| difficulty term in that it
is not bounded; see the Parameter Estimation section for
details. These bias terms are analogous to the bias terms
used for modeling song popularity in [4]. Our choice of ∆
differs from traditional multi-dimensional item response the-
ory, which uses ∆(~s,~a) = ~s · ~a + γa where s and a are not
bounded (although in practice, suitable priors are imposed
on these parameters).

3.2 Modeling Student Learning from Lessons
For student ~s who worked on a lesson with skill gains ~̀

and no prerequisites at time t+1, the updated student state
is

~st+1 ∼ N
(
~st + ~̀, Σ

)
(2)

where the covariance matrix Σ = Idσ
2 is diagonal. For a

lesson with prerequisites ~q,

Figure 3: The vector field of skill gains for a les-

son with skill gains ~̀ = (0.5, 1) and prerequisites
~q = (0.7, 0.3). Contours are drawn for varying update
magnitudes. A student can compensate for lack of
prerequisites in one skill through excess strength in
another skill, but the extent to which this trade-off
is possible depends on the relative weights of the
prerequisites.

~st+1 ∼ N
(
~st + ~̀ · φ(∆(~st, ~q)), Σ

)
(3)

where φ is the logistic function and ∆(~st, ~q) = ~st·~q
||~q|| −||~q||.

The intuition behind this equation is that the skill gain from
a lesson should be weighted according to how well a student
satisfies the lesson prerequisites. A student can compensate
for lack of prerequisites in one skill through excess strength
in another skill, but the extent to which this trade-off is
possible depends on the relative weights of the prerequisites.
The same principle applies to satisfying assessment skill re-
quirements. With prerequisites, the vector field of skill gains
is non-uniform (without prerequisites, it is uniform); for ex-
ample, see Figure 3.

Our model differs from [11] in that we explicitly model the
effects of prerequisite knowledge on gains from lessons. Lan
et al. model gains from a lesson as an affine transformation
of the student’s knowledge state.

4. PARAMETER ESTIMATION
We compute MAP estimates of model parameters Θ by

maximizing the following objective function:

L(Θ) =
∑
A

log (P[R | ~st,~a, γs, γa])

+
∑
L

log (P[~st+1 | ~st, ~̀, ~q])− β · λ(Θ)
(4)

where A is the set of assessment interactions, L is the
set of lesson interactions, λ(Θ) is a regularization term that
penalizes the L2 norms of embedding parameters (not bias
terms), and β is a regularization parameter. Non-negativity
constraints on embedding parameters (not bias terms) are
enforced.
L2 regularization is used to penalize the size of embed-

ding parameters to prevent overfitting. The bias terms are



Figure 4: An extremely simple embedding

not bounded or regularized. This allows −||~a|| + γa to be
positive for assessment modules that are especially easy, and
~s·~a
||~a|| + γs to be negative for students who fail especially of-

ten. We solve the optimization problem with box constraints
using the L-BFGS-B [29] algorithm. We randomly initialize
parameters and run the iterative optimization until the rela-
tive difference between consecutive objective function evalu-
ations is less than 10−3. Averaging validation accuracy over
multiple runs during cross-validation reduces sensitivity to
the random initializations (since the objective function is
non-convex).

5. EXPERIMENTS ON SYNTHETIC DATA
To verify the correctness of our model and to illustrate

the properties of the embedding geometry that the model
captures, we conducted a series of experiments on small,
synthetically-generated interaction histories. Each scenario
is intended to demonstrate a different feature of the model
(e.g., recovering student knowledge and assessment require-
ments in the absence of lessons, or recovering sensible skill
gain vectors for different lessons). For the sake of simplicity,
the embeddings do not use bias terms. The scenarios shown
next are annotated versions of plots made by our embedding
software.

Figure 4 demonstrates an extremely simple embedding.
The key observation here is that the model recovered posi-
tive skill gains for lesson L1, and “correctly” arranged Alice
and assessment A1 in the latent space. Initially, Alice fails
A1, so her skill level is behind the requirements of A1. Af-
ter completing L1, Alice passes A1, indicating that her skill
level has probably improved past the requirements of A1.
Note that this scenario could have been explained with only
one latent skill.

Figure 5 depicts a two-dimensional embedding, where an
intransitivity in assessment results requires more than one
latent skill to explain. The key observation here is that the
assessments are embedded on two different axes, meaning
they require two completely independent skills. This makes

Figure 5: A two-dimensional embedding without
lessons

sense, since student results on A1 are uncorrelated with re-
sults on A2. Fogell fails both assessments, so his skill levels
are behind the requirements for A1 and A2. McLovin passes
both assessments, so his skill levels are beyond the require-
ments for A1 and A2. Evan and Seth are each able to pass
one assessment but not the other. Since the assessments
have independent requirements, this implies that Evan and
Seth have independent skill sets (i.e. Evan has enough of
skill 2 to pass A2 but not enough of skill 1 to pass A1, and
Seth has enough of skill 1 to pass A1 but not enough of skill
2 to pass A2).

In Figure 6, we replicate the setting in Figure 5, then add
two new students Slater and Michaels, and two new lesson
modules L1 and L2. Slater is initially identical to Evan,
while Michaels is initially identical to Seth. Slater reads les-
son L1, then passes assessments A1 and A2. Michaels reads
lesson L2, then passes assessments A1 and A2. The key
observation here is that the skill gain vectors recovered for
the two lesson modules are orthogonal, meaning they help
students satisfy completely independent skill requirements.
This makes sense, since initially Slater was lacking in Skill
1 while Michaels was lacking in Skill 2, but after completing
their lessons they passed their assessments, showing that
they gained from their respective lessons what they were
lacking initially.

In Figure 7, we replicate the setting in Figure 5, then add
a new assessment module A3 and a new lesson module L1.
All students initially fail assessment A3, then read lesson
L1, after which McLovin passes A3 while everyone else still
fails A3. The key observation here is that McLovin is the
only student who initially satisfies the prerequisites for L1,
so he is the only student who realizes significant gains from
taking L1.

6. EXPERIMENTS ON ONLINE COURSE
DATA

We use data processed by Knewton, an adaptive learning



Figure 6: A two-dimensional embedding with
lessons, without prerequisites

technology company. Knewton’s infrastructure uses student-
content access traces to generate personalized recommenda-
tions and activity analytics for partner organizations with
online learning products. The data describes interactions
between college students and two science textbooks. The
Book A data set was collected from 869 classrooms from Jan-
uary 1, 2014 through June 1, 2014. It contains 834,811 in-
teractions, 3,471 students, 3,374 lessons, 3,480 assessments,
and an average assessment pass rate of 0.712. The paths that
students take are biased by direction from instructors, a rec-
ommender system, and the sequence of chapters in the text-
book. The Book B data set was collected from 1,070 class-
rooms from January 1, 2014 through June 1, 2014. It con-
tains 1,349,541 interactions, 3,563 students, 3,843 lessons,
3,807 assessments, and an average assessment pass rate of
0.693.

Both data sets are filtered to eliminate students with fewer
than five lesson interactions and content modules with fewer
than five student interactions. To avoid spam interactions
and focus on the outcomes of initial student attempts, we
only consider the first interaction between a student and
an assessment (subsequent interactions between student and
assessment are ignored).

6.1 Assessment Result Prediction
We evaluate the embedding model on the task of predict-

ing results of held-out assessment interactions, and compare
it to three benchmark models: the one- and two-parameter
logistic item response theory models, and a two-dimensional
item response theory model. The 1PL IRT model, also
known as the Rasch model, has the following assessment
pass likelihood: P[R = 1] = φ(θi−βj) for student i and item
j, where θ is student proficiency and β is item difficulty, and
φ is the logistic link function [23]. The 2PL model extends
the likelihood as follows: P[R = 1] = φ(αj(θi − βj)), where
α is the item discriminability [14]. The 2D MIRT model,
which is a multi-dimensional generalization of 2PL, has the
following pass likelihood: P[R = 1] = φ(~ui · ~vj +µj), where ~u

Figure 7: A two-dimensional embedding with
lessons and prerequisites
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Figure 8: We explore the parameter space of the
two-dimensional embedding with prerequisites and
bias terms by doing a grid search on (σ2, β).

are the student factors, ~v are the item factors, and µ is the
item offset [24]. Note that we have not explicitly included
Bayesian Knowledge Tracing as a benchmark model since it
requires content modules to be annotated with concept tags,
while the Latent Skill Embedding does not.

We use ten-fold cross-validation to select the regulariza-
tion parameter β and learning update variance σ2 for the
embedding model (see Figure 8 for the exploration on Book
A), as well as regularization parameters for the benchmark
IRT models. On each fold, we train on the full histories
of 90% of students and the truncated histories of 10% of
students, and validate on the assessment interactions imme-
diately following the truncated histories. Truncations are
made just before the last assessment interactions for each
student (maximizing the size of the training set). We have
also examined the effect of randomizing the truncation in
student histories, and find no substantial changes to our re-
sults.

After selecting model hyperparameters using cross-validation,
we evaluate the models on a held-out test set of students
(20% of the students in the complete data set) that was not



Table 1: Test AUC, validation AUC, and standard error of validation AUC for variations of the embedding
model and benchmark IRT models.

Model Book A Book B
~̀ ~q γ Test Validation Test Validation

1 N N N 0.673 0.614± 0.015 0.614 0.644± 0.015
2 N N Y 0.818 0.753± 0.020 0.788 0.821± 0.021
3 Y N N 0.692 0.624± 0.019 0.630 0.662± 0.023
4 Y N Y 0.798 0.761± 0.016 0.775 0.808± 0.020
5 Y Y N 0.724 0.625± 0.021 0.629 0.643± 0.018
6 Y Y Y 0.811 0.756± 0.018 0.785 0.823± 0.021
7 1PL IRT 0.812 0.761± 0.016 0.778 0.812± 0.019
8 2PL IRT 0.780 0.708± 0.011 0.686 0.690± 0.022
9 2D MIRT 0.817 0.732± 0.012 0.776 0.796± 0.018

visible during the earlier parameter selection phase. The
same truncation method is used for evaluation on the test
set.

Our performance metric is area under the ROC curve
(AUC), which measures the discriminative ability of a binary
classifier that assigns probabilities to class membership.

Lesion Analysis.
To gain insight into which components of the embedding

model contribute most to its predictive power, we conduct
a lesion analysis. For the sake of simplicity, we restrict our-
selves to using a two-dimensional embedding (later, we de-
scribe the effect of varying the embedding dimension d). We
start with an embedding model that ignores lesson interac-
tions and does not use bias terms. We then gradually add
components to the embedding model to examine their ef-
fects on prediction AUC. Specifically, we evaluate embed-

dings with and without lesson parameters ~̀, prerequisite
parameters ~q for lessons, and bias terms γ. Each variant
of the model corresponds to a row in Table 1.

From these results, we observe the following: including
bias terms in the assessment result likelihood (Equation 1)
gives a large and statistically significant performance gain
(p < 0.0003 for the standard t-test comparing validation
AUCs of row 5 vs. 6 on Book A); an embedding with lesson
prerequisites and bias terms performs comparably to the
best benchmark IRT model.

Effect of Data Heterogeneity.
One issue that may have affected the findings is the biased

nature of student paths, which has been discussed by [8]. In
the data, we observe that student paths are heavily directed
along common routes through modules. We conjecture that
this bias dulls the effect of modeling lesson prerequisites in
the embedding, and causes the inclusion of bias terms to give
a large performance boost. Most students attack a module
with the same background knowledge, so an embedding that
captures the variation in students who work on the same
module is not as valuable.

In a regime where students who work on a module come
from a variety of skill backgrounds, our model that includes
lesson prerequisites may further improve results. Prelimi-
nary evidence for this is presented in Figure 9, where we
re-create our analysis of the two Knewton data sets on sev-
eral public data sets of student interactions and a private
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Figure 9: The gain from including lesson prereq-
uisites in the embedding seems to depend on the
entropy of student paths in the data set.

data set from an online language learning game [28, 7, 1, 9].
After conducting a lesion analysis for each data set, we com-
pute the relative difference between the validation AUC for
a two-dimensional embedding with lesson prerequisites and
the validation AUC for a two-dimensional embedding with-
out lesson prerequisites. We also measure the “entropy” of
student paths by assuming that student paths can be mod-
eled as Markov chains and computing the entropy of the
transition probability matrix for each data set. A relation-
ship exists between student path entropy and the relative
AUC gain from using lesson prerequisites, providing some
evidence to support the hypothesis that modeling lesson pre-
requisites is more beneficial in a setting with larger variation
in student paths.

Effect of Embedding Dimension.
In other experiments, we explored the parameter space of

the embedding model by varying the regularization constant
β and embedding dimension d. Not explicitly shown are the
results for changing d. In summary, we find that increasing
embedding dimension d substantially improved performance
for embedding models without bias terms, but that it has
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Figure 10: Sensitivity of validation AUC to the
“depth” of a student’s history (from t = T − depth
to t = T ). A student’s recent history is most helpful
for predicting assessment results, which we observe
in the plateauing of the curve as we gradually in-
clude interactions from the students far past.

little effect on performance for embeddings with bias terms.
The former is expected, since the embedding itself must be
used to model general student passing ability and general
assessment difficulty.

Sensitivity Analysis.
We perform several sensitivity analyses on Book A and

observe the following: prediction AUC is most affected by
a student’s recent history (see Figure 10); the number of
full student histories in the training set has a strong effect
on prediction AUC, via the quality of module embeddings
(see Figure 11); prediction AUC decays when assessment re-
sults in the training set are noisy (see Figure 13); the length
of a student’s history is weakly related to prediction AUC
(see Figure 12). These findings lead to two key qualitative
insights regarding model performance: (1) for a course of-
fered regularly (e.g., over several semesters), the model will
improve steadily as log data is collected from students who
complete the course, and (2) the model performs best when
assessments are crafted to test specific skills and minimize
noise in outcomes.

6.2 Lesson Sequence Discrimination
The ability to predict future performance of students on

assessments, while a useful metric for evaluating the learned
embedding, does not address the more important task of
adaptive tutoring via customized lesson sequence recommen-
dation. We introduce a surrogate task for evaluating the
sequence recommendation performance of the model based
entirely on the observational data of student interactions,
by assessing the model’s ability to recommend “productive”
paths amongst several alternatives.

Bubbles as Experimental Evidence.
The size of the data set creates a unique opportunity to

leverage the variability in learning paths to simulate the set-
ting of a controlled experiment. For this evaluation, we use

0 500 1000 1500 2000 2500 3000
Number of full student histories in training set

0.75

0.76

0.77

0.78

0.79

A
re

a 
un

de
r R

O
C

 C
ur

ve

Sensitivity to number of full student histories

Figure 11: Sensitivity of validation AUC to the num-
ber of full student histories in the training set. The
number of full histories affects the quality of module
embeddings, and thus has a strong effect on perfor-
mance.

a larger version of the Book A data set, containing 14,707
students and 14,327 content modules. We find that the
data contains many instances of student paths that share
the same lesson module at the beginning and the same as-
sessment module at the end, but contain different lessons
along the way. We call these instances bubbles, for exam-
ple see Figure 14, which present themselves as a sort of ex-
perimental evidence on the relative merits of two different
learning progressions. We can thus use these bubbles to eval-
uate the ability of an embedding to recommend a learning
sequence that leads to success, as measured by the relative
performance of students who take the recommended vs. the
not-recommended path to the assessment module at the end
of the bubble.

We use the full histories of 70% of students to embed les-
son and assessment modules, then train on the histories of
held-out students up to the beginning of a bubble. The les-
son sequence for a student is then simulated over the initial
student embedding, using the learning update (Equation 3)
to compute an expected student embedding at the end of the
bubble (which can be used to predict the passing likelihood
for the final assessment using Equation 1). The path that
leads the student to a higher pass likelihood on the final as-
sessment is the“recommended”path. Our performance mea-

sure is E
[
E[R′]−E[R]

E[R]

]
, whereR′ ∈ {0, 1} is the outcome at the

end of the recommended path and R ∈ {0, 1} is the outcome
at the end of the other path (0 is failing and 1 is passing).
This measure can be interpreted as “expected gain” (aver-
aged over many bubbles) from taking recommended paths,
or how “successful” the paths recommended by the model
are when compared to the alternative.

Propensity Score Matching.
This observational study is potentially confounded by many

hidden variables. For example, it may be that one group of
students systematically takes recommended paths while an-
other group of students does not, leading to results at the
end of a bubble that are mostly dictated by the teachers di-
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Figure 12: Sensitivity of validation AUC to the
length of a student history (from t = 0 to t = T ).
There is a very weak and noisy relationship between
history length and performance.

recting the groups, or other student-specific hidden factors,
rather than path quality. To best approximate the settings
of a randomized controlled trial in our observational study,
we use the standard propensity score matching approach for
de-biasing observational data [25, 2]. The key idea behind
propensity score matching is to subset the observed data in
a way that balances the distribution of the features (“hid-
den variables”) describing subjects in the two conditions, as
it would be expected in a randomized experiment. The va-
lidity of any conclusion drawn from the observational data
de-biased in this way hinges on the assumption that all con-
founding variables that determine self-selection have been
accounted for in the features prior to matching. In this
study, we hypothesize that the set of all lesson modules and
assessment modules (with outcomes) that the learner at-
tempted throughout his or her duration in the online system
is sufficient to compensate for any self-selection in the taken
learning paths. Formally, we represent learners in a feature
space X such that Xij ∈ {−1, 0, 1}, where Xij = 1 if student
i passed module j (lessons are always “passed”), Xij = 0 if
student i has not completed module j, and Xij = −1 if
student i failed module j.

We use PCA to map X to a low-dimensional feature space
where students are described by 1,000 features, which cap-
ture 80% of the variance in the original 14,327 features. A
logistic regression model with L2 regularization is used to
estimate the probability of a student following the recom-
mended branch of a bubble, i.e. the propensity score, given
the student features (the regularization constant is selected
using cross-validation to maximize average log-likelihood on
held-out students). Within each bubble, students who took
their recommended branch are matched with their nearest
neighbors (by absolute difference in propensity scores) from
the group of students who did not take their recommended
branch. Matching is done with replacement (so the same
student can be selected as a nearest neighbor multiple times)
to improve matching quality, trading off bias for variance.
Multiple nearest neighbors can be matched (we examine the
effect of varying k), trading off variance for bias.
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Figure 13: Sensitivity of validation AUC to noisy as-
sessment results in the training set. A small amount
of noise is acceptable, but performance quickly de-
teriorates as the training set stops “agreeing” with
the validation set and eventually (when AUC drops
below 0.5) starts biasing the model so that it per-
forms worse than a random coin flip. In practice,
we anticipate a very small amount of noise.

L1! L2! L3!

L4! L5! L6!

L0! A1!

Figure 14: A schematic diagram of a bubble, where
a group of students converges on a lesson, splits off
into two different lesson sequences, then converges
on the same assessment.

Results.
Figure 15 shows the results of the experiment, showing by

how much students gain by following the path recommended
by our embedding. We use the same embedding configura-
tion as in row 6 of Table 1, which uses prerequisites and
bias terms in a two-dimensional embedding model with les-
son. Naturally, our evaluation metric of gain in the pass rate
from following a recommended path would depend strongly
on the relative merits of the recommended and alternative
paths. We therefore plot the gain that the recommended
path achieves in relation to the difference in path quality, as
measured by the absolute difference in pass rates between
the two paths. Figure 15 shows that the model generally
able to recommend more successful paths, and this finding
is robust to the choice of nearest neighbors k used during
propensity matching. As expected, the effect of the system
recommendation is larger when there is a significant differ-
ence between the quality of the two paths.
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Figure 15: The x -axis represents a threshold on ab-
solute difference between pass rates of the two bubble
paths. Bubbles are filtered to meet the following cri-
teria: at least ten students take each branch, each
branch must contain at least two lessons, and both
branches must contain the same number of lessons.
The error bars represent standard error, and their x-
coordinates are slightly perturbed so the error bars
for different curves can be distinguished.

7. CONCLUSIONS
We presented a general model that learns a representation

of student knowledge and educational content that can be
used for personalized instruction. The key idea lies in using
a multi-dimensional embedding to capture the dynamics of
learning and testing. Using a large-scale data set collected
in real-world classrooms, we (1) demonstrate the ability of
the model to successfully predict learning outcomes and (2)
introduce an offline methodology as a proxy for assessing
the ability of the model to recommend personalized learn-
ing paths. We show that our model is able to successfully
discriminate between personalized learning paths that lead
to mastery and failure.

An implementation of the Latent Skill Embedding and the
IPython notebooks used to conduct experiments are avail-
able online at http://siddharth.io/lentil.
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[8] J. González-Brenes, Y. Huang, and P. Brusilovsky.
General features in knowledge tracing: Applications to
multiple subskills, temporal item response theory, and
expert knowledge. In Proceedings of the 7th
International Conference on Educational Data Mining
(accepted, 2014), 2014.

[9] Grockit. What do you know?, 2011.

[10] Knewton. The knewton platform: A general-purpose
adaptive learning infrastructure. Technical report,
2015.

[11] A. S. Lan, C. Studer, and R. G. Baraniuk.
Time-varying learning and content analytics via sparse
factor analysis. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 452–461. ACM,
2014.

[12] A. S. Lan, A. E. Waters, C. Studer, and R. G.
Baraniuk. Sparse factor analysis for learning and
content analytics. J. Mach. Learn. Res.,
15(1):1959–2008, Jan. 2014.

[13] A. Lesgold et al. Sherlock: A coached practice
environment for an electronics troubleshooting job.
1988.

[14] W. Linden and R. K. Hambleton. Handbook of
modern item response theory. New York, 1997.

[15] J. Moore, S. Chen, D. Turnbull, and T. Joachims.
Taste over time: The temporal dynamics of user
preferences. In Conference of the International Society
for Music Information Retrieval Conference (ISMIR),
pages 401–406, 2013.

[16] E. O’Rourke, E. Andersen, S. Gulwani, and
Z. Popovic. A framework for automatically generating
interactive instructional scaffolding. 2015.

[17] Z. Pardos, Y. Bergner, D. Seaton, and D. Pritchard.
Adapting bayesian knowledge tracing to a massive
open online course in edx. In Educational Data Mining
2013, 2013.

[18] Z. A. Pardos and N. T. Heffernan. Tutor modeling vs.
student modeling. In Proceedings of the Twenty-Fifth
International Florida Artificial Intelligence Research
Society Conference, pages 420–425, 2012.

http://siddharth.io/lentil


[19] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code.
arXiv preprint arXiv:1505.05969, 2015.

[20] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously generating hints by inferring problem
solving policies. 2015.

[21] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. J. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. CoRR, abs/1506.05908, 2015.

[22] M. J. Prerau, A. C. Smith, U. T. Eden, M. Yanike,
W. A. Suzuki, and E. N. Brown. A mixed filter
algorithm for cognitive state estimation from
simultaneously recorded continuous and binary
measures of performance. Biological cybernetics,
99(1):1–14, 2008.

[23] G. Rasch. Probabilistic models for some intelligence
and attainment tests. ERIC, 1993.

[24] M. D. Reckase. Multidimensional Item Response
Theory. Springer Publishing Company, Incorporated,
first edition, 2009.

[25] P. R. Rosenbaum and D. B. Rubin. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

[26] A. C. Smith, L. M. Frank, S. Wirth, M. Yanike,
D. Hu, Y. Kubota, A. M. Graybiel, W. A. Suzuki, and
E. N. Brown. Dynamic analysis of learning in
behavioral experiments. The journal of neuroscience,
24(2):447–461, 2004.

[27] J. Sohl-Dickenstein. Temporal multi-dimensional item
response theory, 2014.

[28] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon,
and K. Koedinger. Algebra i 2005-2006, algebra i
2006-2007, bridge to algebra 2006-2007. Challenge
data set from KDD Cup 2010 Educational Data
Mining Challenge, 2010.

[29] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization. ACM Transactions
on Mathematical Software (TOMS), 23(4):550–560,
1997.


	1 Introduction
	2 Related Work
	3 Embedding Model
	3.1 Modeling Assessment Results
	3.2 Modeling Student Learning from Lessons

	4 Parameter Estimation
	5 Experiments on Synthetic Data
	6 Experiments on Online Course Data
	6.1 Assessment Result Prediction
	6.2 Lesson Sequence Discrimination

	7 Conclusions
	8 Acknowledgements
	9 References

