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ABSTRACT
Massive Online Open Courses have become an accessible and
affordable choice for education. This has led to new technical
challenges for instructors such as student evaluation at scale.
Recent work has found ordinal peer grading, where individ-
ual grader orderings are aggregated into an overall ordering
of assignments, to be a viable alternate to traditional instruc-
tor/staff evaluation [23]. Existing techniques, which extend
rank-aggregation methods, produce a single ordering as out-
put. While these rankings have been found to be an accurate
reflection of assignment quality on average, they do not com-
municate any of the uncertainty inherent in the assessment
process. In particular, they do not to provide instructors with
an estimate of the uncertainty of each assignment’s position
in the ranking. In this work, we tackle this problem by ap-
plying Bayesian techniques to the ordinal peer grading prob-
lem, using MCMC-based sampling techniques in conjunction
with the Mallows model. Experiments are performed on real-
world peer grading datasets, which demonstrate that the pro-
posed method provides accurate uncertainty information via
the estimated posterior distributions.
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INTRODUCTION
MOOCs (Massive Online Open Courses) offer the promise of
affordable higher education, across a breadth of disciplines,
for anyone with access to the Internet. The introduction of
MOOCs has forced instructors to adapt conventional class-
room logistics in order to scale to classrooms of 10,000+ stu-
dents. One such key logistic is the evaluation of students in
MOOCs. Given the orders of magnitude difference in scale,
conventional assessment techniques such as instructor/staff-
based grading are simply infeasible for MOOCs. While scal-
able automatic-grading schemes — such as multiple-choice
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questions — exist, they are not suitable in all settings [4, 25,
12, 13]. For instance, research-oriented classes require more
open-ended testing such as essays and reports, which are very
challenging to evaluate automatically. A lack of reliable as-
sessment techniques for these types of assignments may limit
the kinds of courses offered as MOOCs.

Peer grading, where students — not instructors or staff —
provide feedback on the work of other students in the class,
has been proposed as a solution. Peer grading naturally over-
comes the problem of scale [11, 16], since the number of
“graders” matches the number of students. Despite this inher-
ent scalability of peer grading, a key obstacle for peer grading
to work is the fact that the students are not trained graders and
are just learning the material themselves. To ensure good-
quality grades it is therefore imperative that grading guide-
lines are easy to communicate and apply, making the feed-
back process a easy and unambiguous as possible. Towards
this goal, recent work has proposed eliciting ordinal feedback
from graders [23] (e.g. ”project A is better than project B”)
rather than cardinal grades (e.g. ”project A should get 87 out
of 100”), since ordinal feedback has been shown to be more
reliable than cardinal feedback [15, 3, 24, 6], and avoids hav-
ing to communicate absolute grading scales.

This leads to the ordinal peer grading problem, where given
the grader feedback (partial orderings over a subset of the
assignments), the goal is to infer the overall ordering of all
assignments. Rank-aggregation techniques have been ex-
tended to this task [23] and shown to not only be compara-
ble to (if not better than) cardinal-grading based techniques
but also traditional evaluation practices such as course-staff
(TAs) based grading. It is important to note than unlike other
rank aggregation problems, peer grading requires accuracy
throughout the ranking and not just at the top.

While existing ordinal peer grading techniques were shown to
estimate rankings that are accurate on average, they merely
output a single ranking without communicating the uncer-
tainty inherent in the assessment process. In particular, they
do not provide instructors with an estimate of the uncertainty
of each assignment’s position in the ranking. To overcome
this limitation, this paper presents a method for inferring the
posterior distribution of where each assignment falls in the
overall ranking. This information can, for example, be vi-
sualized as shown in Figure 1. Most importantly, the height
of the blue bars shows the probability with which each as-
signment falls at a specific rank. This information allows in-
structors to ascertain the algorithm’s confidence in the grade
(i.e., percentile/position in ranking) of each assignment and
discern the uncertainty of the underlying peer grades for each
assignment. For instance, in the above example, while there
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Figure 1. Output of the Bayesian ordinal peer grading method proposed in this paper. Having the peer grading algorithm produce more detailed
information of each individual assignment’s performance can be very useful for instructors when it comes to determining final grades. The above
figure is one such example, where for each assignment the posterior marginal distribution (over position in the overall ranking) is shown (rank on x-axis,
marginal probability on y-axis) along with statistics such as posterior mean, median and entropy of the marginal distribution.

is a high probability that assignment 1 is the best of the four
assignments, it is less certain that assignment 2 is better than
assignment 3. This is because of the high uncertainty in the
position of assignment 3 (as evidenced by its’ high entropy of
4.54). If presented with such information, instructors could
intervene and improve certainty by soliciting additional re-
views for specific assignments, or at least by accounting for
the uncertainty when deriving their grades from the ranking.

In this work, we address the problem of uncertainty modeling
by employing Bayesian techniques for the ordinal peer grad-
ing problem. In particular we propose a Metropolis-Hastings
[8] based Markov Chain Monte-Carlo (MCMC) method, for
sampling from the posterior of a Mallows model [20]. The re-
sulting samples allow us to empirically estimate the posterior
rank distribution of each assignment, allowing us to report
confidences and uncertainty information.

We empirically study the efficacy of the proposed method on
peer grading datasets, collected from a university-level class.
In addition to studying the quality of the learned posterior
orderings, we also analyze the resulting confidences and un-
certainty information, both qualitatively and quantitatively.

BAYESIAN METHODS FOR ORDINAL PEER GRADING
In this section, we first describe the ordinal peer grading prob-
lem from a machine learning perspective. We then briefly
review existing techniques for the ordinal peer grading prob-
lem. Our proposed Bayesian version of these techniques is

then presented, followed by an empirical evaluation of these
techniques in the Experiments section.

Ordinal Peer Grading (OPG) Problem
In the ordinal peer grading problem, we are given a set of
|D| assignments D = {d1, ..., d|D|} (e.g., project reports, es-
says) which we need to grade. The grading is performed by
a set of |G| graders G = {g1, ..., g|G|} (e.g., student peer
grader, reviewers). Each grader receives a subset of assign-
ments Dg ⊂ D to assess. The subsets Dg can be determined
randomly, by a sequential mechanism or a deterministic pol-
icy. As feedback, each grader provides an ordering σ(g) (pos-
sibly with ties) of their assignments Dg .

The primary goal of OPG is ordinal grade estimation [23]
i.e., to produce an overall ordering 1 of the assignments σ̂ us-
ing the individual grader orderings σ(g). While we would like
this inferred ordering σ̂ to accurately match some (latent) true
ordering σ∗, we are faced with a couple of challenges. First,
the individual grader orderings are only partial orderings i.e.,
the orderings only cover a small subset of the assignments
(|Dg| � |D|). The second challenge is the fact that not all
graders do an equally good job of grading, be it due to effort,
skill or understanding of the material.

1Producing an overall ordering of the assignments can be used to
infer, for each assignment, a percentile rank as the grade (a common
performance metric reported by standardized tests).
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G, g(∈ G) Set of all graders, Specific grader
D, d(∈ D) Set of all assignments, Specific assignment
Dg(⊂ D) Set of items graded by grader g
σ(g) Ranking feedback (with possible ties) from g

ηg(∈ <+) Predicted reliability of grader g
r
(σ)
d Rank of assignment d in ordering σ (rank 1 is best)

d2�σ d1 d2 is preferred/ranked higher than d1 (in σ)
π(A) Set of all rankings over A ⊆ D
σ1 ∼ σ2 ∃ way of resolving ties in σ2 to obtain σ1

σ̂ Estimated ordering of assignments
σ∗ (Latent) True ordering of assignments

Table 1. Notation overview and reference.

This leads to the secondary goal of grader reliability estima-
tion, where we would like to estimate the accuracy/quality
ηg ∈ <+ of the feedback of each grader g. This should allow
us to improve the ordinal grade estimation quality by identi-
fying unreliable graders and thus reduce the impact of their
feedback on the estimated ordering σ̂. Furthermore, the abil-
ity to identify unreliable graders enables the instructor to in-
centivize good and thorough grading by making peer grading
itself part of the overall grade.

Relation to existing rank aggregation literature
The ordinal grade estimation problem in OPG can be viewed
as a specific kind of rank aggregation problem. Rank ag-
gregation [17] covers a class of problems where the goal is
the combination of ordinal (ranking) information from multi-
ple different sources. Voting Systems (or Social Choice [1])
are one of the most common applications of rank aggregation
techniques. The goal of these systems is to merge the pref-
erences of a set of individuals. Condorcet voting methods
such as Borda count amongst others [10, 19] are commonly
used to tackle these problems. Search Result Aggregation
(also known as Rank Fusion or Metasearch [2]) is perhaps
the most well-known rank-aggregation problem. Given rank-
ings from different sources (typically different algorithms),
the goal is to merge them and produce a single output rank-
ing. Extensions of classical techniques such as the Mallows
model [20] and Bradley-Terry model [5] have become popu-
lar for these problems [18, 7] and have been used to improve
ranking performance in different settings [22, 26, 21].

While our work also extends the classical Mallows model,
there are some fundamental differences to the these other
rank aggregation problems, which make existing methods ill-
suited for the OPG problem. First and foremost is the fact
that while the success of search result aggregation and vot-
ing systems depend on correctly identifying the top item(s),
in ordinal grade estimation it is imperative to accurately esti-
mate the full ranking. In other words, we cannot afford to do
any worse of a job identifying the 50th percentile assignments
than we do identifying the top assignments.

A second key difference (and the main focus of this work) is
the fact that unlike other rank aggregation problems, a sin-
gle ordering of assignments may not suffice for the purpose
of determining grades. Before determining the final grades
of assignments, instructors would like to have access to other
information such as the uncertainty in the rank of an assign-
ment. In other words, they would like to know more about

the distribution of r(σ̂)d (for instance a visualization such as
Figure 1).

Existing Approaches to OPG
Different approaches [23] to the OPG problem include exten-
sions of classical models such as the Mallows and Bradley-
Terry model. We focus on the Mallows-based methods,
as they form the basis for the techniques proposed in this
work. In particular, the proposed Mallows-based peer grad-
ing model defines a distribution over rankings in terms of the
Kendall-Tau distance [14] from the true ranking σ∗ of as-
signments.

DEFINITION 1. The Kendall-τ Distance δK between
rankings σ1 and σ2 is the number of incorrectly ordered pairs
between the two rankings and is given by

δK(σ1, σ2) =
∑

d1�σ1d2

I[[d2 �σ2
d1]]. (1)

Given the grader orderings σ(g), we can define the data likeli-
hood (if the overall ranking was σ) as

P ({σ(g);∀g}|σ) =

∏
g∈G

∑
σ′∼σ(g)e−δK(σ,σ′)

ZM (|Dg|)

 , (2)

where the normalization constant ZM is easy to compute as
it only depends on the ranking length.

ZM (k)=
k∏
i=1

(
1+e−1+· · ·+e−(i−1)

)
=

k∏
i=1

1− e−i

1− e−1
(3)

Note that in Equation 2, ties in the grader rankings are mod-
eled as indifference (i.e., agnostic to either ranking), which
leads to the summation in the numerator is over all total order-
ings σ′ consistent with the weak ordering σ(g). While comput-
ing the Maximum-Likelihood Estimator (MLE) of Equation 2
is NP-hard [10], several simple and tractable approximations
that are shown to work well in practice are presented in [23].

While this model does not produce grader reliability esti-
mates, an extension to the model is proposed in [23] and com-
puted using a MAP estimator (rather than MLE estimator):

P ({σ(g);∀g}|σ, {ηg}) =

∏
g∈G

∑
σ′∼σ(g)e−ηgδK(σ,σ′)

ZM (ηg, |Dg|)

 .

However, both models (with and w/o reliability estimates)
suffer from the same issue, in that they both produce point
estimates i.e., a single ranking as output. In the next section,
we will propose and study a Bayesian version of these mod-
els that estimates the posterior distribution of the predicted
ranking and reliabilities.

Mallows MCMC using Metropolis-Hastings
To help provide more detailed information to instructors, we
would like to have access to the posterior distribution of the
orderings. In other words, instead of the data likelihood prob-
ability we have in Equation 2 (ignoring the grader reliabilities
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Algorithm 1 Sampling from Mallows Posterior using
Metropolis-Hastings

1: Input: Grader orderings σ(g), Grader reliabilities ηg and
MLE ordering σ̂.

2: Pre-compute xij ←
∑
g∈G ηgI[di �σ(g) dj ] −∑

g∈G ηgI[dj �σ(g) di[
3: σ0 ← σ̂ . Initialize Markov Chain using MLE estimate
4: for t = 1 . . . T do
5: Sample σ′ from (MALLOWS) jumping distribution:

JMAL(σ
′|σt−1)

6: Compute ratio rt =
P (σ′|{σ(g);∀g})
P (σt−1|{σ(g);∀g}) using Equation 5

7: With probability min(rt, 1), σt ← σ′ else σt ← σt−1
8: Add σt to samples (if burn-in and thinning conditions

met)

for now), we would like to know the posterior distribution of
the inferred rankings σ i.e., P (σ|{σ(g);∀g}). We can safely
assume a uniform prior on all orderings (for academic fair-
ness), which gives us

P (σ|{σ(g);∀g}) = P ({σ(g);∀g}|σ)P (σ)∑
σ′∈π(D) P ({σ(g);∀g}|σ′)P (σ′)

=
P ({σ(g);∀g}|σ)∑

σ′∈π(D) P ({σ(g);∀g}|σ′)
. (4)

With the posterior distribution in hand, we can derive the de-
sired marginal rank distributions of each assignment, or we
can predict a single ranking that minimizes posterior expected
loss.

However, exact computations with this posterior are infeasi-
ble given the combinatorial number of possible orderings of
all assignments. To help us ascertain information from the
posterior, we will employ MCMC based sampling. Markov
Chain Monte Carlo (or MCMC in short) are a set of tech-
niques for sampling from a distribution by constructing a
Markov Chain which converges to the desired distribution
asymptotically. Metropolis-Hastings is a specific MCMC
algorithm which is particularly common when the underlying
distribution is difficult to sample from (as is the case here)
especially for multi-variate distributions.

Thus to help us estimate properties of the posterior we will
design a Markov Chain whose stationary distribution is the
distribution of interest: P (σ|{σ(g);∀g}). Along with the the-
oretical guarantees accompanying these methods, an added
advantage is the fact that we can control the desired estima-
tion accuracy (by selecting the number of samples).

This results in a simple and efficient algorithm, shown in Al-
gorithm 1. To begin with we pre-compute statistics of the net
cumulative weighted total each assignment di is ranked above
another assignment dj . We then initialize the Markov Chain
using the MLE estimate of the ordering: σ̂. At each timestep,
to propose a new sample σ′ given the previous sample σt−1,
we sample from a jumping distribution (Line 5). In particular,
we use a Mallows-based jumping distribution:

Data Statistic Poster Report
Number of Assignments 42 44

Number of Peer Reviewers 148 153
Total Peer Reviews 996 586

Table 2. Statistics for the two datasets “Poster” and “Report”
.

→ JMAL(σ
′|σ) ∝ e−δK(σ′,σ).

This is a simple distribution to sample from and can be
done efficiently in |D|log|D| time. Furthermore as this
is a symmetric jumping distribution (i.e., JMAL(σ

′|σ) =
JMAL(σ|σ′)), the acceptance ratio computation is simplified.

When it comes to computing the (acceptance) ratio rt (Line
6), we can rely on the pre-computed statistics to do so effi-
ciently. In particular, we can simplify the expression for the
ratio to:

P (σa|{σ(g);∀g})
P (σb|{σ(g);∀g})

=
∏
g∈G

eδK(σ(g),σb)−δK(σ(g),σa)

=
∏
i,j

exij(I[di�σadj ]−I[di�σbdj ]) (5)

This expression is again simple to compute and can be done
in time proportional to the number of flipped pairs between
σa and σb, which in the worst case is O(|D|2). Overall, the
algorithm has a worst-case time complexity of O(T |D|2).
The resulting samples produced by the algorithm can be used
to estimate the posterior distributions including the marginal
posterior of the rank of each assignment i.e., P (rd|{σ(g);∀g},
as well as statistics such as the entropy of the marginal, the
posterior mean and median etc.

In order to improve the quality of the resulting estimates, we
ensure proper mixing by targeting a moderate acceptance rate
and by thinning samples (in our experiments we thin every 10
iterations). Furthermore we draw samples once the chain has
started converging i.e., we use a burn-in of around 10,000
iterations.

We also derive a Metropolis-Hastings based extension of the
Mallows model with grader reliabilities. In addition to sam-
pling the orderings, we also sample the reliabilities using a
Gaussian jumping distribution (also symmetric). However
the acceptance ratio computation is now more involved and
hence less efficient than that for Algorithm 1, but nonethe-
less can be computed fairly efficiently. We omit the precise
equation and computations for the purpose of brevity.

Software and an online service that implements these meth-
ods is available at http://www.peergrading.org/.

EXPERIMENTS
In this section, we empirically evaluate the performance of
the Bayesian Mallows-based peer grading method. In partic-
ular, we study a) the quality of its predicted rankings in com-
parison with existing peer-grading methods as measured with
regards to conventional instructor grades; and b) the accuracy
of the confidence intervals and uncertainty information.
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Experimental Setting
We used the peer-grading datasets introduced in [23]. These
datasets were collected in a real-classroom setting from a
large university class. The class which consisted of about 170
students and 9 Teaching Assistants (TAs), used peer grading
to evaluate the course projects (done in groups of 3-4 stu-
dents) The advantage of this class size is the availability of
conventional instructor based grades for assignments, in ad-
dition to the peer grades (performed individually by each stu-
dent). Having these instructor grades allows us to provide
a more robust evaluation of the educational impact of these
techniques, beyond what previous work has done.

We used both the Poster and Final Report datasets in this
work. The two datasets correspond to different parts of the
course. Students were incentivized to do a good job grading,
by incorporating their peer grading performance into their
overall grade for the course. The peer grading was done on
a 10-point (cardinal) Likert scale so as to compare cardinal
and ordinal peer grading methods. The ordinal peer grad-
ing methods merely used the ordering implies by the cardinal
grades.

Table 2 provides some of the key statistics of the two datasets.
On average each poster and final report received roughly 24
and 13 peer reviews respectively. For both datasets there
was a single instructor grade for each assignment. As de-
scribed in [23], the instructor grades for the reports were de-
termined completely independent of the peer grades. For the
posters the instructor grades utilized the TA grades, which
were partly influenced by student grades.

The Bayesian Mallows MCMC method was run with identi-
cal (fixed) parameters for both datasets. In total, 5000 sample
orderings were drawn from the Markov Chain using Algo-
rithm 1. These samples were used to estimate the posterior
distributions and for obtaining the statistics in the following
subsections.

Are the inferred orderings accurate?
A key benefit of the Bayesian approach is that the posterior
distribution of the orderings provides uncertainty informa-
tion. But we can also use the posterior distribution to predict a
single ordering of the assignments. How does the accuracy of
the orderings predicted by the Bayesian model compare to the
accuracy of the orderings estimated via maximum likelihood
estimation (MLE)? To address this question, we compare the
following techniques:

• MLE: Maximum-Likelihood Estimator of the Mallows
model [23]. This is a single point estimate, and it is also
used to initialize the Markov Chain.

• Mode-MAL: (One of the) Modes of the posterior of the
Mallows distribution. Ties are broken randomly.

• Mode-MAL+G: (One of the) Modes of the posterior of the
Mallows distribution with grader reliability estimates. Ties
are broken randomly.
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Figure 2. (Top) Normalized Kendall-Tau performance of all methods
against the instructor grades for both datasets: Poster (Left) and Report
(Right). Figure on the Bottom is similar but reports a weighted version of
the Kendall-Tau error. Note: Performance of a random baseline would
be 50% for both metrics. For both figures, the lower value is better.

• Bayes-MAL: This is the Bayes estimate minimizing poste-
rior expected δK over the posterior learned by Alg 1. For-
mally, the predicted ordering is

σ̂ = argminσ
∑
σ′

δK(σ′, σ)P (σ′|D),

where P (σ′|D) represents the estimated posterior distribu-
tion (as output by the Bayesian MCMC method).

• Bayes-MAL+G: This is the Bayes estimate minimizing
posterior expected τKT over the posterior of the Mallows
model with grader reliability estimates.

While computing the Bayes-MAL and Bayes-MAL+G pre-
dictions is an NP-hard problem, as it requires computing the
Kemeny-optimal aggregate [10], we can approximate the op-
timal solution of the minimization problem efficiently. In par-
ticular, we used the simple and efficient Borda-Count tech-
nique, which is known to be a 5-approximation [9]. In our
case, this also carries a nice semantic meaning as it amounts
to simply ordering the assignments by their posterior mean
ranks.

The results are shown in Figure 2. As the measure of pre-
diction accuracy, we use the Kendall-Tau error with regards
to the instructor rankings. We also compute a weighted ver-
sion of the Kendall-Tau error, where misordering items with
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(width) of the interval (as a percentage) of the overall ranking length (the red striped bars).

a larger (instructor) score difference leads to a worse perfor-
mance measure. Note that both of these measures are nor-
malized to lie between 0 (indicating perfect agreement with
instructors) and 100 (indicating a complete reversal of the
instructor ranking). On both datasets, the performance of
the proposed Bayesian methods are not substantially differ-
ent from that of the MLE. There appears to be no clear trend
that one method is superior to the others, and the differences
are probably due to fact that the instructor grades used as a
gold standard are themselves subject to uncertainty. One is-
sue to note is that the “Mode” techniques tend to have larger
variance, as performance can vary with the mode that was
selected (as the distribution tends to be multi-modal).

Lastly, we also note that the performance does not vary much
with adding grader reliability estimation. This observation
agrees with a similar finding made in [23] (for both ordinal
and cardinal grading techniques). The most likely reason for
observing this behavior is the explicit incentive in terms of
grade credit that the students were given for doing a thorough
job with the peer reviews, such that the number of truly sub-
standard reviews in the data may be low.

How good are the estimated confidence intervals?
While the previous experiment indicated that the overall qual-
ity of the orderings tends to be quite good (with regards
to instructor grades), it does not tell us how accurately the
Bayesian approach models the uncertainty of the predicted
ranks. To address this question, we now evaluate how good
the Bayesian confidence intervals (i.e., credible intervals) of
the inferred posterior marginal distributions (over position in
the overall ranking) for individual assignments are. To evalu-
ate these uncertainty estimates, we again utilize the instructor
grades 2. In particular we evaluate the quality of the 50% and
80% credible intervals.

2Since these also have ties, we treat ties as indifference and hence
have a uniform probability distribution over all possible valid rank
positions.

For each assignment, we first compute the (posterior)
marginal distribution over the ranking positions as shown in
Figure 1 from the introduction. We then compute the overlap
of the credible intervals of these marginals with the instructor
ranking distribution i.e., an assignment whose credible inter-
val contains (all) the instructor-provided ranks has a 100%
overlap, whereas an interval with no overlap scores a 0%. We
report this overlap averaged over all assignments. In addition
to this, we also report the size of these intervals (as a percent-
age of the overall ranking length).

The results are shown in Figure 3. We find that the intervals
produced by the Bayesian MCMC based Mallows technique
have are well calibrated. In particular, for both the posters
and the reports, the 50% and 80% interval cover roughly that
percentage of the instructor grades as desired (as indicated
by the overlap values). The observed overlap is far greater
than the size of the interval, which indicates predictive per-
formance that is far better than random. These results show
that the estimated intervals are meaningful and convey accu-
rate uncertainty information. The results when incorporating
grader reliability information are similar and hence left out to
avoid redundancy.

How peaked are the posterior distributions?
The results in Figure 3 show that the confidence interval for
the reports have larger width than those for the posters i.e.,
there is more uncertainty in the marginals of the reports than
the posters. This suggests that the posterior distributions are
more peaked around the mode for the posters as compared to
the reports. To verify this, we computed the expected values
of the Kendall-Tau error (and the weighted Kendall-Tau error)
under the posterior distribution:∑

σ

δK(σ∗, σ)P (σ|D)

Note that σ∗ refers to the instructor ranking and P (σ|D) is
the learned posterior. We refer to these values as EXP-MAL
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Figure 4. Kendall-Tau (Top) and Weighted Kendall-Tau (Bottom) per-
formance of the Bayesian point estimate rankings versus the expected
performance of the posterior ranking distribution. For both figures, the
lower value is better.

(without grader reliabilities) and EXP-MAL+G (with grader
reliability estimation). The results are shown in Figure 4.

We find that the difference in performance between the Bayes
estimate (Bayes) and the expected value (EXP) of the full
posterior is typically larger for the reports than for the posters.
For the posters, it appears that the posterior is so narrow that
almost any sample from the posterior is close to the Bayes
estimate. For the reports, the posterior is less peaked. One
explanation is the larger number of reviews available for the
posters.

Finally, we would like to investigate which assignments the
Bayesian peer grading method is most uncertain about, and
how this uncertainty relates to the scores given by the in-
structors. To provide some insight, we compute the posterior
marginal entropies of all assignments, and then average the
entropies for all assignments with the same cardinal instructor
grade. The result is visualized in Fig. 5. The assignments that
receive the highest and the lowest instructor scores tend to be
the assignments with the lowest posterior marginal entropy.
The assignment in the middle tend to have higher entropies,
indicating that the method is less certain about their position
in the ranking. Based on these findings, our conjecture is that
it is “easy” to for both students and instructors to identify
very good and very bad assignments. The assignments in the
middle are more difficult to grade, since they require careful
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Figure 5. Distribution of the average entropies of the marginals when
aggregated by the cardinal instructor grades. Points with no error bars
indicate just a single assignment with that score.

tradeoff between different types of errors. It may also be the
case that some of the assignments in the middle are difficult to
compare, since they are so different in topic that a meaningful
comparison is difficult.

CONCLUSIONS AND FUTURE WORK
In this work we proposed the use of Bayesian techniques for
the problem of ordinal peer grading so as to provide instruc-
tors richer information that communicates uncertainty in ad-
dition to the predicted ordinal grades. Our proposed method
utilizes a Metropolis-Hastings based MCMC sampler for the
peer grading Mallows model. We empirically validated the
proposed techniques and show the inferred posteriors to agree
with instructor grades and to convey an accurate amount of
uncertainty.

In addition to further empirical studies into the quality of the
learned posteriors, we are exploring how to develop Bayesian
inference methods also for other ordinal peer grading models.
An open question regards the quality of the credible intervals
of the estimated grader reliabilities. Furthermore, there are
many interesting questions regarding how to elicit the feed-
back from the students. For example, it may be cognitively
less demanding on the students to break their ordinal assess-
ment task into pairwise comparisons [15], especially if the
number of items to assess is large.
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