
Learning to Diversify from Implicit Feedback

Karthik Raman
Cornell University

Ithaca, NY
karthik@cs.cornell.edu

Pannaga Shivaswamy
Cornell University

Ithaca, NY
pannaga@cs.cornell.edu

Thorsten Joachims
Cornell University

Ithaca, NY
tj@cs.cornell.edu

ABSTRACT
We propose an online learning model and algorithm for learn-
ing rankings that balance relevance and diversity. In each
step, the algorithm presents a ranking to the user. As feed-
back, the algorithm observes the set of documents the user
reads in the presented ranking. We propose a simple algo-
rithm exploiting such feedback to maximize any submodular
utility measure. Even for imperfect and noisy feedback, we
show that the algorithm admits strong theoretical guaran-
tees. In addition to the theoretical results, we find that the
algorithm learns quickly, accurately, and robustly in an em-
pirical evaluation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Online Learning, Diversified Retrieval, Submodularity

1. INTRODUCTION
Modeling the dependencies between items in a ranking of

results is one of the most promising directions for improv-
ing the quality of retrieval and recommendation systems.
First, consider the example of a movie recommendation sys-
tem that wants to recommend at least one movie the user
wants to watch on a given day. The system is well-advised to
present a diverse set of movies, since diversity hedges against
uncertainty about the users mood on that day. Such hedg-
ing against uncertainty about the user’s information need is
called extrinsic diversity [8]. A second reason for diversity
is called intrinsic diversity [8] where it is important to avoid
redundancy and provide a set of results that cover multi-
ple aspects of an information need. For example, of all the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DDR’12, Feb 12, 2011, Seattle WA, USA.
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

articles in the NY Times on a given day, a user only has
time to read a small subset. Therefore, even if the user is
interested in the European Debt Crisis, he may not want to
read exclusively about this one topic, but rather read one
article and also cover other topics. In this paper, we focus
on problems where such intrinsic diversity is important.

While much prior work on diversity has focused on non-
learning approaches (e.g. [2, 16, 3, 14, 4]), recently devel-
oped supervised learning methods for diversity have shown
a lot of promise (e.g. [15, 10, 6]). Unfortunately, super-
vised learning relies on manually judged training data with
multi-topic annotations, which are expensive and difficult
to obtain. While some online learning methods exist that
can exploit click data, those methods either cannot gener-
alize across queries [9] and/or have a hard-coded notion of
diversity that cannot be adjusted through learning [13].

We overcome these problems by extending a recently pro-
posed online learning model [12] for learning from implicit
user feedback. In particular, we develop an algorithm for
learning both relevance and the desired amount of diversity
from set-valued preference data that can be derived from
implicit feedback. The algorithm proposed in this paper
is extremely easy to understand and implement. Further-
more, the ability to learn the desired amount of diversity
based on user feedback makes the algorithm attractive for
a wide range of applications where the required amount of
diversity is not determined apriori. A crucial extension over
the methods in [12] is that we now consider models with
submodular structure. Their diminishing returns property
makes it possible to avoid redundancy and increase novelty.

The learning process proceeds in the following online fash-
ion. In each step, a ranking is presented to the user that
(approximately) maximizes the current estimate of the sub-
modular utility function. As feedback, the algorithm ob-
serves the (possibly diverse) set of documents the user reads
in the presented ranking. After receiving this feedback, the
algorithm updates its models in an online fashion. Even
though we allow user feedback to be imperfect, noisy, and
only“weakly informative”(in a specific sense), we are able to
prove guarantees on the performance of the algorithm. Un-
like the theorems in [12], our guarantees apply even though
submodular models allow only approximate inference. Fi-
nally, experiments show the empirical effectiveness of the
proposed approach in learning both relevance and diversity.

2. LEARNING PROBLEM AND MODEL
To illustrate our learning model, consider the example of

a personalized news reader that users visit on a daily basis.

On day t, the news reader suggests a list of articles yt =
(d1, d2, d3, d4, d5, ...) and observes which of these articles are
actually read by the user. We assume that the decision
to read an article is influenced by two factors. First, the
article must be relevant to the user’s interest. Second, the
decision may have dependencies with other articles in y. For
example, the user may be interested in the European debt
crisis. But the user may only want to read one article related
to this issue, even if y contains 5 relevant articles.

In this paper, we design an online learning algorithm that
can model both relevance as well as such interdependen-
cies. The training data we exploit are the sets of documents
read on each day. Continuing the example from above, the
system may observe that the user read articles d3 and d5.
Obviously, we cannot conclude that {d3, d5} was the optimal
set of articles the user wanted to read on day t, since there
may have been other articles far down the list that the user
never saw. However, we can conclude that the user would
have preferred the ranking ȳt = (d3, d5, d1, d2, d4, ...) over
the ranking yt = (d1, d2, d3, d4, d5, ...) that was presented.
ȳt is referred to as the user feedback ranking.

We now define the learning problem and the user-interaction
model more generally. At each round t, our algorithm presents
a ranking yt from a corpus xt ∈ X of candidate documents.1

We assume that the user acts (approximately) rational ac-
cording to an unknown utility function U(xt,yt) that models
both relevance of the documents as well as their dependen-
cies (e.g. redundancy). In the context of such a utility
function, we can interpret the user feedback as a preference
between rankings. This type of preference feedback over
multiple rounds t is the input for our learning model. Given
the set of candidate documents xt, the optimal ranking is
denoted by

y∗t := arg max
y∈Y

U(xt,y). (1)

Since the user’s utility function U(xt,y) is unknown, this
optimal ranking y∗t cannot be computed. The goal of the
learning algorithm is to predict rankings with utility close to
that of y∗t . Note, however, that the user feedback does not
even give the optimal y∗t to the algorithm (as in traditional
supervised learning), but only the user feedback ranking ȳt
is observed. To nevertheless ensure meaningful learning un-
der this weak form of feedback, we make the following as-
sumption on user feedback:

U(xt, ȳt)− U(xt,yt) ≥ α (U(xt,y
∗
t)− U(xt,yt)) . (2)

It states that the utility of the user feedback ranking ȳt must
be slightly better than the utility of the ranking yt that was
presented. In particular, α ∈ (0, 1] is (an unknown) param-
eter in the above inequality that controls by what fraction
the utility of the feedback ranking ȳt is higher than that
of the predicted ranking yt as compared to the maximum
possible utility gain. To allow noisy feedback, we introduce
slack variables ξt ≥ 0 which allow violations of the above
condition. This gives the following user feedback, referred
to as α-informative feedback:

U(xt, ȳt)− U(xt,yt) = α (U(xt,y
∗
t)− U(xt,yt))− ξt. (3)

The above feedback model can be further relaxed, requiring

1In general, xt can also represent a query/context.

that it merely holds in expectation over feedback. This gives,

E[U(xt, ȳt)−U(xt,yt)]=α (U(xt,y
∗
t)−U(xt,yt))− ξ̄t. (4)

Note that the above expectation is over user’s choice of ȳt
given yt for corpus xt (i.e., distribution Pxt [ȳt|yt]). More-
over, ξ̄t denotes the corresponding slack variable.

To measure the performance of our method we define a no-
tion of regret based on the utility of the ranking we present
with respect to the utility of the best possible ranking y∗t
that could have been presented in each step:

REGT :=
1

T

T∑
t=1

(U(xt,y
∗
t)− U(xt,yt)) . (5)

Note that regret is measured with respect to the user’s true
utility function U(xt,yt), even though this function is never
explicitly revealed to the algorithm.

3. MODELING RELEVANCE AND DIVER-
SITY

A key step in designing a learning algorithm that models
both relevance and diversity lies in the design of an appro-
priate hypothesis space for modeling U(x,y). In short, the
learning algorithm needs to learn an accurate model of how
the user values a ranking y for a given x. Since this relates to
metrics for evaluating retrieval systems, we start our design
of U(x,y) based on existing retrieval measures.

While traditional IR metrics are oblivious to diversity (e.g.
NDCG, Precision), more recent additions account for diver-
sity in some form (e.g. [14, 9, 15, 1, 5]). We define our hy-
pothesis space based on the family of performance measures
proposed in [10], since it subsumed many existing measures.
These measure exhibit a diminishing returns property (i.e.
submodularity), which means that the marginal utility of a
document is lower if the intents the document is relevant to
are already represented in the ranking.

While [10] focuses on the case of extrinsic diversity, the
same model structure also applies to problems with need
for intrinsic diversity. In particular, we model U(x,y) as a
function that is linear in its parameters w, but submodular
(and non-linear) in a feature map φ(x,y).

U(x,y) := w>φ(x,y). (6)

The parameters w will be learned by the learning algorithm.
The feature vector φ(x,y) describes the ranking, but for
simplicity of exposition we will consider y to be the set con-
sisting of the top k results that were viewed by the user,
not the full ranking2. The function φ(x,y) generates a fea-
ture vector describing the set y = {di1 , di2 , ..., dik} under
context x = {d1, d2, ..., d|x|} in the following manner: We
assume that each document d itself is described by a feature
vector φ(d). These feature vectors are aggregated into the
feature vector φ(x,y) of y using an aggregation function F .
Let φj(x,y) be the j-th feature of φ(x,y) and φj(d) the j-th
feature of φ(d), then

φj(x,y) = F ({φj(di1), φj(di2), ..., φj(dik)}). (7)

2A ranking can be viewed as a nested structure of top-k
sets, and the greedy algorithm we will later use to compute
rankings uniformly optimizes the utility of the sets at any
cutoff in the ranking.

Algorithm 1 GreedyRanking(w,x)

y← 0
for i = 1 to k do
bestU ← −∞
for all d ∈ x/ y do

if w>(x,y ⊕ d) > bestU then
bestU ← w>φ(x,y ⊕ d)
best← d

y← y ⊕ best
return y

Examples of the per-feature aggregation function F are the
following:

Name F (A) Subsumes
LIN F (A) =

∑
a∈A a Precision, DCG

SQRT F (A) =
√∑

a∈A a

MAX F (A) = maxa∈A a Coverage

The variants SQRT and MAX, but not LIN, encourage di-
versity in the following way. As example, consider a boolean
bag-of-words representation of documents φ(d) and the SQRT
aggregation. The first document to contain a term t will in-
crease the feature value of t in φ(x,y) by

√
1 = 1. The

second document to contain t, however, will only lead to a
diminished increase of

√
2 −
√

1 = 0.41, and a third one to
an even smaller one (i.e.

√
3−
√

2 = 0.32). This models the
partial redundance of multiple occurrences of t. The most
extreme is MAX, which does not give any benefit to all but
the first occurrence of t. Note that multiple aggregation
functions F can be stacked into φ(x,y), which allows the
linear model to select a desired diminishing-returns profile.
Note also that our model is not restricted to the F listed
above, but rather any F can be used that is monotone and
submodular in y [10].

To compute the ranking that maximizes a utility func-
tion, i.e. y := arg maxy∈Y

[
w>φ(x,y)

]
, one can use the

simple and efficient Greedy Algorithm 1. At each step, the
algorithm greedily chooses the document with the highest
marginal utility to be added to the ranking. Note that y⊕d
is used to refer to the operator that appends document d to
ranking y. Also note that Algorithm 1 computes the exact
utility optimizer yt for the modular measure LIN, whereas it
finds a 1− 1/e approximate yt for any submodular measure
(e.g. SQRT, MAX) [10].

4. ONLINE LEARNING ALGORITHM
We now present the learning algorithm for minimizing re-

gret (5). Algorithm 2, which we call the Diversifying Per-
ceptron (DP), maintains a weight vector wt which is ini-
tialized to 0. At each time step t, DP presents a ranking
yt from the corpus xt using Algorithm 1 with the current
estimate wt. DP then uses the user feedback ranking
ȳt (obtained as outlined in Section 2) to update the weight
vector wt in the direction of φ(xt, ȳt)− φ(xt,yt).

Theorem 1. For feedback that is α-informative, the av-
erage regret of the diversified perceptron algorithm can be
upper bounded as follows:

REGT ≤
1

αT

T∑
t=1

ξt +

√
(4− 2β)R‖w‖

α
√
T

+

√
2βR‖w‖
α

(8)

Algorithm 2 Diversifying Perceptron.

Initialize w1 ← 0
for t = 1 to T do

Observe xt
Present yt ← GreedyRanking(wt,xt)
Obtain feedback ȳt
Update: wt+1 ← wt + φ(xt, ȳt)− φ(xt,yt)

where 1
β+1

is the approximation factor of the greedy algo-

rithm with β ≤ 2 and ‖φ(x,y)‖ ≤ R.

Proof. Consider the norm of wT+1:

||wT+1||2 = ||wT ||2 + 2w>T (φ(xT , ȳT)− φ(xT ,yT))

+ (φ(xT , ȳT)− φ(xT ,yT))>(φ(xT , ȳT)− φ(xT ,yT))

≤ ||wT ||2 + 2β w>T φ(xT ,yT) + 4R2

≤ ||wT ||2 + 2β||wT ||R+ 4R2

≤ (‖wT ‖+ 2R)2 ≤ 4R2T 2.

The first line comes from the update rule in Algorithm 2.
The second line is from the fact that w>T φ(xT , ȳT) ≤ (β +
1)φt(xT ,yT) since the greedy algorithm produces an 1

β+1

approximation and that ‖φ(·, ·)‖ ≤ R. The third line comes
by using the Cauchy-Schwarz inequality. Fourth line is by
using the fact that β ≤ 2. We obtain the last line inductively.
We now prove a stronger bound using the above fact.

||wT+1||2 ≤ ||wT ||2 + 2β||wT ||R+ 4R2

≤ ||wT−1||2 + 2βR(||wT ||+ ||wT−1||) + 8R2

≤ ||w0||2 + 2βR

T∑
t=0

||wt||+ 4R2T

≤ 4R2T + 2βR2(T 2 − T)

The last line comes from the earlier result which implies
‖wT+1‖ ≤ 2RT and the fact that

∑T
k=1(k−1) = T (T−1)/2.

Further, from the update rule in algorithm 2, we have,

w>T+1w = w>T w + U(xT , ȳT)− U(xT ,yT)

=

T∑
t=1

U(xt, ȳt)− U(xt,yt).

We now use the fact that w>T+1w ≤ ‖w‖‖wT+1‖ (Cauchy-
Schwaz inequality) which implies,

T∑
t=1

U(xt, ȳt)− U(xt,yt) ≤
√

(4− 2β)R2T + 2βR2T 2 ‖w‖.

The above inequality, along with the condition of α-informative
feedback gives:

αREGT −
1

T

T∑
t=1

ξt ≤
(√

(4− 2β)
1√
T

+
√

2β
)
R‖w‖

from which the claimed result follows.

For the case of modular utility (LIN), β = 0 and the above
bound reduces to the one in [12]. For submodular utilities,
β = 1/(e+1) in the worst case, but is typically much smaller
in practice. When users provide “clean” feedback according
to (2), the first term in the bound (8) vanishes. We can also
show a result similar to the one above in the case of expected

α-informative feedback (4). We do not provide a proof for
this case due to space limitations.

5. EXPERIMENTS
In this section we empirically study different aspects of

our proposed algorithm. In particular, we show the benefit
of using the submodular utility to achieve diversity. Fur-
thermore, we explore the robustness of our learning method
under degraded feedback quality and noise. We also explore
learning the amount of diversity a user wants. Finally, we
compare our method against a supervised method.

5.1 Experiment Setup
Since there is no large publicly available corpus contain-

ing intrinsic diversity judgments3 (which is the focus of this
work), we created an artificial dataset from the RCV-1 [7]
text corpus. This corpus contains over 800k documents each
of which is annotated as belonging to one or more of 100+
topics. To simulate users with multiple different interests, we
formed super-users with 5 different interests corresponding
to 5 different RCV-1 topics. Thus if a document is relevant
to any of these topics they are relevant to that super-user,
else they are not. While the original RCV-1 topics are ar-
ranged hierarchically, to make the problem non-trivial, we
considered only topics from the second level. We assume
that all topics are equally important unless otherwise men-
tioned. In addition, for a given super-user we removed doc-
uments relevant to multiple interests. In this manner, pro-
ducing a diverse set of results would require being able to
truly learn each of the interests separately.

We ran the Diversifying Perceptron algorithm with a fresh
set of 1000 documents in each step as the corpus x and pre-
sented a ranking y from the current corpus. In particular
we focus on the top 5 results for all evaluation measures
for brevity, though the trends reported in the following hold
true for other ranking lengths as well. All results we re-
port are averaged over 50 runs of the algorithm, each for a
different super-user. Documents are represented as TFIDF
vectors. The joint feature map φ(x,y) is an aggregation of
the document vectors using one (or multiple) of the aggre-
gation functions F described in Section 3.

5.2 Can the algorithm learn to diversify?
We first evaluate if the proposed DP algorithm is really

able to learn a function that combines relevance and diver-
sity. In particular, we generated users with 5 different and
disjoint interests, and each user wants to read exactly one
document relevant to each interest in every iteration. Note
that users of this type are seeking maximum diversity in
their rankings. To illustrate the performance of the algo-
rithm, we report two quantities. First, we computed how
many interests are covered in the top 5 documents of the
presented ranking in each iteration. Second, we considered
the median depth the user needs to search down the ranking
to find one document for each of his interests.

We ran the DP algorithm with the MAX feature map
as defined in Section 3. This is compared against another
instance of our algorithm that uses the conventional model
LIN, which focuses purely on relevance but cannot model
diversity directly. For clarity, we assume α = 1 informative

3Corpora like the TREC WEB corpus are small and contain
relevance judgements only for extrinsic diversity.

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f d
iffe

re
nt

 in
te

nt
s c

ov
er

ed

Number of Iterations

MAX
LIN

Random

 0

 10

 20

 30

 40

 50

 1 10 100

M
ed

ian
 S

ea
rc

h
Le

ng
th

Number of Iterations

MAX
LIN

Figure 1: Comparison between the submodular
(MAX) and independent (LIN) model for users that
are purely seeking diversity.

feedback. We also compared against a Random baseline,
which is the performance of a random ranking.

Figure 1 shows the average and standard error of the re-
sults for this experiment. The upper pane shows the number
of intents covered in the top 5 positions over time. While
the LIN method is far better than the Random method and
continues to improve over time, it is outperformed by the
MAX method, which is able to learn better. In particular
we can see how starting from nearly a single intent covered
in the top 5, the MAX method covers more than 3 intents
on average after about 30 iterations. In comparison LIN still
covers less than 3 intents even after 100 iterations. The bot-
tom pane further illustrates this effect, as it shows how the
median search length (required to find at least one document
for each intent) starts from more than 100, but quickly drops
to less than 20 after 20 iterations. LIN needs about 100 it-
erations to reach this performance. Both learning methods
clearly outperform the Random baseline, the value of which
is too large to show. In both plots, the standard errors are
quite small implying statistical significance.

5.3 What is the effect of feedback quality (α)?
We next study the effect of the quality of feedback (as

governed by α) on the performance our method. As real-
life users are unlikely to provide perfect feedback, we would
like our algorithm to learn even in scenarios where the user-
feedback is far from ideal. To study this effect, we varied the
quality of the feedback by changing the value of α. A change
in α is achieved through the following mechanism: For any
intent not covered in the presented ranking, but covered in
the optimal ranking, with probability 1 − α, documents on
that intent are absent in the feedback ranking. This leads
to having α-informative feedback in expectation.

Figure 2 shows the results for this experiment. Most no-
tably, the performance is nearly unchanged for larger values
of α. In particular, we find that for α ≥ 0.6 the perfor-
mance is very close to that with perfect feedback (α = 1.0).

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Alpha on Number of Intents Covered

α=1.0
α=0.8
α=0.6
α=0.4
α=0.2
α=0.1

Figure 2: Effect of α on performance of the algo-
rithm for users that are purely seeking diversity.

At low values of α such as 0.2 or 0.1, the method still makes
reasonable progress over time, albeit at a slower rate. We
see that for α = 0.2 within 100 iterations the number of
intents covered more than doubles. These results indicate
that the proposed method is still able to learn even when
the informativeness of the user feedback is poor.

5.4 What is the robustness to noise?
While the experiments in the previous section showed ro-

bustness to imperfect feedback, we now test the robustness
of our algorithm to noisy feedback. One key difference be-
tween the two is that with noisy feedback, the user may
return a feedback ranking that is worse than the one he was
presented. Such a degradation in the quality of the ranking
will be captured by the slack variable seen in Eq. (3). We
would particularly like the noise introduced to be reflective
of that expected in the real-world, where users may some-
times be unsure of the relevance of some documents. Thus
we modify the user clicking mechanism that produces the
feedback in the following manner:

• The user may consider each irrelevant document en-
countered in the ranking as relevant with η.
• Documents actually relevant to one of the user’s topics

may be confused for a different topic with probability
η/5.

Figure 3 shows the effect of varying the noise factor η.
As seen in the figure, the algorithm is quite robust to this
kind of noise. For high values of η, such as 0.2, we find that
the algorithm is still able to learn quite well. The figures
also indicate the expected α of the feedback received after
adding noise. However, note that in this scenario, unlike the
experiments varying α, the feedback ranking can be signifi-
cantly worse than the predicted ranking. Thus we see that
for η = 0.2, although α ∼ 0.4 in expectation, the perfor-
mance is noticeably worse than for the case of α = 0.4.

5.5 Learn the desired amount of diversity?
We next explore whether the algorithm can learn how

much diversity the user wants. Furthermore, it is interest-
ing to know how the algorithm performs in settings where
the utility that the user optimizes (to provide feedback) is
different from the one the algorithm uses.

To study this effect, we experimented with the MAX and
LIN utility functions mentioned earlier. We varied the user’s
inherent utility as well as the algorithm’s utility to either of
these two values. We also experimented with a combination
method for the DP algorithm, which simply takes the joint
feature vector representations used in the MAX and LIN

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Noisy Feedback on Number of Intents Covered

η=0
η=0.02 (α = 0.94)
η=0.05 (α = 0.83)

η=0.1 (α = 0.66)
η=0.2 (α = 0.38)
η=0.5 (α = 0.04)

Figure 3: Effect of η on performance of the algorithm
for users that are purely seeking diversity (number
in bracket indicates the average α).

User-Utility
LIN MAX

RANDOM .862(±.007) .756(±.016)

Algo-Util
LIN .137(±.019) .447(±.005)
MAX .169(±.02) .274(±.011)

LIN +MAX .158(±.021) .31(±.0095)

Table 1: Average Regret for different user utilities
and algorithm utility functions.

functions and appends them to form a single vector. We re-
fer to this method as MAX +LIN . To ensure difference in
feedback between the two user utility functions, we weight
the different intents (as done in [15]), which results in the
utility being higher if a more popular topic is covered instead
of a less popular one. We ran the DP algorithm for 100 it-
erations where at each iteration the feedback provided by
the user is as per the utility they optimize. We report per-
formance in terms of the the average regret over these 100
iterations of the user’s utility measure (since that is what
the true w captures), thus lower the better.

Table 1 shows the results. First, consider the cases where
the algorithm is given the user’s true diversity profile. As
expected, the algorithm performs very well, as seen in the
case of the LIN-maximizing algorithm performing best for
purely-relevance seeking users (and similarly for the MAX-
maximizing algorithm and diversity-seeking users). How-
ever, an important result of the experiment is that even
when the amount of diversity the user requires is unknown,
the combination algorithm is able to learn the amount of di-
versity the user wants. It performs nearly as well as the case
where the user’s diversity needs are known, as can be seen in
the last row of the table. This shows that the combination
algorithm is able to learn the tradeoff between relevance and
diversity that the user is looking for. This is very encourag-
ing as it allows for the method to be used in scenarios where
there is no a priori information about the desired amount of
diversity, similar to recent work on extrinsic diversity [11].

5.6 Comparison to supervised learning
To the best of our knowledge, ours is the first online learn-

ing method that can provide a diverse ranking from a differ-
ent corpus (i.e. context) in every iteration. Hence there is
no suitable online learning baseline to compare against. We
thus compare our method against a batch learning method.
In particular, we compare against the one-level version of the
method proposed earlier in [10], which is a generalization of
[15].

In this setup, for each maximum diversity-seeking user we
obtain the complete document-intent relevance labels for the

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 60 70 80 90 100 110 120 130 140 150

Av
er

ag
e

Re
gr

et

Number of Iterations

Supervised (η=0)
Supervised (η=0.2)

Online (η=0)
Online (η=0.2)

Figure 4: Comparison with supervised learning.

first 50 iterations, which is then used in training the SVM-
struct based supervised learning method of [10] to obtain
the wt. We train model using the labels from 40 iterations,
while utilizing the remaining 10 to select the best value of
the C parameter, which is varied from 10−2 to 10. The
best model is then used to make predictions over the next
100 iterations. We also run the online algorithm over these
150 iterations to compare the two methods. Note that both
the online method and the supervised learning method use
exactly the same MAX model of user utility and exactly the
same document features.

Since the supervised method does not predict rankings for
the first 50 iterations, to ensure a fair evaluation, we report
the average regret for the next 100 iterations i.e. :

REGT :=
1

100

150∑
t=51

(U(xt,y
∗
t)− U(xt,yt)) . (9)

We also run both methods with noise introduced using
the technique mentioned in subsection 5.4.

As seen in Figure 4, the DP algorithm performs signifi-
cantly better than the supervised learning method, achiev-
ing nearly 25% lower regret when there is no noise. This is
particularly encouraging given that the amount of feedback
the supervised algorithm receives is vastly superior in infor-
mativeness to that of the online learning method: While the
supervised algorithm receives the relevance labels of each
document for each of the user’s intent, the DP algorithm
only receives a single preference (which has atmost 5 docu-
ments) in each iteration. Even for the η = 0.2 case, the DP
algorithm is able to achieve lower regret eventually, indicat-
ing that the trend holds even under noisy conditions.

Finally, note that the (per-iteration) training times of
the supervised batch method are vastly larger than those
of the DP algorithm (∼ 1000s vs. 0.1s). This is because
the supervised method solves a more complex optimization
problem (the structural SVM objective), while training the
Diversifying Perceptron involves just a single update step.
Consequently, this makes the DP algorithm especially use-
ful in problem settings where we would like to continu-
ously improve the learned model over time, something that
would be prohibitively expensive with the supervised learn-
ing method.

6. CONCLUSIONS
We proposed an online-learning algorithm for learning di-

versity in rankings. The proposed DP algorithm balances
diversity and relevance by modeling the utility of the rank-
ing as a submodular function. Using plausible user feedback
in the form of preferences between rankings, the algorithm
is able learn rankings that optimize the user’s utility. In ad-

dition to theoretically characterizing the performance of the
algorithm and its robustness to noise, we showed that the
algorithm performs well in empirical studies. Future direc-
tions for research are the deployment of the algorithm in a
real system and the validation of the feedback model in user
studies.

7. ACKNOWLEDGMENT
This work was funded in part by NSF Awards IIS-0905467

and IIS-1142251.

References
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM, 2009.

[2] J. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[3] H. Chen and D. R. Karger. Less is more: probabilis-
tic models for retrieving fewer relevant documents. In
SIGIR, 2006.

[4] C. Clarke, M. Kolla, and O. Vechtomova. An effective-
ness measure for ambiguous and underspecified queries.
In Advances in Information Retrieval Theory, Lecture
Notes in Computer Science, 2009.

[5] C. L. Clarke, N. Craswell, and I. Soboroff. Overview of
the trec 2009 web track. Technical report, 2010.

[6] A. Kulesza and B. Taskar. Learning determinantal
point processes. In UAI, pages 419–427, 2011.

[7] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization re-
search. JMLR, 5:361–397, 2004.

[8] F. Radlinski, P. N. Bennett, B. Carterette, and
T. Joachims. Redundancy, diversity and interdepen-
dent document relevance. SIGIR Forum, 43(2):46–52,
2009.

[9] F. Radlinski, R. Kleinberg, and T. Joachims. Learning
diverse rankings with multi-armed bandits. In ICML,
2008.

[10] K. Raman, T. Joachims, and P. Shivaswamy. Struc-
tured learning of two-level dynamic rankings. In CIKM,
2011.

[11] R. L. Santos, C. Macdonald, and I. Ounis. Selectively
diversifying web search results. In CIKM, pages 1179–
1188, 2010.

[12] P. Shivaswamy and T. Joachims. Online learning with
preference feedback. In NIPS workshop on Choice Mod-
els and Preference Learning, 2011.

[13] A. Slivkins, F. Radlinski, and S. Gollapudi. Learning
optimally diverse rankings over large document collec-
tions. In ICML, pages 983–990, 2010.

[14] A. Swaminthan, C. Metthew, and D. Kirovski. Essen-
tial pages. In Technical Report, MSR-TR-2008-15, Mi-
crosoft Research, 2008.

[15] Y. Yue and T. Joachims. Predicting diverse subsets
using structural svms. In ICML, 2008.

[16] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond
independent relevance: methods and evaluation metrics
for subtopic retrieval. In SIGIR, 2003.

