Structured Learning of Two-Level Dynamic Rankings

Karthik Raman
Dept. of Computer Science
Cornell University
Ithaca NY 14850 USA
karthik@cs.cornell.edu

ABSTRACT

For ambiguous queries, conventional retrieval systems are
bound by two conflicting goals. On the one hand, they
should diversify and strive to present results for as many
query intents as possible. On the other hand, they should
provide depth for each intent by displaying more than a sin-
gle result. Since both diversity and depth cannot be achieved
simultaneously in the conventional static retrieval model, we
propose a new dynamic ranking approach. In particular, our
proposed two-level dynamic ranking model allows users to
adapt the ranking through interaction, thus overcoming the
constraints of presenting a one-size-fits-all static ranking. In
this model, a user’s interactions with the first-level ranking
are used to infer this user’s intent, so that second-level rank-
ings can be inserted to provide more results relevant to this
intent. Unlike previous dynamic ranking models, we pro-
vide an algorithm to efficiently compute dynamic rankings
with provable approximation guarantees. We also propose
the first principled algorithm for learning dynamic ranking
functions from training data. In addition to the theoreti-
cal results, we provide empirical evidence demonstrating the
gains in retrieval quality over conventional approaches.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Algorithms, Experimentation, Theory

Keywords

Diversified Retrieval, Structured Learning, Submodular Op-
timization, Web Search, Ranked Retrieval

1. INTRODUCTION

Search engine users often express different information
needs using the same query. For such ambiguous queries,
a single query can represent multiple intents — ranging from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’11, October 24-28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Thorsten Joachims
Dept. of Computer Science
Cornell University
lthaca NY 14850 USA
tji@cs.cornell.edu

Pannaga Shivaswamy
Dept. of Computer Science
Cornell University
Ithaca NY 14850 USA
pannaga@cs.cornell.edu

coarse (e.g., queries such as apple, jaguar and SVM) to fine-
grained ambiguity (e.g., the query apple ipod with the intent
of either buying the device or reading reviews).

Conventional retrieval methods do not explicitly model
query ambiguity, but simply rank documents by their prob-
ability of relevance independently for each result [9]. A ma-
jor limitation of this approach is that it favors results for
the most prevalent intent. In the extreme, the retrieval sys-
tem focuses entirely on the prevalent intent, but produces no
relevant results for the less popular intents. Diversification-
based methods (e.g. [3, 13, 4, 12, 10]) try to alleviate this
problem by including at least one relevant result for as many
intents as possible. However, this necessarily leads to fewer
relevant results for each intent. Clearly, there is an inher-
ent trade-off between depth (number of results provided for
an intent) and diversity (number of intents served) in the
conventional ranked-retrieval setting, since increasing one
invariably leads to a decrease of the other. How can we
avoid this trade-off and obtain diversity without compro-
mising depth?

We argue that a key to solving the conflict between depth
and diversity lies in the move to dynamic retrieval mod-
els [2] that can take advantage of user interactions. In-
stead of presenting a single one-size-fits-all ranking, dynamic
retrieval models allow users to adapt the ranking dynami-
cally through interaction, as is done by surfcanyon.com [5].
Brandt et al. [2] have already given theoretical and empirical
evidence that even limited interactivity can greatly improve
retrieval effectiveness. However, Brandt et al. [2] did not
provide an efficient algorithm for computing dynamic rank-
ings with provable approximation guarantees, nor did they
provide a principled algorithm for learning dynamic ranking
functions. In this paper, we resolve these open questions.

In particular, we propose a new two-level dynamic rank-
ing model. Intuitively, the first level provides a diversified
ranking of results on which the system can sense the user’s
interactions. Conditioned on this feedback, the system then
interactively provides a second-level rankings. A possible
layout is given in Figure 1. The left-hand panel shows the
first-level ranking initially presented to the user. The user
then chooses to expand the second document (e.g. by click-
ing) and a second-level ranking is inserted as shown in the
right panel. Conceptually, the retrieval system maintains
two levels of rankings, where each second-level ranking is
conditioned on the head document in the first-level ranking.

To operationalize the construction and learning of two-
level rankings in a rigorous way, we define a new family of
submodular performance measure for diversified retrieval.
Many existing retrieval measures (e.g., Precision@k, DCG,
Intent Coverage) are special cases of this family. We then

[dm: Jaguar Cars Official Website]

l

d : Wikipedia Page about the
20" animal jaguar

d o Jaguar Cars Official Website

d : Wikipedia Page about the
20" animal jaguar

{ J
{)
-

[d . Cars.com website for new and }
[}

d : Encyclopedia Page about the
21" animal jaguar

|

[dzz: Facts about the animal jaguar]

|

: Images about the animal iaguar]

30" used Jaguar cars.

I

d : Jaguar Communications
40" website

23

rm<mr ozoomw

(d

OzZz—Xxz»x rm<mr —Hnx—T

d : Cars.com website for new and
30" used Jaguar cars.

Figure 1: A user interested in the animal “jaguar”
interacts with the first-level ranking (left) and ob-
tains second-level results (right).

operationalize the problem of computing an optimal two-
level ranking as maximizing the given performance measure.
While this optimization problem is NP-hard, we provide an
algorithm that has an 1— e (1-2) approximation guarantee.

Finally, we also propose a new method for learning the
(mutually dependent) relevance scores needed for two-level
rankings. Following a structural SVM approach, we learn a
discriminant model that resembles the desired performance
measure in structure, but learns to approximate unknown in-
tents based on query and document features. This method
generalizes the learning method from [12] to two-level rank-
ings and a large class of loss functions.

2. TWO-LEVEL DYNAMIC RANKINGS

Current methods for diversified retrieval are static in na-
ture, i.e., they stay unchanged through a user session. On
the other hand, a dynamic model can adapt the ranking
based on interactions with the user. The primary motiva-
tion for using a dynamic model is addressing the inherent
trade-off between depth and diversity in static models.

Consider the example with four (equally likely) user in-
tents {t1,...,ts} and documents {di,...,do} with relevance
judgments U(d;|t;) as given in Table 1. On the one hand,
a non-diversified static ranking method could present d7 —
ds — dy as its top three documents, providing two rele-
vant documents for intents t3 and ¢4 but none for intents
t1 and t2. On the other hand, a diversified static ranking
d7 — d1 — d4 covers all intents, but this ranking lacks depth
since no user gets more than one relevant document.

As an alternative, consider the following two-level dy-
namic ranking. The user is presented with d7 — di — da
as the first-level ranking. Users can now expand any of the
first-level results to view a second-level ranking. Users in-
terested in d7 (and thus having intent ¢3 or t4) can ezpand
that result and receive a second-level ranking consisting of
ds and dg. Similarly, users interested in d; will get d2 and
ds; and users interested in d4 will get ds and ds.

For this dynamic ranking, every user gets at least one
relevant result after scanning at most three documents (i.e.
the first-level ranking). Furthermore, users with intents t3
and t4 receive two relevant results in the top three positions
of their dynamically constructed ranking dr — ds — do —
d1 — d4. Similarly, users with intent ¢; also receive two
relevant results in the top three positions while those with
intent to still receive one relevant result. This illustrates
how a dynamic two-level ranking can simultaneously provide
diversity and increased depth.

U(dj |tl) di do d3 dys ds ds dr ds do
t1 1 1 1 o o0 0 0 0 0
to 0O 0 0 1 1 1 0o 0 O
t3 o o o0 0 o0 o 1 1 0
2 O o0 0 0 0 O 1 0 1

Table 1: Utility U

—

dj|t;) of document d; for intent ¢;.

In the above example, interactive feedback from the user
was the key to achieving both depth and diversity. More
generally, we assume the following model of user behav-
ior, which we denote as policy 4. Users expand a first-level
document if and only if that document is relevant to their
intent. When users skip a document, they continue with
the next first-level result. When users expand a first-level
result, they go through the second-level rankings before con-
tinuing from where they left off in the first-level ranking. It
is thus possible for a user to see multiple second-level rank-
ings. Hence we do not allow documents to appear more than
once across all two-level rankings.

Note that this user model differs from the one proposed
in [2] in several ways. First, it assumes feedback only for
the first-level ranking, while the model in [2] requires that
users give feedback many levels deep. Second, unlike in [2],
we model that users return to the top-level ranking. We
conjecture that these differences make the two-level model
more natural and appropriate for practical use.

We now define some notation used in this paper. The
documents shown in a first-level ranking of length L are
called the head documents. The documents shown in a
second-level ranking are called the tail documents. The
number of tail documents is referred to as the width W.
A row denotes a head document and all its tail docu-
ments. Static rankings are denoted as 6 while two-level
rankings are denoted as © = (01,03,...0;,..). Here O, =
(dio, di1, -..., dij, ...) refers to the it* row of a two-level rank-
ing, with d;o representing the head document of the row and
d;; denoting the j*" tail document of the second-level rank-
ing. We denote the candidate set of documents to rank for
a query g by D(q), the set of possible intents by 7 (g) and
the distribution over an intent ¢ € T (q), given a query ¢, by
P(t|q]. Unless otherwise mentioned, dynamic ranking refers
to a two-level dynamic ranking in the following.

3. PERFORMANCE MEASURES FOR DI-
VERSIFIED RETRIEVAL

To define what constitutes a good two-level dynamic rank-
ing, we first define the measure of retrieval performance we
would like to optimize. We then design our retrieval algo-
rithms and learning methods to maximize this measure. In
the following, we start with evaluation measures for one-level
rankings, and then generalize them to the two-level case.

3.1 Measures for Static Rankings

Existing performance measures range from those that do
not explicitly consider multiple intents (e.g. NDCG, Avg
Prec), to measures that reward diversity. Measures that
reward diversity give lower marginal utility to a document,
if the intents the document is relevant to are already well
represented in the ranking. We call this the diminishing
returns property. The extreme case is the “intent coverage”
measure (e.g. [10, 12]), which attributes utility only to the
first document relevant for an intent.

We now define a family of measures that includes a whole

range of diminishing returns models, and that includes most
existing retrieval measures. Let g : R — R with g(0) = 0 be
a concave, non-negative, and non-decreasing function that
models the diminishing returns, then we define the utility of
the ranking 6 = (d1,da, ..., di) for intent ¢ as

0]

Uy (011) = 9(- 30 (dif1))- (1)

The 71 > ... > v, > 0 are discount factors and U/(d|t)
is the relevance rating of document d for intent ¢. For a
distribution of user intents P[t|q] for query ¢, the overall
utility of a static ranking 6 is the expectation

Ug(Blg) = > Pltlq] Uy(0]t). (2)
teT (q)

Note that many existing retrieval measures are special
cases of this definition. For example, if one chose g to be
the identity function, one recovers the intent-aware mea-
sures proposed in [1] and the modular measures defined in
[2]. Further restricting P[t|q] to put all probability mass
on a single intent leads to conventional measures like DCG
for appropriately chosen ~;. At the other extreme, chosing
g(z) = min(z, 1) leads to the intent coverage measure [10,
12]. Since g can be chosen from a large class of functions,
this family of performance measures covers a wide range of
diminishing returns models.

3.2 Measures for Dynamic Rankings

We now extend our family of performance measures to
dynamic rankings. The key change for dynamic rankings is
that users interactively adapt which results they view.

How users expand first-level results was defined in Sec-
tion 2 as mq. Under g4, it is natural to define the utility of
a dynamic ranking © analogous to Equation (1).

el |95

U@l = o 3 (0 (dalt +_wu

i=1

Like for static rankings, 71 > 72 > ... and Vi1 > vi2 >
are position-dependent discount factors. Furthermore, we
again take the expectation over multiple user intents as in
Equation (2) to obtain Uy(0|q).

Note that the utility of a second-level ranking for a given
intent is zero unless the head document in the first-level
ranking has non-zero relevance for that intent. This encour-
ages second-level rankings to only contain documents rele-
vant to the same intents as the head document, thus provid-
ing depth. The first-level ranking, on the other hand, pro-
vides diversity as controlled through the choice of function
g. The “steeper” g diminishes returns of additional relevant
documents, the more diverse the first-level ranking gets.

dol)U@510))-)

4. COMPUTING DYNAMIC RANKINGS

In this section, we provide an efficient algorithm for com-
puting dynamic rankings that maximize the performance
measures defined in the previous section. In the proposed
greedy Algorithm 1, the operator @ denotes either adding a
document to a row, or adding a row to an existing ranking.
In each iteration, Algorithm 1 considers every document in
the remaining collection as the head document of a candi-
date row. For each candidate row, W documents are greed-
ily added to maximize the utility Ug(O|q) of the resulting

partial dynamic ranking ©. Once rows of length W are con-
structed, the row which maximizes the utility is added to
the ranking. The above steps are repeated until the ranking
has L rows. Algorithm 1 is efficient, requiring O(|T|) space
and O(|T||D|?) time.

Algorithm 1 for computing a two-level dynamic ranking.

Input: (¢, D(q), T (q),P[tlg] : t € T(q)), g(-), L, W.
Output: A dynamic ranking ©.
© < new_two_level()
while |©] < L do
bestU < —oo
for all d € D(q) s.t. d ¢ © do
row < new_row(); row.head + d
for j =1to W do
bestDoc <— argmaxy ¢ gurow
row < row @ bestDoc
if Uy(© & rowl|q) > bestU then
bestU « Ugq(© @ row|q); bestRow < row
O + O @ bestRow

Ug(© & (row & d')|q)

Our greedy algorithm is closely related to submodular
function maximization. Maximizing monotonic submodu-
lar functions is a hard problem, but a greedily constructed
set gives an (1—1/e) approximation [7] to the optimal. Since
the definition of our utility in (2) involves a concave func-
tion, it is not hard to show that selecting a ranking of rows is
a submodular maximization problem. Moreover, given the
head document, finding the best row is also a submodular
maximization problem. Thus, finding a dynamic ranking
to maximize our utility is a nested submodular maximiza-
tion problem, and we can show the following approximation
guarantee for Algorithm 1.

LEMMA 1. Algorithm 1 is (1 — 67(17%)) approximate.

The proof can be found in [8]. It follows [6], but generalizes
the result from max coverage to our more general setting.

S. LEARNING DYNAMIC RANKINGS

In the previous section, we showed that a dynamic rank-
ing can be efficiently computed when all the intents and
relevance judgments for a given query are known. In this
section, we propose a supervised learning algorithm that can
predict dynamic rankings on previously unseen queries.

Our goal here is to learn a mapping from a query ¢ to a
dynamic ranking ©. We pose this as the problem of learn-
ing a weight vector w € R from which we can make a
prediction as follows:

hw(q) = arggnax w ' ¥(q,0). (4)

As further explained below, ¥(q, ©) € RY is a joint feature-
map between query ¢ and dynamic ranking ©.

Given a set of training examples (¢*, ©*)%;, the structural
SVM framework [11] can be use to learn a discriminant func-
tion by minimizing the empirical risk £ 37" | A(©", hw(q")),
where A is a loss function. Unfortunately, however7 the ©°
are typically not given directly as part of the training data.
Instead, we assuming that we are given training data of the
form (¢*,D(q"),T(¢"),P[tlq] : t € T(¢"))i=1, and we then
compute the dynamic rankings ©° by maximizing the util-
ity U, (approximately) using Algorithm 1. These ©%"s will
be used as the training labels henceforth.

+TREC#WEB » <+TREC =WEB

° {9:53) 4.86)
s 5 4.54)
/0—0/ (4.21)

7 / (7.65) (7.65) 4
6 3.0
. (633 (5) 3 | (3.65)
4 o321 (3.32) (308) (288

(2.89) : 2
3 (La7)e
2 1

PREC SQRT LOG SAT2 PREC SQRT LOG SAT2

Figure 2: Average number of intents covered (left)
and average number of documents for prevalent in-
tent (right) in the first-level ranking.

A key aspect of structural SVMs is to appropriately define
the joint-feature map ¥(q,®). For our problem, we propose

wU(q,0) = 3 wlo.U,(0F) + 3 wl.(©), (5)

vEVD(q) $E€VD (¢)x D(q)

where Vp(,) denotes an index set over the words in the can-
didate set D(q). The vector ¢, denotes word-level features
(for example, how often a word occurs in a document) for
the word corresponding to index v. The utility U, (O|v) is
analogous to (3) but is now over the words in the vocabulary
(rather than over intents). The word-level features are remi-
niscent of the features used in diverse subset prediction [12].
The key assumption is that the words in a document are
correlated with the intent since documents relevant to the
same intent are likely to share more words than documents
that are relevant to different intents.

The second term in Eq. 5 captures the similarity between
head and tail documents. In this case, Vp(q)xp(q) denotes
an index set over all document pairs in D(g). Consider an
index s that corresponds to documents d; and dz in D(q).
¢s(©) is a feature vector describing the similarity between d
and ds in © when d; is a head document in © and ds occurs
in the same row as di (¢s(0©) is simply a vector of zeros
otherwise). An example of a feature in ¢s(©) that captures
the similarity between two documents is their TFIDF cosine.

Using these features, w' ¥(gq, ©) models the utility of a
given dynamic ranking ©. During learning, w should be
selected so that better rankings receive higher utility than
worse rankings. This is achieved by solving the following
structural SVM optimization problem for w:

.1 C &
Jnin f|\w||2 + b E & (6)
= i=1

st.Vi,V0: w U(q',0") —w U(q", 0) > A", 0|¢") — &

The constraints in the above formulation ensure that the
predicted utility for the target ranking © is higher than the
predicted utility for any other ©. The objective function
in (6) minimizes the empirical risk while trading it off (via
the parameter C' > 0) with the margin. The loss between ©°

and O is given by A(©,0|¢") :=1— % which ensures
g9

that the loss is zero when © = ©°. It is easy to see that a
dynamic ranking © has a large loss when its utility is low
compared to the utility of ©%.

Even though the Eq. (6) has an exponential number of
constraints, the quadratic program in Eq. 6 can be solved
in polynomial time using a cutting-plane algorithm [11]. In
each iteration of the cutting-plane algorithm, the most vio-
lated constraints in (6) are added to a working set and the
resulting quadratic program is solved. Given a current w,

the most violated constraints are obtained by solving:
argmax w ' ¥(q',0) + A(O,0]¢"). (7
e

Algorithm 1 can be used to solve the above problem, even
though the formal approximation guarantee does not hold in
this case. Once a weight vector w is obtained, the dynamic
ranking for a test query can be obtained from Eq. (4).

6. EXPERIMENTS

Experiments were conducted on the TREC 6-8 Interactive
Track (TREC) and the Diversity Track of TREC 18 using
the ClueWeb collection (WEB). The 17 queries in TREC
contain between 7 to 56 different manually judged intents.
In the case of WEB, we used 28 queries with 4 or more in-
tents. We consider the probability P[t] of an intent propor-
tional to the number of documents relevant to that intent.
A key difference between the two datasets is that the most
prevalent intent covers 73.4% of all relevant documents for
the WEB dataset, but only 37.6% for TREC.

The number of documents in the first-level ranking was set
to 5. The width of the second-level rankings was set to 2. For
simplicity, we chose all factors v; and ~;; in Equations (1)
and (3) to be 1. Further, we chose U(d|t) = 1 if document
d was relevant to intent ¢ and set U(d|t) = 0 otherwise.

More details about the experiments and additional results
can also be found in [8].

6.1 Controlling Diversity and Depth

The key design choice of our family of utility measures is
the concave function g. As Algorithm 1 directly optimizes
utility, we explore how the choice of g affects various prop-
erties of the two-level rankings produced by our method.

We experiment with four different concave functions g,
each providing a different diminishing-returns model. At one
extreme, we have the identity function g(x) = which cor-
responds to modular returns. Using this function in Eq. (1)
leads to the intent-aware Precision measure proposed in [1],
and it is the only function considered in [2]. We therefore
refer to this function as PREC. It is not hard to show that
Algorithm 1 actually computes the optimal two-level rank-
ing for this choice of g. On the other end of the spectrum, we
study g(z) = min(z,2). By remaining constant after two,
this function discourages presenting more than two relevant
documents for any intent. This measure will be referred to
as SAT2 (short for “satisfied after two”). In between these
two extremes, we study the square root function (SQRT)
g(z) = /z and the log function (LOG) g(z) = log(1 + z).

To explore how dynamic rankings can differ, we used Algo-
rithm 1 to compute the two-level rankings (approximately)
maximizing the respective measure. Figure 2 shows how g
influences diversity. The left-hand plot shows how many
different intents are represented in the top 5 results of the
first-level ranking on average. The graph shows that the
stronger the diminishing-returns model, the more different
intents are covered in the first-level ranking. In particu-
lar, the number of intents almost doubles on both datasets
when moving from PREC to SAT2. In contrast, the number
of documents on the most prevalent intent in the first-level
ranking decreases, as shown in the right-hand plot. This
illustrates how the choice of g can be used to control the
desired amount of diversity in the first-level ranking.

Table 2 provides further insight into the impact of g, now
also including the contributions of the second-level rankings.

B Optim | ppRC SQRT LOG SAT2
val.
PREC 0315 0302 0294 0164
SQRT 1612 1.664 1659 1.333
LOG 1216 1.267 1.27 1.046
SAT2 118 1.335 1349 1.487

Table 2: Performance when optimizing and evaluat-
ing using different performance measures for TREC.

The rows correspond to different choices for g when evaluat-
ing expected utility according to Eq. (3), while the columns
show which g the two-level ranking was optimized for. Not
surprisingly, the diagonal entries of Tables 2 show that the
best performance for each measure is obtained when opti-
mizing for it. The off-diagonal entries show that different
g used during optimization lead to substantially different
rankings. This is particularly apparent when optimizing the
two extreme performance measures PREC and SAT2; opti-
mizing one invariably leads to rankings that have a low value
of the other. In contrast, optimizing LOG or SQRT results
in much smoother behavior across all measures, and both
seem to provide a good compromise between depths (for the
prevalent intent) and diversity. The results for WEB are
qualitatively similar and are omitted for space reasons.

6.2 Static vs. Dynamic Ranking

The ability to simultaneously provide depth and diversity
was a key motivation for our dynamic ranking approach.
We now evaluate whether this goal is indeed achieved. We
compare the two-level rankings produced by Algorithm 1
(denoted Dyn) with several static baselines. These static
baselines are also computed by Algorithm 1, but with the
width of the second-level rankings to 0.

First, we compare against a diversity-only static ranking
that maximizes intent coverage as proposed in [12] (denoted
Stat-Div). Second, we compare against a depth-only static
ranking by chosing g to be the identity function (denoted
Stat-Depth). And, third, we produce static rankings that
optimize SQRT, LOG, and SAT2 (denoted Stat-Util). Note
that both Dyn and Stat-Util optimize the same measure that
is used for evaluation.

To make a fair comparison between static and dynamic
rankings, we measure performance in the following way. For
static rankings, we compute performance using the expec-
tation of Eq. (1) at a depth cutoff of 5. In particular, we
measure PRECQ@5, SQRT@5, LOG@5 and SAT2@5. For
two-level rankings, the number of results viewed by a user
depends on how many results he or she expands. So, we
truncate any user’s path through the two-level ranking after
visiting 5 results and compute PREC@5, SQRT@5, LOG@5
and SAT2@5 for the truncated path.

Results of these comparisons are shown in Figure 3. First,
we see that both Dyn and Stat-Util outperform Stat-Div,
illustrating that optimizing rankings for the desired evalua-
tion measure leads to much better performance than using
a proxy measure as in Stat-Div. Note that Stat-Div never
tries to present more than one result for each intent, which
explains the extremely low “depth” performance in terms of
PREC@5. But Stat-Div is not competitive even for SAT2,
since it never tries to provide a second result.

Second, at first glance it may be surprising that Dyn out-
performs Stat-Depth even on PREC@Q5, despite the fact that

Stat-Depth explicitly (and globally optimally) optimizes depth.

SQRT@5 , | losce@s SAT2@5 y Stat-
1.2 — 1.4 — DlV
L —°° e i Stat-
1 ~ Depth
0.9 7 Stat-
o8 - Util
E 0.7 Dyn
oss | PREC@S , SQRT@5 . | LOG@5 SAT2@5 i Stat-
1.9 15 2 Div
0.75 ij § e 19 Stat-
0.65 1.6 1.3 1.8 Depth
i 15 1.2 1.7 Stat-
0.55 i: “M 1n J“ 16 HM util
o4s | MEGZZS o, 1 15 Dyn

Figure 3: Comparing the retrieval quality of Static
vs. Dynamic Rankings for TREC and WEB.

To understand consider the following situation where A is
the prevalent intent, and there are three documents relevant
to A and B and three relevant to A and C. Putting those sets
of three documents into the first two rows of the dynamic
ranking provides better PREC@5 than sequentially listing
them in the optimal static ranking.

Overall we find the dynamic ranking method outperform-
ing all static ranking schemes on all the metrics — in many
cases with a substantial margin. This gain is more pro-
nounced for TREC than for WEB. This can be explained
by the fact that WEB queries are less ambiguous, since the
single most prevalent intent accounts for more than 70% of
all queries on average.

6.3 Learning Two-level Ranking Functions

So far we have evaluated how far Algorithm 1 can con-
struct effective two-level rankings if the relevance ratings are
known. We now explore how far our learning algorithm can
predict two-level rankings for previously unseen queries. For
all experiments in this section, we learn and predict using
SQRT as the choice for g, since it provides a good trade-off
between diversity and depth as shown above.

We performed standard preprocessing such as tokeniza-
tion, stopword removal and Porter stemming. Since the fo-
cus of our work is on diversity and not on relevance, we
rank only those documents that are relevant to at least one
intent of a query. This simulates a candidate set that may
have been provided by a conventional retrieval method. This
setup is similar to that used by Yue and Joachims [12].

Many of our features in ¢, follow those used in [12]. These
features provide information about the importance of a word
in terms of two different aspects. A first type of feature de-
scribes the overall importance of a word. A second type of
feature captures the importance of a word in a document.
An example of this type of feature is whether a word ap-
pears with frequency at least y% in the document? Finally,
we also use features ¢ that model the relationship between
the documents in the second-level ranking and the corre-
sponding head document of that row. Examples of this type
of feature are binned features representing TFIDF similarity
of document pairs and the number of common words that
appear in both documents with a frequency at least z%.

Dynamic vs. Static: In the first set of experiments,
we compare our learning method (Dyn-SVM) for two-level
rankings with two static baselines. The first static baseline
is the learning method from [12] which optimizes diversity
(referred to as Stat-Div). It is one of the very few learn-
ing methods for learning diversified retrieval functions, and
was shown to outperform non-learning methods like Essen-

PREC@5 SQRT@5 LOG@5 SAT2@5

0.25 = = B 09 Stat-Div
——— 07] —
02 = = 055 = 085
- - = - o = Dyn-SVM
= . = .l = o I
068 T pREC@S . SQRT@S LOG@5 SAT2@5
=) = 13 —175 — I Stat-Rand
064 165
17
= 16 = 13 = =
0.6 _— = 165 = -Diy
155 125 Stat-Div
- 1S = = 16
056 12
— IS = - s = Dyn-SVM
052 i 14 1115 15 i

Figure 4: Performance of learned functions, compar-
ing static & dynamic rankings for TREC and WEB.

tial Pages [10]. We also consider a random static baseline
(referred to as Stat-Rand), which randomly orders the can-
didate documents. This is a competent baseline, since all
our candidate documents are relevant to at least one intent.
Figure 4 shows the comparison between static and dy-
namic rankings. For TREC, Dyn-SVM substantially out-
performs both static baselines across all performance met-
rics, mirroring the results we obtained in Section 6.2 where
the relevance judgments were known. This shows that our
learning method can effectively generalize the multi-intent
relevance judgments to new queries. On the less ambiguous
WEB dataset the differences between static and dynamic
rankings are smaller. While Dyn-SVM substantially out-
performs Stat-Rand, Stat-Div is quite competitive on WEB.
Learning vs. Heuristic Baselines: We also compare
against alternative methods for constructing two-level rank-
ings. We extend the static baselines Stat-Rand and Stat-Div
using the following heuristic. For each result in the static
ranking, we add a second-level ranking using the documents
with the highest TFIDF similarity from the candidate set.
This results in two dynamic baselines, which we call Dyn-
Rand and Dyn-Div. The results are shown in Figure 5.
Since we compare two-level rankings of equal size, we mea-
sure performance in terms of expected utility. On both
datasets Dyn-SVM performs substantially better than Dyn-
Rand. This implies that our method can effectively learn
which documents to place at the top of the first-level rank-
ing. Surprisingly, simply extending the diversified ranking of
Dyn-Div using the TFIDF heuristic produces dynamic rank-
ings are are competitive with Dyn-SVM. In retrospect, this
is not too surprising for two reasons. First, our experiments
with Dyn-SVM use rather simple features to describe the re-
lationship between the head document and documents in the
second-level ranking — most of which are derived from their
TFIDF similarity. Stronger features exploiting document
ontologies or browsing patterns could easily be incorporated
into the feature vector. Second, the learning method of Dyn-
Div is actually a special case of Dyn-SVM when using the
SAT1 loss (i.e. satisfied after a single relevant document)
and second-level rankings of width 0. However, we argue
that it is still highly preferable to directly optimize the de-
sired loss function and two-level ranking using Dyn-SVM,
since the reliance on heuristics may fail on other datasets.

7. CONCLUSIONS

We proposed a two-level dynamic ranking approach that
provides both diversity and depth for ambiguous queries by
exploiting user interactivity. In particular, we showed that
the approach has the following desirable properties. First,
it covers a large family of performance measures, making it

w Stat-Rand

Dyn-Rand

Dyn-Div

Dyn-SVM

Dyn-Rand

Dyn-Div

Dyn-SVM

Ml BemE" el N
Figure 5: Comparing learned dynamic rankings with
heuristic baselines for TREC and WEB.

easy to select a diminishing returns model for the application
setting at hand. Second, we presented an efficient algorithm
for constructing two-level rankings that maximizes the given
performance measure with provable approximation guaran-
tees. Finally, we provided a structural SVM algorithm for
learning two-level ranking functions, showing that it can ef-
fectively generalize to new queries.

This work was funded in part under NSF Awards IIS-
0905467, 11S-0713483, and I1S-0812091.

8. REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.
Diversifying search results. In WSDM, 2009.

[2] C. Brandt, T. Joachims, Y. Yue, and J. Bank.
Dynamic ranked retrieval. In WSDM, 2011.

[3] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents
and producing summaries. In SIGIR, 1998.

[4] H. Chen and D. R. Karger. Less is more: probabilistic
models for retrieving fewer relevant documents. In
SIGIR, 2006.

[5] M. Cramer, M. Wertheim, and D. Hardtke.
Demonstration of improved search result relevancy
using real-time implicit relevance feedback. In SIGIR,
2009.

[6] D. S. Hochbaum and A. Pathria. Analysis of the
greedy approach in problems of maximum k-coverage.
Naval Research Logistics (NRL), 45:615-627, 1998.

[7] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions. Math Programming, 14:265-294, 1978.

[8] K. Raman, P. Shivaswamy, and T. Joachims.
Structured learning of two-level dynamic rankings.
Arxiv 0298967, August 2011.

[9] S. Robertson. The probability ranking principle in ir.
Journal of Documentation, 33(4):294-304, 1977.

[10] A. Swamintahan, C. Metthew, and D. Kirovski.
Essential pages. In Technical Report,
MSR-TR-2008-15, Microsoft Research, 2008.

[11] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large-margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research, 6:1453-1484, 2005.

[12] Y. Yue and T. Joachims. Predicting diverse subsets
using structural SVMs. In ICML, 2008.

[13] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond
independent relevance: methods and evaluation
metrics for subtopic retrieval. In SIGIR, 2003.

