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Abstract

Clickthrough data is a particularly inexpensive and plentiful
resource to obtain implicit relevance feedback for improving
and personalizing search engines. However, it is well known
that the probability of a user clicking on a result is strongly
biased toward documents presented higher in the result set
irrespective of relevance. We introduce a simple method to
modify the presentation of search results that provably gives
relevance judgments that are unaffected by presentation bias
under reasonable assumptions. We validate this property of
the training data in interactive real world experiments. Fi-
nally, we show that using these unbiased relevance judgments
learning methods can be guaranteed to converge to an ideal
ranking given sufficient data.

Introduction
The problem of learning to rank using relevance judgments
has recently received significant attention within the ma-
chine learning community (for example (Cohen, Shapire, &
Singer 1999; Chu & Keerthi 2005; Yu, Yu, & Tresp 2005;
Radlinski & Joachims 2005)). Learning ranking functions is
especially appealing for information retrieval on specialized
collections or for specific communities of users where man-
ual tuning of ranking algorithms is impractical. However,
obtaining useful training data is difficult.

One option is to employ experts to provide judgments
as to the relevance of particular documents to particular
queries. For example, this method is often used in the
information retrieval community. While it provides clean
training data, it is usually prohibitively expensive and time-
consuming due to the need to employ human experts.

An alternative approach is to derive relevance judgments
from the behavior of normal users. This can yield virtu-
ally unlimited amounts of data at almost no cost, and the
data reflects the judgments of the users of the search en-
gine rather than a select group of experts who may have
a different concept of relevance. Clicks on search results
(commonly called clickthrough data) are the most easily
observed user behavior in web interfaces to retrieval sys-
tems. While some researchers have considered collect-
ing data from other behavioral cues such as view time or
scrolling behavior (Kelly & Teevan 2003; Fox et al. 2005;
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White, Ruthven, & Jose 2005), we focus on clickthrough
data due to its simplicity and easy availability.

The concern with clickthrough data is that it is noisy and
biased. It is noisy in the sense that different users may have
different concepts of relevance even given the same query
(Teevan, Dumais, & Horvitz 2005). It is biased in the sense
that the user’s choice whether or not to click on a result de-
pends on a combination of at least the document relevance
and its position in the search results (Joachims et al. 2005).
This makes the process of separating the bias from the ac-
tual document relevance difficult, both from a practical and
a theoretical perspective.

In this paper, we observe that through experiment design
it is possible to modify the presentation of search results
with the purpose of collecting cleaner training data from reg-
ular users, while having minimal effect on the quality of the
results presented. In particular, we propose the FairPairs al-
gorithm. In its simplest form, FairPairs flips adjacent pairs
of results in the ranking presented to the user according to
a randomized scheme. We show that it allows clickthrough
data to provide relevance judgments that are unaffected by
presentation bias. Given two reasonable assumptions, we
prove that preferences collected with FairPairs are not af-
fected by presentation bias. We verify the validity of the as-
sumptions empirically using a real world search engine. We
also show that FairPairs agrees with manual relevance judg-
ments in a setting where we know the relative relevance of
documents. Additionally, we prove that learning with data
collected by FairPairs will eventually converge to an ideal
ranking, if one exists, thus justifying our method as provid-
ing suitable training data. Using the FairPairs algorithm, it
is also possible to measure the confidence that a particular
pair of results is in the correct order. We believe that the
idea of minimally invasive randomization is also relevant to
other applications outside of web search, where training data
is collected from non-experts and suffers from biases and
noise. We start by reviewing related work in the next section,
then we motivate and present the FairPairs algorithm. After
showing the theoretical properties of FairPairs, we finish by
providing empirical evidence supporting our approach.

Training Data Alternatives
Training data for learning to rank can be obtained in at least
three ways. The most straightforward is through the use of



human experts. In the Text REtrieval Conference (TREC),
ranked retrieval systems are evaluated by manually assess-
ing documents in the top N results returned by any retrieval
system taking part in an evaluation experiment. These re-
sults are considered by human judges and rated either rele-
vant or not relevant (Voorhees 2004). This process provides
high quality training data, but is expensive and hence not
practical in most situations.

A less expensive method to get significant training data
even in small domains is to interpret a user clicking on web
search results as a sign of relevance. For example, Kemp
and Ramamohanarao (2002) used this approach in a univer-
sity search engine, where documents clicked on in the search
results were assumed to be relevant. They used document
transformation to allow the search system to learn. However,
Joachims et al. (2005) demonstrated that such clickthrough
data is strongly biased by the position at which results are
presented. In particular, they showed that if a search result
is moved higher in the result set, this immediately increases
the probability users will click on it, even if the result is not
relevant to the query. Our experiments confirmed that those
findings also hold outside of a laboratory setting.

A third approach that avoids this bias problem is to in-
terpret user clicks as relative feedback about pairs of results
(Joachims 2002; Radlinski & Joachims 2005). This work
proposed to interpret clicks on results as a relative state-
ment that a clicked result is likely more relevant than oth-
ers skipped over earlier. This compensates for presentation
bias by considering the order results are observed by users.
However, the effect is that preferences always oppose the
presented ordering. In particular, such relevance judgments
are all satisfied if the ranking is reversed, making the prefer-
ences difficult to use as training data.

From a theoretical standpoint, many researchers have con-
sidered the question of stability and convergence of a learned
ranking given some data collection method as the amount of
training data grows (Freund et al. 1998; Herbrich, Grae-
pel, & Obermayer 2000; Cohen, Shapire, & Singer 1999;
Crammer & Singer 2001; Chu & Keerthi 2005). Most of this
research has been for problems in ordinal regression, which
considers the problem of learning to map items to a partial
order and does not apply directly to more general ranking
problems. In particular, it does not consider how user be-
havior biases the training data.

Finally, we view our approach as experiment design (see
for example Hinkelmann & Kempthorne 1994). In tradi-
tional experiment design, the researcher asks the question of
what to measure to ensure conclusive and unbiased results.
In a web-based search engine, we view the presentation of
results to users as part of an interactive process that can also
be designed to provide unbiased data for machine learning
purposes. For this reason, we consider the data collection
phase as part of the learning process.

Presentation Bias
We now introduce the concept of presentation bias. In nor-
mal web search, users pay significantly more attention to
results ranked highly than those ranked lower. For example,
we implemented a search engine (presented in the experi-

“Normal” “Swapped”
Relative relevance d1 d2 d1 d2

rel(d1) > rel(d2) 20/36 2/36 16/28 2/28
rel(d1) < rel(d2) 7/20 4/20 12/36 9/36

Table 1: Results from a user study using the Google search
engine. In the “normal” condition, straight Google results
were presented, while the top two results were swapped in
the “swapped” condition. The counts show how often each
result was clicked on when the Google’s top result was more
or less relevant.

mental results section) for the arXiv e-print archive, a large
collection of academic articles. We observed that users click
on the fifth ranked result for only about 5% of queries, and
click on lower ranked results even less often. However, if
we take the fiftieth result and place it first or second in the
ranking, users click on it more than 5% of the time. Does
this indicate that we have a poor ranking function where the
fiftieth result tends to be more relevant than the fifth? Rather,
this demonstrates the concept of presentation bias in click-
through data, even for search engines where users tend to be
academic researchers.

Similarly, Joachims et al. (2005) performed a controlled
user study where volunteer subjects were asked to search
for specific information using Google. The results viewed
by the subjects were afterward assessed by expert judges for
relevance. Table 1 shows a small selection of the results.
The subjects saw one of two experimental conditions. In
the “normal” condition, the results were presented as ranked
by Google. When the result presented at the top (d1) was
judged by a human expert to be more relevant than the re-
sult presented next (d2), users clicked on the top result 20
out of 36 times and on the second result twice, as could be
expected. However, in the “swapped” condition the top two
results from Google were reversed before being presented to
users. Even when the second-ranked result was more rele-
vant, users still clicked predominantly on the top ranked re-
sult. This again shows that presentation strongly influences
user behavior.

Definition 1. Presentation Bias is bias present in user’s de-
cisions of whether or not to click on a search engine result
based on the position of the result rather than on its rele-
vance to the user’s information need.

Presentation bias may occur for a number of reasons, such
as users trusting the search engine to always present the
most relevant result first. The question we address is how
to tease out information about the relevance of the search
results from clickthrough logs despite such effects.

Bias-Free Feedback
In this section, we review the notion of relative relevance
preferences and then present the FairPairs algorithm. Train-
ing data for learning to rank can be represented either as
absolute or as relative relevance statements. The former in-
volve data of the form relevance(doci | query) = ri where
ri is an absolute measure of relevance. This approach re-
quires an absolute relevance scale in the training data, for



1. Let R = (d1, d2, . . . , dn) be the results for some query.
2. Randomly choose k ∈ {0, 1} with uniform probability.
3. If k = 0

• For i ∈ {1, 3, 5, . . .}
– Swap di and di+1 in R with 50% probability.

4. Otherwise (k = 1)
• For i ∈ {2, 4, 6, . . .}

– Swap di and di+1 in R with 50% probability.
5. Present R to the user, recording clicks on results.
6. Every time the lower result in a pair that was considered

for flipping is clicked, record this as a preference for that
result over the one above it.

Table 2: The FairPairs algorithm.

example specifying ri ∈ [0, 1]. In this situation, it is particu-
larly difficult to obtain well calibrated partial relevance judg-
ments: For example, in ranking movies from 1 to 5 stars,
different judges interpret a rating of 3 starts differently. In-
stead we consider relative statements, with training data in
the form of preferences such as relevance(doci | query) >
relevance(docj | query). The aim is to obtain judgments
where the probability some doci is judged more relevant
than some docj is independent of the ranks at which they
are presented.

We now present FairPairs by example, then provide the
formal algorithm. The key idea is to randomize part
of the presentation to eliminate the effect of presenta-
tion bias while making only minimal changes to the rank-
ing. Consider some query that returns the documents
(d1, d2, d3, d4, d5, . . .). We perturb the result set so that we
can elicit relevance judgments unaffected by presentation
bias. We first randomly pick k ∈ {0, 1}. If k = 0, we con-
sider the result set as pairs ((d1, d2), (d3, d4), (d5, d6), . . .).
Each pair of results is now independently flipped with 50%
probability. For example, the final ranking might end up
as (d1, d2, d4, d3, d5, . . .) with only d3 and d4 flipped. Al-
ternatively, we could end up flipping all the pairs: Each
time FairPairs is executed, a different reordering may oc-
cur. Then we take the result set generated in this way and
present it to the user. In expectation half the results will be
presented at their original rank, and all results will be pre-
sented within one rank of their original position. Similarly,
if k = 1, we do the same thing except consider the result
set as pairs (d1, (d2, d3), (d4, d5), . . .). The FairPairs al-
gorithm is formally presented in Table 2.

To interpret the clickthrough results of FairPairs, consider
the results for some query q that returns (d1, d2, . . . , dn).
Let dj C di denote that dj is presented just above di (i.e.,
the user sees dj first if they read from the top) and that
k is such that di and dj are in the same pair (e.g., when
k = 0, d3 and d4 are in the same pair, but d2 and d3 are
not). Let nij count of how often this occurs. Also, let
cij denote the number of times a user clicks on di when
dj C di (i.e., di is the bottom result in a pair). By perturbing
the results with FairPairs, we have designed the experiment
such that we can interpret cij as the number of votes for

relevance(di) > relevance(dj), and cji as the number of
votes for relevance(dj) > relevance(di). The votes are
counted only if the results are presented in equivalent ways,
providing an unbiased set of preferences because both sets
of votes are affected by presentation bias in the same way.
We formalize this property and prove its correctness in the
next section. Note that if a user clicks multiple times on
some set of results, they are making multiple votes.

Although in this paper we focus on preferences generated
from user clicks on the bottom result of a pair, in fact most of
the properties discussed also appear to hold for preferences
generated from clicks on the top result of a pair. The reason
we chose to focus on clicks on bottom results is that Granka
(2004; 2004) showed in eye tracking studies that users typ-
ically read search engine results top to bottom and are less
likely to look at the result immediately below one they click
on than they are to look at one immediately above it.

Theoretical Analysis
In this section we will show that given any presentation bias
that satisfies two simple assumptions, FairPairs is guaran-
teed to give preference data that is unaffected by presenta-
tion bias.

We start by presenting our assumptions. Let ri(q) be the
relevance of document di to a query q (we will usually omit
q for brevity). The probability of a particular document be-
ing clicked by a user depends on its position in the search
results, its relevance to the query, as well as potentially on
every other document presented to the user. Assume the
user selects dbot from the list (d↑, dtop, dbot, d↓), where
d↑ are the documents preceding (ranked above) dtop and d↓
are those after (ranked below) dbot. In particular, dtop is the
document just before dbot. Let

P (dbot|d↑, (dtop, dbot),d↓)

be the probability that dbot is clicked by the user given the
list of choices.
Assumption 1 (Document Identity). The probability of a
user clicking depends only on the relevance of the documents
presented, not their particular identity. Formally, we can
write this as

P (dbot|d↑, (dtop, dbot),d↓) = P (dbot|r↑, (rtop, rbot), r↓)

This assumption essentially states that the user is looking
for any sufficiently relevant document. It also requires that
users do not choose to skip over documents they recognize
and know to be relevant. We come back to this later.

We now define two scores. First, the item relevance score
measures how much more likely users are to click on more
relevant results.
Definition 2 (Item Relevance Score). If we take a ranking
of documents and replace some document d1 with a less rel-
evant one d2 while leaving all others unchanged, the differ-
ence between the probability that d1 being selected and that
of d2 being selected is the item relevance score. Formally, if
d1 and d2 have relevance r1 and r2 with r1 > r2, then

δrel
12 =P (d1|r↑, (rtop, r1), r↓)−P (d2|r↑, (rtop, r2), r↓)



Analogously, consider the effect of replacing the docu-
ment before the one that the user selects.
Definition 3 (Ignored Relevance Score). If we take a rank-
ing of documents and replace some document with a more
relevant one while leaving all others unchanged, the differ-
ence between the probability of the user selecting the next
document (after the one replaced) and the same probability
without the change is the ignored relevance score. Formally,
if d1 and d2 have relevance r1 and r2 where r1 > r2, then

δign
12 = P (dbot|r↑, (r1, rbot), r↓)−P (dbot|r↑, (r2, rbot), r↓)

This score measures how replacing the previous docu-
ment changes the probability of a user clicking on a result.
If δign

12 is negative, it means that replacing the previous doc-
ument with a more relevant one reduces the probability of
users clicking on the document under consideration. While
we may expect this to be the case, it is possible that δign

12 is
positive: if a user sees a very irrelevant document, they may
be more likely to give up and not even evaluate the next re-
sult presented. On the other hand, if a user sees a somewhat
relevant document, they may be more inclined to consider
further results. We will measure this later.

Our second assumption relates to the relative magnitude
of these two scores. Note that it would be trivially satisfied
if the first is positive and the second negative.
Assumption 2 (Relevance Score Assumption). The item rel-
evance score is larger than the ignored relevance score.

δrel
ij > δign

ij

We will evaluate the validity of our assumptions in the
experimental results section. Also, note that they are satis-
fied by many common item selection models (e.g., users se-
lecting results where they judge their probability of success
above some threshold (Miller & Remington 2004)).

We will now prove that the data collected in this way is
unaffected by presentation bias. Theorem 1 tells us that if
the documents before and after a pair being considered vary
independently of how the pair is ordered, observing that the
expectation of the users’ probability of selecting di when
djCdi is higher than the expectation of the users’ probability
of selecting dj when di Cdj is both necessary and sufficient
to deduce that ri > rj .
Theorem 1. Let di and dj be two documents with rele-
vance ri and rj . If assumptions 1 and 2 are satisfied and
P (r↑, r↓|di C dj) = P (r↑, r↓|dj C di) then ri > rj ⇔
Pij > Pji, where Pij = Er↑,r↓ [P (di|r↑, (rj , ri), r↓)].

Proof. We start by rewriting the expectations of the proba-
bilities and simplifying:

Pij =
∑
r↑,r↓

P (di|r↑, (rj , ri), r↓) P (r↑, r↓|di C dj)

Pji =
∑
r↑,r↓

P (dj |r↑, (ri, rj), r↓) P (r↑, r↓|di C dj)

Pij − Pji =
∑
r↑,r↓

[P (di|rij)− P (dj |rji)]P (r↑, r↓|di C dj)

where rij = (r↑, (rj , ri), r↓). Say Pij −Pji is positive. The
sum can be positive if and only if the first term is positive
for at least one r↑and r↓.

Applying Assumption 2, we see ri > rj is equivalent to
P (di|r↑, (rj , ri), r↓) > P (dj |r↑, (ri, rj), r↓)

This equivalence means that if the first term in the summa-
tion is positive, then ri > rj . Hence P (di|r↑, (rj , ri), r↓) >
P (dj |r↑, (ri, rj), r↓) for all r↑and r↓so the first term must
always be positive. The same applies if the difference is
negative. Hence the difference in expectations on the num-
ber of clicks always has the same sign as the difference in
document relevance.

The theorem tells us that we can collect relevance judg-
ments about many pairs in the result set at the same time by
independently randomly reordering pairs, as is the case with
FairPairs.

Practical Considerations
We now discuss how the data collected using FairPairs is
affected by variations between search engines and in user
behavior, which gives rise to practical issues that should be
kept in mind. The first effect to note is that prior to deciding
whether to click, users only observe the abstracts presented
by the search engine. A less relevant document presented
with a misleadingly appealing abstract may generate more
clicks that one that is more relevant but has a less appeal-
ing abstract. While addressed by Assumption 2, in prac-
tice this requires the search engine to generate snippets in
an unbiased way, where the quality of a snippet does not
vary differently for different documents with the types of
queries entered by users. An alternative would be to con-
sider user dwell time on results in addition to clickthrough.
Different search engines may also have users who are more
or less prepared to click on results ranked highly irrespective
of the abstract. However this is not a concern as both docu-
ments within a pair are always ranked highly equally often
and hence benefit from this trust equally. Other presentation
effects, such as a bias against users clicking on documents
that are not visible unless the user scrolls also do not intro-
duce bias into the training data, as shown in the results.

Another issue to consider is that of user familiarity with
results: documents that are known to be relevant by the user
but not clicked on may collect fewer votes than would be
expected. However, it has been established that users often
revisit web pages, suggesting that this is not a concern. Nev-
ertheless, on specific collections for specific user groups this
may be a limitation. Similarly, if the relevance of documents
evolves over time, data collected may become out of date, al-
though this is true for any data collection method. Finally,
one well known user behavior that FairPairs does not exploit
is that of query reformulation (Radlinski & Joachims 2005).
FairPairs does not allow preferences to be generated in a fair
way between documents returned by sequential queries, al-
though extending it in this way is an interesting challenge.

Learning Convergence
In this section, we consider the convergence properties of a
learning algorithm that minimizes the error rate trained on



data collected with FairPairs. For simplicity, assume that no
two documents have the same relevance to a query.
Theorem 2. Let nij be the number of times the user saw
dj C di and cij be the number of times a user clicked on di

in this situation. Let ε = 1
2 mini,j |Pij − Pji|.

Assume we have collected enough data using FairPairs
such that ∀di, dj , |1 − nji/nij | < ε and |pij − Pij | <
1
2ε, where pij = cij/nij . Moreover, assume there exists a
ranking function f∗ that ranks the documents perfectly in
terms of decreasing relevance. Then, a learning algorithm
that minimizes error rate will return f∗.

Proof. Assume for the purpose of a contradiction that the
learning algorithm learns a ranking function f 6= f∗ that has
a lower error rate on the training data. Since the rankings
differ, there must be at least one pair of documents di, dj

where the rankings disagree. Assign di to be such that ri >
rj , which is equivalent to di being returned higher than dj

by the ranking function f∗.
The number of violated constraints involving di and dj

for the ranking function f∗ is

err∗ij = nijpij1[rank∗(di) > rank∗(dj)]

+ njipji1[rank∗(dj) > rank∗(di)]
= njipji,

where 1 is the indicator function and rank∗(di) is the rank
at which di is returned by f∗. The number of violated con-
straints involving di and dj for the ranking function f is:

errf
ij = nijpij1[rankf (di) > rankf (dj)]

+ njipji1[rankf (dj) > rankf (di)]
= nijpij ,

since we know that rankf disagrees with rank∗ on the or-
der of di and dj . By assumption, we know that

(1 + ε)nij > nji > (1− ε)nij

Next, by Theorem 1, Pij > Pji since ri > rj . The def-
inition of ε implies Pij − Pji ≥ 2ε. Since we know that
|pij − Pij | < 1

2ε and similarly for pji, we get pij − pji > ε.
Pulling this all together,

errf
ij − err∗ij = nijpij − njipji

> nij [(pij − pji)− εpji]
> nij [ε− εpji] ≥ 0

Since the difference in the number of violated constraints
is zero for pairs where f and f∗ agree, and positive for all
others, the error rate of the learned function f must be higher
than that of f∗, meaning we have a contradiction.

Note that the data collected by Joachims (2002) does not
have this property of eventual convergence because it tends
to learn to reverse any presented ranking.

To ensure eventual convergence, we now need to ensure
that sufficient data is collected about every pair of docu-
ments so that ∀di, dj , |1−nji/nij | < ε and |pij−Pij | < 1

2ε.
The first condition is eventually satisfied since each flip is
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Figure 1: Click probability measurement of the Item Rele-
vance Score.

performed with 50% probability. The second becomes sat-
isfied after a pair is observed sufficiently often, because the
probability of observing a click approaches its expectation
by the law of large numbers. One strategy to obtain suf-
ficient data would be for the search engine to occasionally
insert random documents into the result set, and to assume
users have a non-zero probability of viewing results at any
rank. While this strategy would work (proof omitted due to
space constraints), there are probably much more efficient
exploration strategies, providing an interesting area for fu-
ture research. Additionally, although the theorem is stated in
terms of observing the relative relevance of all pairs of doc-
uments, if we assume relevance is transitive then the number
of observations necessary may be substantially reduced.

Experimental Results
In this section, we evaluate the validity of the assumptions
presented and measure the click probabilities of data col-
lected with FairPairs. For these experiments we used Os-
mot, a full text search engine, on the arXiv e-print collection
consisting of about 350,000 academic articles. Osmot was
modified to perform FairPairs on the search results before
presenting them to real users who were unaware of the ex-
periment. We measured the probability of users clicking on
both the top and bottom results of each pair. We recorded
user clicks for about three months, and counted how often
each pair of ranks was presented and how often each re-
sult was clicked on. During our experiments, we observed
44,399 queries coming from 13,304 distinct IP addresses.
We recorded 48,976 clicks on results, often with many clicks
for the same query.

Because we do not have manual relevance judgments,
we hypothesize that on average the fiftieth ranked result re-
turned by the search system is less relevant to the query than
the top few results. To check if we could confirm this, af-
ter FairPairs was performed on the results of a query, Osmot
randomly swapped result fifty and one of the top eight re-
sults whenever there were more than fifty results for a query.
This modified result set was then displayed to users.

Item Relevance Score
The left side of Figure 1 shows how often users clicked on
the bottom result of a pair. Four types of pairs were ob-
served. Pairs of the form 1-2, 2-3 involve two adjacent re-
sults from the original ranking function in their original or-
der (1-2 indicates it was the original first and second results,
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Figure 2: Click probability measurements of the Ignored
Relevance Score.

in the original order). Pairs of the form 2-1, 3-2 involve
two originally adjacent results in reverse order. Due to the
fiftieth result being randomly inserted, we also have pairs
of the form 1-# (indicating the first result followed by the
50th result) and #-1 (indicating the same pair reversed). We
summed up the counts for all pairs in these four groups, ei-
ther for the top two pairs presented (e.g., for 1-2 and 2-3)
or for the top five pairs (e.g., for 1-2 through 5-6) counting
over all queries where a user clicked on at least one result.
In the figure, we see that if the lower result in a pair is re-
sult 50 (postulated to be less relevant than those in the top
six), the probability of the user clicking on that lower result
is smaller than if the lower result was from the original top
six. The error bars indicate the 95% binomial confidence
intervals, showing the differences to be statistically signifi-
cant. This shows that the Item Relevance Score is positive
and gives an idea of its average magnitude at different ranks
for this dataset. In fact, the right side of Figure 1 shows that
keeping the lower result fixed, a similar score could be de-
fined for the change in click probability on the top result as
it is more or less relevant.

Ignored Relevance Score
The ignored relevance score measures the change in click
probability as the result before the one clicked on varies. We
see in the left side of Figure 2 that if the result before the one
selected is more relevant, the next document is slightly more
likely to be clicked on. We attribute this to result 50 tending
to be much less relevant, making users more likely to stop
considering results once they encounter it. This means that
in fact δign

ij tends to be positive. Nevertheless, the magni-
tude of the decrease in click probability is much smaller than
that seen in Figure 1, thus the Relevance Score Assump-
tion holds. Additionally, we observe that this score quickly
decreases for lower results unlike the item relevance score.
Also, this is consistent with the right hand side of Figure 1
because there we saw the the probability of the user clicking
on the top result whereas here we are evaluating the prob-
ability of the user clicking on the bottom result. Together,
these figures show that placing a less relevant document as
the top result in a pair makes both results in the pair less
likely to be clicked on.

FairPairs Preference Test
Next, to confirm the correctness of data generated with Fair-
Pairs directly, consider the difference between the bottom
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Figure 3: Evaluation of the relative relevance of search re-
sults returned by the arXiv search engine.
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Figure 4: Probability of user clicking only on the bottom
result of a pair as a function of the pair. The two curves
are for when the document immediately above the document
clicked was judged strictly more relevant or strictly less rel-
evant by expert human judges. * indicates the difference is
statistically significant with 95% confidence using a Fisher
Exact test.

click probabilities when two results are swapped. The left
side of Figure 3 shows that reversing a top-five result and
the 50th result within a pair behaves as the theory tells us it
should. We see that when the fiftieth result is at the bottom
of a pair, it is significantly less likely to be clicked on than
when an original top-five result is at the bottom of the pair.
On the right side of the figure, we see the click probability
on the bottom result for pairs of the form 1-2 and for pairs
of the form 2-1. In fact, summing the counts for the top
2 pairs (1-2 and 2-3), the difference in click probability is
statistically significant. This shows that on average the top
three results returned by the search engine are ranked in the
correct order.

We also evaluated our approach in a situation where we
have the true relative relevance of documents as assessed
by human judges. Using the results of the study discussed
earlier (Joachims et al. 2005), we computed the probabil-
ity of a participant in the user study clicking on the bottom
result of a pair of results when the top result was judged
strictly more relevant or strictly less relevant by expert hu-
man judges. Figure 4 shows that although FairPairs was not
performed on the results in the study, the data supports the
FairPairs premise that the probability of a user clicking on a
document di at rank i is higher if rel(di−1) < rel(di) than
if rel(di−1) > rel(di).

Figure 5 shows the equivalent curve for the arXiv search
engine, in effect providing a more detailed view of Figure
3. We again considered all queries that generated at least
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one click and exploited symmetries in our experiment de-
sign to obtain the maximal amount of data for this figure. It
shows that if the fiftieth ranked document is displayed in a
pair with a top-eight document, the FairPairs data collected
is in agreement with our hypothesis that the fiftieth ranked
document is less relevant than any from the top eight. In
particular, the first five differences in click probabilities are
statistically significant. For lower ranks the curves appear to
proceed in a similar manner. This includes result pairs be-
low the sixth, which are usually are not visible without users
scrolling.

Conclusions
In this paper we introduced FairPairs, a method to modify
the presentation of search engine results with the purpose
of collecting more reliable relevance feedback from normal
user behavior. We showed that under reasonable assump-
tions the data gathered is provably unaffected by presenta-
tion bias. We also showed that given sufficient clickthrough
data, training data generated with FairPairs will allow a
learning algorithm to converge to the ideal ranking. We per-
formed real world experiments that evaluated the assump-
tions and conclusions in practice. Given bias-free training
data generated in this way, it is possible to use existing meth-
ods for learning to rank without additional modifications to
compensate for presentation bias being necessary.

Acknowledgments
We thank Thomas Finley, Eric Breck, Alexandru Niculescu-
Mizil and the anonymous reviewers for helpful comments,
as well as Simeon Warner and Paul Ginsparg for support
with experiments performed using the arXiv e-print archive.
This work was funded under NSF CAREER Award 0237381
and a research gift from Google, Inc.

References
Chu, W., and Keerthi, S. S. 2005. New approaches to
support vector ordinal regression. In Proceedings of Inter-
national Conference on Machine Learning (ICML).
Cohen, W. W.; Shapire, R. E.; and Singer, Y. 1999. Learn-
ing to order things. Journal of Artificial Intelligence Re-
search 10:243–270.

Crammer, K., and Singer, Y. 2001. Pranking with ranking.
In Proceedings of the conference on Neural Information
Processing Systems (NIPS).
Fox, S.; Karnawat, K.; Mydland, M.; Dumais, S.; and
White, T. 2005. Evaluating implicit measures to improve
web search. ACM Transations on Information Systems
23(2):147–168.
Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 1998.
An efficient boosting algorithm for combining preferences.
In Proceedings of International Conference on Machine
Learning (ICML).
Granka, L.; Joachims, T.; and Gay, G. 2004. Eye-tracking
analysis of user behavior in www search. In Poster Ab-
stract, Proceedings of the Conference on Research and De-
velopment in Information Retrieval (SIGIR).
Granka, L. 2004. Eye tracking analysis of user behaviors
in online search. Master’s thesis, Cornell University.
Herbrich, R.; Graepel, T.; and Obermayer, K. 2000. Large
margin rank boundaries for ordinal regression. In et al.,
A. S., ed., Advances in Large Margin Classifiers, 115–132.
Hinkelmann, K., and Kempthorne, O. 1994. Design and
Analysis of Experiments: Volume 1: Introduction to Exper-
imental Design. John Wiley & Sons.
Joachims, T.; Granka, L.; Pang, B.; Hembrooke, H.; and
Gay, G. 2005. Accurately interpreting clickthrough data as
implicit feedback. In Annual ACM Conference on Research
and Development in Information Retrieval (SIGIR).
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD).
Kelly, D., and Teevan, J. 2003. Implicit feedback for infer-
ring user preference: A bibliography. SIGIR Forum 32(2).
Kemp, C., and Ramamohanarao, K. 2002. Long-term
learning for web search engines. In Proceedings of the 6th
European Conference on Principles and Pratice of Knowl-
edge Discovery in Databases (PKDD), 263–274.
Miller, C. S., and Remington, R. W. 2004. Modeling infor-
mation navigation: Implications for information architec-
ture. Human-Computer Interaction 19:225–271.
Radlinski, F., and Joachims, T. 2005. Query chains: Learn-
ing to rank from implicit feedback. In Proceedings of the
ACM Conference on Knowledge Discovery and Data Min-
ing (KDD).
Teevan, J.; Dumais, S. T.; and Horvitz, E. 2005. Beyond
the commons: Inversitating the value of personalizing web
search. In Workshop on New Technologies for Personalized
Information Access (PIA 2005).
Voorhees, E. M. 2004. Overview of TREC 2004. In Pro-
ceedings of the 13th Text REtrieval Conference.
White, R. W.; Ruthven, I.; and Jose, J. M. 2005. A study of
factors affecting the utility of implicit relevance feedback.
In Annual ACM Conference on Research and Development
in Information Retrieval (SIGIR).
Yu, S.; Yu, K.; and Tresp, V. 2005. Collaborative ordinal
regression. In Proceedings of the NIPS 2005 Workshop on
Learning to Rank.


