LEARNING TO EMBED SONGS AND TAGS FOR PLAYLIST PREDICTION

Joshua L. Moore, Shuo Chen, Thorsten Joachims
Cornell University, Dept. of Computer Science
{71lmo|shuochen|tj}@cs.cornell.edu

ABSTRACT

Automatically generated playlists have become an impor-
tant medium for accessing and exploring large collections
of music. In this paper, we present a probabilistic model
for generating coherent playlists by embedding songs and
social tags in a unified metric space. We show how the
embedding can be learned from example playlists, pro-
viding the metric space with a probabilistic meaning for
song/song, song/tag, and tag/tag distances. This enables at
least three types of inference. First, our models can gener-
ate new playlists, outperforming conventional n-gram mod-
els in terms of predictive likelihood by orders of magni-
tude. Second, the learned tag embeddings provide a gener-
alizing representation for embedding new songs, allowing
it to create playlists even for songs it has never observed in
training. Third, we show that the embedding space pro-
vides an effective metric for matching songs to natural-
language queries, even if tags for a large fraction of the
songs are missing.

1. INTRODUCTION

Music consumers can store thousands of songs on their
computer or smart phone. In addition, cloud-based ser-
vices like Rhapsody or Spotify give instant and on-demand
access to millions of songs. While these technologies pro-
vide powerful new ways to access music, they can also
overwhelm users by giving them too much choice [15].

This has created substantial interest in automatic playlist
algorithms that can help consumers explore large collec-
tions of music. Companies like Apple and Pandora have
developed successful commercial playlist algorithms, but
relatively little is known about how these algorithms work
and how well they perform in rigorous evaluations. Com-
parably little scholarly work has been done on automated
methods for playlist generation (e.g., [1,4,10,12,14]), and
the results to date indicate that it is far from trivial to oper-
ationally define what makes a playlist coherent.

Most approaches to automatic playlist creation rely on
computing some notion of music similarity between pairs
of songs. Numerous similarity functions have been pro-
posed and are often based on the analysis of audio con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2012 International Society for Music Information Retrieval.

Douglas Turnbull
Ithaca College, Dept. of Computer Science
dturnbull@ithaca.edu

tent [9, 13], social tag information [8], web document min-
ing [6], preference-based ratings data [11], or some com-
bination of these data sources. Given a music similarity
algorithm, a playlist is created by finding the most similar
songs to a given seed song or set of seed songs.

In this paper, we explore the idea of learning a playlist
model that does not require an external similarity mea-
sure and that is trained directly on the data of interest,
namely historical playlists. In particular, we extend the
Logistic Markov Embedding (LME) [3] approach to prob-
abilistic sequence modeling to incorporate social tags, uni-
fying song and tag embeddings in a single Euclidean space.
This provides a probabilistically well-founded and con-
structive way to compute meaningful distances between
pairs of songs, pairs of tags, and songs and tags. We show
that this joint embedding is useful not only for probabilis-
tically sound playlist generation, but also for a variety of
other music information retrieval tasks such as corpus vi-
sualization, automatic tagging, and keyword-based music
retrieval.

An efficient C implementation, a demo, and data are
available at http://1me. joachims.org.

2. RELATED WORK

Automatically generated playlists are a key component in
several commercial systems. For example, Pandora relies
on content-based music analysis by human experts [16]
while Apple iTunes Genius relies on preference ratings and
collaborative filtering [2]. What is not known is the mech-
anism by which the playlist algorithms are used to order
the set of relevant songs, nor is it known how well these
playlist algorithms perform in rigorous evaluations.

In the scholarly literature, two recent papers address the
topic of playlist prediction. First, Maillet et al. [10] formu-
late the playlist ordering problem as a supervised binary
classification problem that is trained discriminatively. Pos-
itive examples are pairs of songs that appeared in this order
in the training playlists, and negative examples are pairs of
songs selected at random which do not appear together in
order in historical data. Second, McFee and Lanckriet [12]
take a generative approach by modeling historical playlists
as a Markov chain. That is, the probability of the next
song in a playlist is determined only by acoustic and/or
social-tag similarly to the current song. Our approach is
substantially different from both [10] and [12], since we
do not require any acoustic or semantic information about
the songs.

While relatively little work has been done on explic-
itly modeling playlists, considerably more research has fo-
cused on embedding songs (or artists) into a similarity-
based music space (e.g., [4,9, 14, 18].) For example, Platt
et al. use semantic tags to learn a Gaussian process kernel
function between pairs of songs [14]. More recently, We-
ston et al. learn an embedding over a joint semantic space
of audio features, tags and artists by optimizing perfor-
mance metrics for various music retrieval tasks [18]. Our
approach, however, differs substantially from these exist-
ing methods, since it explicitly models the sequential na-
ture of playlists in the embedding. Recently and indepen-
dently, [1] also proposed a sequential embedding model.
However, their model does not include tags.

Modeling playlists as a Markov chain connects to a large
body of work on sequence modeling in natural language
processing (NLP) and speech recognition. Smoothed n-
gram models (see e.g. [5]) are the most commonly used
method in language modeling, and we will compare against
such models in our experiments.

3. PROBABILISTIC EMBEDDING OF PLAYLISTS

Our goal is to estimate a generative model of coherent
playlists, which will enable us to efficiently sample new

playlists. More formally, given a collection S = {s1, ..., 55| }

of songs s;, we would like to estimate the distribution Pr(p)
of coherent playlists p = (p!!, ..., pl¥»]). Each element pl*
of a playlist refers to one song from S.

A natural approach is to model playlists as a Markov
chain, where the probability of a playlist p = (pl*J, ..., p[¥»])
is decomposed into the product of transition probabilities

Pr(pld|pli—11) between adjacent songs pl*~! and pl’.

kp
Pr(p) = [[Pr(®|p" 1) 6
=1

For ease of notation, we assume that p[O] is a dedicated start
symbol. Such bi-gram (or, more generally, n-gram) models
have been widely used in language modeling for speech
recognition and machine translation with great success [5].
In these applications, the O(|S|™) transition probabilities

Pr(pld|pli=1) are estimated from a large corpus of text
using sophisticated smoothing methods.

While such n-gram approaches can be applied to playlist
prediction in principle, there are fundamental differences
between playlists and language. First, playlists are less
constrained than language, so that transition probabilities
between songs are closer to uniform. This means that we
need a substantially larger training corpus to observe all of
the (relatively) high-probability transitions even once. Sec-
ond, and in contrast to this, we have orders of magnitude
less playlist data to train from than we have written text.

To overcome these problems, we propose a Markov-
chain sequence model that produces a generalizing repre-
sentation of songs, song sequences, and social tags. Un-
like n-gram models that treat words as atomic units with-
out metric relationships between each other, our approach
seeks to model coherent playlists as paths through a latent

space. In particular, songs are embedded as points in this
space so that Euclidean distance between songs reflects the
transition probabilities. Similarly, each social tag is repre-
sented as a point in this space, summarizing the average
location of songs with that tag. The key learning prob-
lem is to determine the location of each song and tag using
existing playlists as training data. Once songs and tags
are embedded, our model can assign meaningful transition
probabilities even to those transitions that were not seen in
the training data, and it can also reason about tagged songs
that were never seen before.

In the following we start by reviewing the basic LME
model of Pr(p), and then extend this model to incorporate
social tags.

3.1 Embedding Model for Songs

The basic LME model [3] represents each song s as a sin-
gle vector X (s) in d-dimensional Euclidean space M. The
key assumption of our model is that the transition prob-
abilities Pr(pl!|pli=1) are related to the Euclidean dis-
tance || X (pl) — X (pl"~1)|| between pli~1 and pll in
M through the following logistic model:

o IIX @) =X ()3

SIS e lIX () =X (13

Pr(pllpli—) =)

This is illustrated in the figure to the right, showing that
transitioning from s to a nearby point s’ is more likely
than transitioning to a point s” that
is further away. We will typically
abbreviate the partition function @S
in the denominator as Z(pl'~—1]),
and the distance || X (s) — X (s)]]2
between two songs in embedding
space as A(s, s’) for brevity. Us-
ing a Markov model with this tran-
sition distribution, we can now define the probability of an
entire playlist of a given length k as

()
S 05"

kp efA(p 1 pli= 1])

g @

kl’
Pr(p) = [Pr(p"[p"~)
i=1 i=1
The LME seeks to discover an embedding of the songs into
this latent space which causes “good” playlists to have high
probability of being generated by this process. This is in-
spired by collaborative filtering methods such as [7], which
similarly embed users and items into a latent space to pre-
dict users’ ratings of items. However, our approach dif-
fers from these methods in that we wish to predict paths
through the space, as opposed to independent item ratings.
In order to learn the embedding of songs, we use a sam-
ple D = (p1, ..., pn) of existing playlists as training data
and take a maximum a posteriori (MAP) approach to learn-
ing. Denoting with X the matrix of embedding vectors for
all songs in the collection S, this leads to the following
training problem

kp —Ap [i] 1_1] |S|

X = argmax H He He”\”X(S Hz 4)

XERISIXAp D =1

where we also added a zero-mean Normal prior as regu-
larizer to control overfitting (see term after the dot). The
parameter \ controls how heavily the embedding is regu-
larized. While the optimization problem is not concave, we
have already shown in [3] how to efficiently and robustly
find good optima using a stochastic gradient approach.

3.2 Embedding Model for Songs and Tags

The previous model is very general in that it does not re-
quire any features that describe songs. However, this is
also a shortcoming, since it may ignore available informa-
tion. We therefore now extend the LME to include tags as
prior information. The new model will provide reasonable
embeddings even for songs it was not trained on, and it will
define a unified metric space for music retrieval based on
query tags.

The key idea behind the new model is that the tags T'(s)
of song s inform the prior distribution of its embedding
location X (s). In particular, each tag t is associated with
a Normal distribution N (M (t), 55 14) with mean M (2).
Here, I, is the d by d identity matrix and we will see soon
that A\ again behaves like a regularization parameter. For a
song with multiple tags, we model the prior distribution of
its embedding as the average of the Normal distribution of
its tags T'(s), while keeping the variance constant.

‘ Z M(t)

teT()

Pr(X(s)|T(s)) =

Note that this definition of Pr(X (s)|T'(s)) nicely gen-
eralizes the regularizer in (4), which corresponds to an
“uninformed” Normal prior Pr(X (s)) = N(0, 55 Ia) cen-
tered at the origin of the embedding space. The tag-based
prior distribution is illus-
trated in the figure to the
right. In this example,
the song “Billie Jean” has
the three tags “pop mu- »
sic”, “male vocals” and
“1980s”. Each tag has a
mean M (t) as depicted, and
Pr(X(s)|T'(s)) is centered
at the average of the tag means, providing the prior for the
embedding of “Billie Jean”. Without any training data, the
most likely location is the center of the prior, but with more
observed training data the embedding may move further
away as necessary.

Let M be the matrix of all tag means, we obtain the
following maximum a posteriori estimate for the tag-based
LME analogous to the basic LME model:

.Tag 1: Pop Music
Tag 2: 1980’s
»

@ Actual position
of “Billie Jean”
Tag 3: Malé vocals

(X, M) = argmaxPr(D|X) -Pr(X|M) (6)

plil plimhy2 18] ,E%sf)‘““

He N[BT

Note that we now optimize jointly over the song locations
X (s) and tag locations M (t). In this way, the tag-based

= argmaXH H

XM e Dim1

yes_small yes_big
Appearance Threshold 20 5
Num of Songs 3,168 9,775
Num of Train Trans 134,431 172,510
Num of Test Trans 1,191,279 | 1,602,079

Table 1: Statistics of the playlists datasets.

LME model yields a meaningful probabilistic interpreta-
tion of distances not only among songs, but also among
songs and tags. The following experiments exploit this for
locating new songs and for tag-based music retrieval.

4. EXPERIMENTS

The playlists and tag data we used for our experiments are
respectively crawled from Yes.com and Last.fm.

Yes.com is a website that provides radio playlists from
hundreds of radio stations in the United States. By using
the web based API !, one can retrieve the playlist record of
a specified station for the last 7 days. We collected as many
playlists as possible by specifying all possible genres and
getting playlists from all possible stations. The collection
lasted from December 2010 to May 2011. This lead to
a dataset of 75,262 songs and 2,840,553 transitions. To
get datasets of various sizes, we pruned the raw data so
that only the songs with a number of appearances above
a certain threshold are kept. We then divide the pruned
set into a training set and a testing set, making sure that
each song has appeared at least once in the training set.
We report results for two datasets, namely yes_small and
yes_big, whose basic statistics are shown in Table 1.

Last.fm provides tag information for songs, artists and
albums that is contributed by its millions of users. For each
of the songs in our playlists dataset, we query the Last.fm
API? for the name of the artist and the song, retrieving the
top tags. We then prune the tag set by only keeping the top
250 tags with the most appearances across songs. Note that
Last.fm did not provide any tags for about 20% of songs.

Unless noted otherwise, experiments use the follow-
ing setup. Any model (either the LME or the base-
line model) is first trained on the training set and then
tested on the test set. We evaluate test performance us-
ing average log-likelihood as our metric. It is defined as
log(Pr(Diest))/Niest, Where Ny is the number of transi-
tions in test set.

4.1 What does the embedding space look like?

Before starting the quantitative evaluation of our method,
we first want to give a qualitative impression of the embed-
dings it produces. Figure 1 shows the two-dimensional em-
bedding of songs and tags according to (6) for the yes_small
dataset. The top 50 genre tags are labeled, and the lighter
points represent songs.

Overall, the embedding matches our intuition of what a
semantic music space should look like. The most salient

'http://api.yes.com
Zhttp://www.last.fm/api

hard rock
)

© metal
ag',‘ﬁ'ﬁ‘gag"e I'oeﬁeavy metal
n

altemalive‘am@?me

: rock n roll
. indie rock -
hlp-.hop [} gos;m-g.runge
indie progressive rock
- rOBlodH folkk
rap rdck
- emo ;

punk
.

christian

hip hop
= christian reck
-

.
lues rock
melancmft_m& .

soul
soundtrack

.
mb gp top 40 pop fQﬂWS‘@ XA
" - electronic pop-rock 'GCO_HE ic© d.Ies
. .
ballads
p:ﬁﬁ'\ﬁger-songwriler
dance o folfazz m .
.

chillott™

easy listening cou.ntry
H

modern countr
.

Figure 1: 2D embedding for yes_small. The top 50 genre
tags are labeled; lighter points represent songs.

LME —a—

Sr 1 r Uniform =--- 1
Unigram «=--«---
" Bigram -.=:=-
3 6 ;/.___._—-l——"—‘f L |
o
£
g
= 716 4 L 4
j=2)
8 k]
G feeeeeeeeeeessssssssseeaes
S | L |
9 L I
.
2 5 10 25 50 100

25 50 100 2 5 lOd

Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes_small (left) and yes_big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where

i 108
g
3]
8 5f 1 E=|
£ 4 06 ¢
e g
= 65l i ‘E
g c
= 104 5
' LME log-likelihood —s— | 9o
-8) Bigram log-likelihood - -= - 7
N Fraction of transitions ——1
-9 2 ‘ : 0
0

2 4 6 8 10
Freq. of transitions in training set

Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes_small.

the next song is sampled independently of the previous
songs. The probability p(s;) of each song s; is estimated
from the training set as p(s;) = Zninj where n; is the
number of appearances of s;. ’

The Bigram Model conditions the probability of the
next song on the previous song similar to our LME model.
However, the transition probabilities p(s;|s;) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(s;|s;), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. A = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes_big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes_small. However, it fails to beat
the unigram model on yes_big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent

Avg. log likelihood

7 L L L L L L

0.0001 0.001 0.01 0.1 N 1 10 100 1000

Figure 4: Log-likelihood of predicting transitions for new
songs for different d and .

the generalization performance of the methods depends on
whether (and how often) a test transition was observed in
the training set. The ability to produce reasonable prob-
ability estimates even for transitions that were never ob-
served is important, since even in yes_small about 64% of
test transitions were not at all observed in our training set.

For both the LME and the bigram model, the lines in
Figure 3 show the log-likelihood of the test transitions con-
ditioned on how often that transition was observed in the
training set of yes_small. The bar graph illustrates what
percentage of test transitions had that given number of oc-
curences in the training set (i.e. 64% for zero). It can
be seen that the LME performs comparably to the bigram
model for transitions that were seen in the training set at
least once, but it performs substantially better on previ-
ously unseen transitions. This is a key advantage of the
generalizing representation that the LME provides, since it
provides an informed way of assigning transition probabil-
ities to all pairs of songs.

4.4 Can the tag model coldstart new songs?

Any playlist generator will encounter new songs it has not
been trained on. Fortunately, it is easy to impute an embed-
ding for new songs in our tag-based LME model. Given a
new song s with tags T'(s), the most likely embedding lo-
cation according our probabilistic model is

X(s) =15 D M) (M

To evaluate performance on new songs, we take the yes_small

dataset and randomly withhold a subset of 30% (951) of
the songs which have at least one tag each. We test on
these songs and train the tag-based LME on the remaining
songs. In particular, we test on transitions from training to
test songs, having our model predict based on the imputed
test-song location which one of the 951 songs was played.

The only valid baseline for this experiment is the uni-
form model, since we have no history for the testing songs.
The results are shown in Figure 4 for various dimension-
alities and regularization parameters A. Over all parameter
settings, the LME outperforms the baseline substantially.
Comparing Figure 4 with Figure 2, the gain over uniform
for new songs is still roughly half of that for songs that

0.9 0.45

0.85 I } Random 0.4
® Frequency
08 I e 035
0.75 11 I 03
o 07 I I 025 3
2 065 [[02 @
0.6 015 5
0.55 -2 b I I I o1
v
0.45 . . 0
= c' = 5 = | = c N
Tt &858 T ET B2
] [%] @) o [} o)
O LIE.I § o L% §

Figure 5: Average AUC (left) and precision at 10 (right)
across tag categories for random and frequency baselines
and LME. Error bars indicate +/- 1 standard error.

the LME was trained on. This demonstrates that the em-
bedding of the tags captures a substantial amount of the
playlist semantics, generalizing well even for new songs.

4.5 Can the embedding space be used for retrieval?

As already demonstrated in the previous section, a pow-
erful property of our model is that it results in a similar-
ity metric that unifies tags and songs — namely, the Eu-
clidean distance of the corresponding points in the embed-
ding. This leads to a natural method for retrieval of songs
based on query tags: rank songs by their Euclidian dis-
tance to the query tag(s). Note that this method can retrieve
songs even though they are not manually tagged with any
of the query tags.

To evaluate the effectiveness of the embedding space
for retrieval, we now evaluate how well untagged songs
can be retrieved using queries that consist of a single tag.
The experiment is set up as follows. We pooled the train
and test partitions of the yes_small dataset and then ran-
domly split all songs with at least one tag into 5 parti-
tions. Following a 5-fold cross-validation setup, we re-
moved the tags from the songs in one of the partitions,
trained the tag-based LME on the now untagged songs plus
the tagged songs from the other 4 partitions, and then com-
puted the query-tag rankings over the untagged songs. For
each query tag, we computed the average (over folds) ROC
Area (AUC) and Precision@10.

Figure 5 shows the results for the LME and for two
baselines: a random ranking of all held-out songs and a
ranking of the held-out songs in order of decreasing fre-
quency of appearance in the data set. We separated (by
hand) each of the 250 query tags into one of five categories:
genre tags (91 tags like rock, hip hop, etc.), emotion tags
(35 tags: sad, happy, dark, upbeat etc.), musical and in-
strumental tags (23 tags: male vocalist, guitar, major key
tonality...), years and decades (17 tags), and other tags (84
tags including awesome, loved, catchy, and favorites). For
brevity, we only report results for a model with dimension
25 and A = 10. However, similar to the results in Figure 4,
we find that the exact choice of these parameters is not cru-
cial. For example, the best unregularized model was never
more than 4 percentage points worse in AUC than the best
regularized model (though naturally for higher dimensions

regularization becomes more important).

Our method significantly and substantially outperforms
both baselines in every category. Matching our intuition,
it does the best for genre queries, with an AUC of nearly
0.85 and Precision@10 of about 37%. The emotion and
musical categories prove the most difficult, while the year
and other categories are the easiest after genre.

Note that the performance values reported in Figure 5
are extremely conservative estimates of the actual retrieval
quality of our method. This is for three reasons: First,
social tags can be noisy since they result from ad-hoc la-
beling practices by non-experts [17]. Second, we made
no attempt to identify lexicographically similar tags as the
same. For example, consider the following ranking that
our method produces for the tag-query “male vocals”, with
a relevant subset of the tags given for each song:

Daughtry - Home: male vocalists, male vocalist, male
Allen - Live Like We’re Dying: male vocalists, male vocalist
The Fray - How To Save A Life: male vocalists, male vocalist
Aerosmith - Rag Doll: male vocalist, malesinger
Lifehouse - Hanging By A Moment: male vocalists,

male vocalist, male vocals

Here, all five songs are clearly relevant to the query, but
only the last song was considered relevant for the purposes
of our experiments. Third, we only test our method on
songs for which no tags at all were seen during training.
For these reasons, it is important to keep in mind that the
results we report are strict lower bounds on the actual re-
trieval performance of our method.

5. CONCLUSIONS

We presented a method for learning to predict playlists
through an embedding of songs and tags in Euclidian space.
The method not only provides a well-founded probabilis-
tic model for playlist generation, it also produces a dis-
tance metric with a probabilistic meaning for song/song,
song/tag, and tag/tag distances. We show that the method
substantially outperforms conventional sequence models
from NLP, that it can sensibly impute the location of previ-
ously unseen songs, and that its distance metric is effective
for music retrieval even of untagged songs.

The flexibility of the LME approach provides exciting
opportunities for future work, since the model leaves open
the possibility of more complex representations of songs.
For example, instead of representing each song as a single
X (s), one can use two embedding vectors U(s) and V' (s)
to model the beginning and ending of a song respectively.
This allows modeling that the ending of song s is com-
patible with the beginning of song s’, but that the reverse
may not be the case. Another interesting direction for fu-
ture work is the modeling of long-range dependencies in
playlists. Such long-range dependencies could capture the
amount of redundancy/repetition that a user may seek, ver-
sus how much a playlist provides variety and explores new
music.

This research was supported in part by NSF Awards IIS-
1217686, 11S-0812091 and 11S-0905467.

6. REFERENCES

[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your
own music recommender by modeling internet radio
streams. In WWW, 2012.

[2] L. Barrington, R. Oda, and G. Lanckriet. Smarter than
genius? human evaluation of music recommender sys-
tems. ISMIR, 2009.

[3] Shuo Chen, J. L. Moore, D. Turnbull, and T. Joachims.
Playlist prediction via metric embedding. In SIGKDD,
2012.

[4] D.F. Gleich, L. Zhukov, M. Rasmussen, and K. Lang.
The World of Music: SDP embedding of high dimen-
sional data. In Information Visualization 2005, 2005.

[5] D. Jurafsky and J.H. Martin. Speech and language pro-
cessing, 2008.

[6] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, and
K. Seyerlehner. A document-centered approach to a
natural language music search engine. In ECIR, 2008.

[7] Y. Koren, R. M. Bell, and C. Volinsky. Matrix fac-
torization techniques for recommender systems. /EEE
Computer, 42(8):30-37, 2009.

[8] M. Levy and M. Sandler. A semantic space for music
derived from social tags. In ISMIR, 2007.

[9] B. Logan. Content-based playlist generation: ex-
ploratory ex- periments. ISMIR, 2002.

[10] F. Maillet, D. Eck, G. Desjardins, and P. Lamere. Steer-
able playlist generation by learning song similarity
from radio station playlists. In ISMIR, 2009.

[11] B. McFee, L. Barrington, and G. Lanckriet. Learning
content similarity for music recommendation. /EEE
TASLP, 2012.

[12] B. McFee and G. R. G. Lanckriet. The natural language
of playlists. In ISMIR, 2011.

[13] E. Pampalk. Computational Models of Music Similar-
ity and their Application in Music Information Re-
trieval. PhD thesis, TU Wien, Vienna, Austria, 2006.

[14] J. C. Platt. Fast embedding of sparse music similarity
graphs. In NIPS, 2003.

[15] B. Schwartz. The Paradox of Choice: Why More is
Less. Ecco, 2003.

[16] D. Tingle, Y. Kim, and D. Turnbull. Exploring auto-
matic music annotation with “acoustically-objective”
tags. In ICMR, 2010.

[17] D. Turnbull, L. Barrington, and G. Lanckriet. Five ap-
proaches to collecting tags for music. In ISMIR, 2008.

[18] J. Weston, S. Bengio, and P. Hamel. Multi-tasking with
joint semantic spaces for large-scale music annotation
and retrieval. Journal of New Music Research, 2011.

