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Abstract

Kernels are problem-specific functions that
act as an interface between the learning sys-
tem and the data. While it is well-known
when the combination of two kernels is again
a valid kernel, it is an open question if the
resulting kernel will perform well. In partic-
ular, in which situations can a combination of
kernel be expected to perform better than its
components considered separately? We in-
vestigate this problem by looking at the task
of designing kernels for hypertext classifica-
tion, where both words and links information
can be exploited. We provide sufficient con-
ditions that indicate when an improvement
can be expected, highlighting and formalis-
ing the notion of “independent kernels”. Ex-
perimental results confirm the predictions of
the theory in the hypertext domain.

1. Introduction

Kernel-Based learning methods (KMs) are a gen-
eral class of pattern recognition algorithms that work
by first implicitly mapping the data into a high-
dimensional feature space, and subsequently executing
a simple learning algorithm (e.g. linear separation; re-
gression; clustering; PCA). Their modularity makes it
possible to separately study the problem of designing
good feature mappings and the problem of designing
the learning algorithm. In this paper we will focus
on the first problem. A good feature representation —
in this case of hypertext documents — can the be used
with any kernel-based learning algorithm (see Cristian-
ini and Shawe-Taylor (2000) for some examples).

KMs present a unique property from the software en-
gineering point of view: many of the typical design

choices are reduced to the choice of a suitable ker-
nel function. Since kernel functions can be regarded
as (special) similarity measures between inputs, one
can (and should) use domain knowledge to design
them. In doing so, one should always make sure that
the similarity function being used is a ‘valid’ kernel,
that is that it can be rewritten as an inner product
K(z,z) = {(¢(x),¢(2)) for some ¢ : X — F defin-
ing a feature space. A useful method for designing
complex kernels is to start from simple and well un-
derstood ones, and then transform or combine them
by a series of ‘kernel preserving’ operations, hence con-
structing an increasingly matching feature space. This
technique is very promising in fields in which there is
no real understanding of a good similarity measure be-
tween data, but several independent approaches seem
to perform well (e.g. in image retrieval one can retrieve
by color, texture, shapes, etc.).

Since in general the presence of irrelevant features de-
creases the performance of KMs, one should be able
to assess a priori which kernel combinations are likely
to generalise well. Our goal is to characterise situa-
tions where a combination of kernel can be expected
to perform better than its components considered sep-
arately. Intuitively, one would like each of the two
kernels to contribute information that is not available
to the other. While others have already formulated
and empirically evaluated similar postulates for other
learning methods (e.g. Ali and Pazzani (1996), Ng
and Kantor (1998)), there is no formal characterisation
linking all influence factors to a performance improve-
ment of the combined learner. Such a theory must con-
sider the data at hand, both kernels, and also the task
in form of the information given by the labels. The
theoretical analysis we provide gives a first sufficient
condition for error reduction by kernel combination,
and our experiments confirm the predictions.



The application studied in this paper is the case of
combining two different feature representations of web-
pages, one based on link information, the other based
on words. In particular, we introduce a new type of
kernel whose Gram matrix is the co-citation matrix
known in bibliometrics. We show how such a matrix
can be combined with the document-by-document sim-
ilarity matrix known in information-retrieval to obtain
a valid kernel that performs better than the other two
considered separately.

The idea of using link structure information to improve
retrieval of hypertext documents is at the basis of some
very successful algorithms, such as PageRank (Page &
Brin, 1998) and HITS (Kleinberg, 1999). Such infor-
mation can (and should) of course be fused with the
information about the text of the document so that it
captures as much relevant information as possible from
the corpus. This problem has been studied for example
by Cohn and Hofmann (2000) in the context of proba-
bilistic generative models, by Craven et al. (1998) for
exploiting relations between web pages, and by Blum
and Mitchell (1998) in the task of classification using
unlabeled documents.

2. Kernel Methods

Kernel methods are a new approach to solving machine
learning problems. By developing algorithms that only
make use of inner products between images of differ-
ent inputs in a feature space J, they can be applied in
very rich feature spaces provided the inner products
can be computed implicitly. In this way they avoid
explicitly computing the feature vector for a given in-
put. One of the key advantages of this approach is its
modularity: the decoupling of algorithm design and
statistical analysis from the problem of creating ap-
propriate function/feature spaces for a particular ap-
plication. Furthermore, the design of kernels them-
selves can be performed in a modular fashion: simple
rules exist to combine or adapt basic kernels to con-
struct more complex kernels that are guaranteed to
again correspond to an inner product in some space
(see Section 4).

Given a training set S = {x1,X2,...,Xn}, the infor-

mation available to kernel based algorithms is con-

tained entirely in the matrix of inner products
G=K= (K(Xi,X]’))m

ij=1"

known as the Gram or kernel matrix. Kernels can be
used without actually knowing the feature space F, as
long as one can guarantee that some such space exists
and that the kernel can be regarded as an inner prod-
uct in that space. One can characterise valid kernel

functions in many ways. The simplest way is probably
the following;:

Proposition 1 (Saitoh, 1988) A function K(x,z) is a
valid kernel iff for any finite set it produces symmetric
and positive definite Gram matrices.

The solutions sought by kernel-machines are linear
functions in the feature space f(x) = w'x, for some
weight vector w, where ' denotes the transpose of a
vector or matrix. The kernel trick can be applied
whenever the weight vector can be expressed as a linear
combination of the training points, w = 1" | a;¢(x;),
implying that we can express f as follows

flx) = Z a; K(x;,%).

2.1 Kernels for Text

The bag-of-words (BOW) (or bag-of-terms) represen-
tation reduces a document to a histogram of word fre-
quencies. It has a natural representation as a vector,
where each entry of the vector is indexed by a specific
term, and the components of the vector are the fre-
quency of the term in the given document. Typically
such a vector is then mapped into some other space,
where the word frequency information is merged with
other information (e.g. word importance, where unin-
formative words are given low or no weight).

In this way a document is represented by a (column)
vector d. Typically d can have tens of thousands of
entries, often more than the number of documents.
However, for a particular document the representation
is extremely sparse, having only relatively few non-zero
entries. A corpus is represented by a matrix D, whose
columns are indexed by the documents and whose rows
are indexed by the terms, D = [dy, ..., d;,]. We also call
the data matrix D the “term by document” matrix.
We define the “document by document” matrix to be
G = D'D; the “term by term” matrix to be T'= DD'.

If we consider the feature space defined by the basic
vector-space model, the corresponding kernel is given
by the inner product between the feature vectors

K(di,ds) = (di,d>) = dyd>,

In this case the Gram matrix is just the document
by document matrix, well known in Information Re-
trieval.

2.2 Co-citation Kernels

Consider the co-citation matrix of a set of documents.
This concept was first introduced in the context of



bibliometrics to analyse impact factors or to detect
clusters of related documents. Two documents have a
positive score if they are cited by the same document.
It is natural to extend this idea to a co-link matrix for
hypertext documents, possibly also considering out-
links as well as in-links. Chang et al. (2000) used the
co-citation matrix for a problem of retrieval in cita-
tion analysis and Chakrabarti et al. (1998) exploited
similar information in their classification model. Fur-
thermore, one could define link-weighting schemes in a
similar way to the term-weighting schemes used in text
categorisation, where some links are more informative
than others.

It is easy to see that this co-citation matrix is also
a Gram Matrix: the feature space generated by this
kernel has as many dimensions as the number of docu-
ments (or twice as many) if one considers only one di-
rection (both directions) for the links. The document
representation implied by this Gram matrix will be
called “bag-of-links” (BOL). The underlying assump-
tion for using this kernel is that documents on a simi-
lar topic will be linked by (link to) approximately the
same documents. Experiments reported in Section 5
confirm this expectation.

We finish this section by giving a formal definition of
the link features that we will be using.

Definition 1 Let (D,£) be a hypertext collection,
where D is a set of documents and & C D x D is a
set of links, (di,ds) indicating that document dy con-
tains a link to document ds.

The inlink feature map ¢, is given by

1 if(dz,dl) €é;
0 otherwise.

Gu(di)a, = {

Similarly, the outlink feature vector ¢, is related to ¢,

by ¢o(di)a, = du(d2)d, -

3. On Kernel Combination

Closure properties for the class of kernel functions can
easily be deduced from their mathematical character-
isation in terms of the positive-definiteness of the re-
sulting Gram matrix. The following proposition can
be viewed as showing that kernels satisfy a number of
closure properties, allowing us to create more compli-
cated kernels from simple building blocks.

Proposition 2 Let Ky and Ky be kernels over X x
X, XCR',ae R, 0< A<, f(*) a real-valued
function on X, ¢ : X — R™ with K3 a kernel over
R™ x R™, and K a symmetric positive semi-definite

nxn matriz. Then the following functions are kernels:

Kx,z) = Mi(x,z)+ (1 —ANKa(x,2),
K(x,z) = aKi(x,2),

K(x,z) = Ki(x,2)K2(x,z),

K(x,z) = [f(x)f(z),

K(x,2) = Ks(¢(x),d(z)),

K(x,z) = x'Kz.

The proof of all but the first of these results is given
by Cristianini and Shawe-Taylor (2000). It is easy
to see that convex combinations of kernels yield valid
kernels (since the spectrum of resulting Gram matri-
ces would always be positive). We will, however, give
an explicit construction of the corresponding feature
space since it will prove useful later.

Let ¢’ : X — R™ be the feature mapping correspond-
ing to the kernel KC;, i = 1,2. Now consider the feature
vector

d(x) = [V (2), V(1 = N¢* ().

The corresponding inner product satisfies

(0(2), 6(2)) = M¢' (2), 0" (2)) + (1 = X)(¢* (2), 6*(2))
=M (z,2) + (1 — AN)Ka(x, 2)
= K(x,2)

giving an explicit construction of the feature space cor-
responding to the (therefore) valid kernel K.

In the following, we present a theory aimed at captur-
ing the notion that combining two kernels that sepa-
rately perform equally well is going to help as long as
the kernels are ‘independent’, that is they do not ex-
tract the same features. This is to some extent similar
to boosting, where combining independent hypotheses
can generate a better overall hypothesis.

There are two main ways to justify a claim of ‘better
generalisation’. The first is to provide experimental
evidence for improvements on realistic datasets. We
will show such experiments in the next section. The
second way is to show that the method improves the
quality of a rigorous bound on the generalisation error.
We will describe conditions under which such an im-
provement can be expected when two kernels are com-
bined. The conditions are validated in experiments
showing that observed improvements coincide with the
situations when the theory predicts that improvement
should occur.

Our approach is to consider a particular kernel
method, namely the soft-margin Support Vector Ma-
chine (SVM) (Cortes & Vapnik, 1995). For the SVM



bounds on the generalisation error are known and we
will analyse when such bounds improve with kernel
combination. The bounds we will use are the so-called
soft-margin generalisation error bounds. Bounds of
this type have been derived in several different frame-
works and hence appear to capture a key property of
the learned function. Indeed, the soft-margin Support
Vector Machine (SVM) denoted by hgsyv s below op-
timises a quantity closely related to bounds of this
type. For a given training set (x1,y1),---,(Xn, Ym),
yi € {—1,4+1} of m examples the SVM solves the fol-
lowing quadratic program.

1ww—%—C’ Zél

s.t.: VI s yiwo(x;) + 0] > 1 - 51-
V?;l 16 >0

min: V(w,b,§) =

The following two bounds relate the solution of this op-
timisation problem to the error of the SVM. The first
is given in the expected error framework. We denote
with v = y; [W'é(x;) + 0] = w2070, ajy;K(xi, %) +
b] the margin of a training example

Theorem 1 (Joachims, 2001) Bound on Expected
Error of Soft-Margin SVMs The expected error
rate E(Err™(hsva)) of a soft-margin SVM based on
m training examples with ¢ < K(x;,x;) < ¢+ R? for
all points with non-zero probability and some constant
¢, 1s bounded by

petrew) (5
i=1

E(ETT‘m(hSVM)) < —1

with C' = C R? if C > 1/(p R?), and C' = C R? + 1
otherwise. For unbiased hyperplanes p equals 1, and
for stable hyperplanes p equals 2. The expectations on
the right are over training sets of size m + 1.

The second theorem we will quote is proven in the sta-
tistical learning theory framework but the form of the
bound is very similar to that given in Theorem 1, once
the standard bound on the fat shattering dimension of
linear functions is substituted.

Theorem 2 (Shawe-Taylor & Cristianini, 2000) Let
X be a sturdy class of real-valued functions with
range [—a, a] and fat-shattering dimension bounded by
fatx(v). Fiz a scaling of the output range k € RT.
Consider a fized but unknown probability distribution
on the input space X. Then with probability 1 — §
over randomly drawn training sets S of size m for all

a > v > 0 the generalisation of a function sign(f) €
sign(X) is bounded by

9 2
e(m,dy,ds,8) = — (dl log, (256m (9> )
m Y
16
log, < ima) + dy log,(2em)
+1o 8m2a
gZ (sl‘é )
where

di = fatx (y~/16),

and  dy = V(D'(S,J;,v) +n)J

provided m > 2/e and there is no discrete probability
on misclassified training points.

Taken together Theorems 1 and 2 indicate that the
key quantity in estimating the generalisation is the
soft margin

=—+G'qu (1)

where R is the radius of the ball containing the support
of the distribution, C' is a constant and &; are the slack
variables relative to a margin 6% = 1/w?. We will
therefore take equation (1) as the basis for our analysis
of the performance obtained by combining kernels. If
combining two kernels leads to a lower value of B, then
combining the two optimises an upper bound.

Definition 2 SV Redundancy on a Training Ex-
ample: Let v,; and v, ; be the margins for training
example i of two SVMs trained with different kernels
Ko and Ky on the same training sample. Then

1

>\)_7b,i]0

Ai(Aar) = [1 2

1
~ 50— (1
is their Support Vector Redundancy on training exam-
ple i at margin T'. []o is the identity if the argument
is positive, otherwise it is 0.

Definition 3 SV Redundancy on Training Set:
Let A, and Ay be the vectors of SV Redundancies of
two SVMs trained with different kernels IC, and Ky on
the same training sample. Then

=Y AMD)

is their SV Redundancy at margin T' on the whole
training sample.



Theorem 3 Bound on the Soft Margin of Com-
bined Kernel: Let [w,,b,] and [wy,by] be the solu-
tions of two SVMs trained with different kernels K,
and K on the same training sample. We will assume
that the radius of the ball containing the data is cen-
tred around the origin. Then the value of B of an SVM
with combined kernel K(x;,x;) = MCq(xi,%5) + (1 —
M) (x3,%;) is less than

(1-)) R}

A R?
S “b L 2C'ANT)
[N PR R

for an appropriate value of C' > 0 and any T > 0.

Proof The value of B of the combined classifier can

be upper bounded using the solution of the soft-margin

SVM training problem:

R? )

57 +CR > &
i=0

1 .
< 2R2mmw,b§w'w +C ; [1 = yi(w'o(xi) + )],

If R? can be upper bounded, then any value for w and
b will be an upper bound for the soft margin of the
combined classifier. Let ¢ be the feature vector for
the first representation and ¢° that for the second. We

form the feature vector ¢y(x) = [\/ngﬁ“,\/l — /\gzﬁb],
and use the hyperplane

Q VI=A

w(A D) = [ T Wb] ,b = Abg + (1 — A)by.

The square norm of the weight vector is

ﬁwalwa + vwb/Wb

A 1=
252 T2

w(\, )2

and an upper bound for the mazimum square norm of
the combined feature vectors is

maz; A" (x;)' 6% (x:) + (1 — Ao’ (x:)' 6" (x:)
= maz; Mo (x4,%;) + (1 — N (x4, X3)
AR? + (1 — \)R?

= R(\)?

IN

Finally, observe that the slack variables of the resulting
classification are given by

&EAD) = [1—yi(wA,T) da(x;) + Ab* +
= A; (A D)

(1 =001,

The result follows.

To give some intuition about the dynamics of the
bound, consider the following example. The training
set consists of 6 examples. For both kernels K, and
Ky the SVM with C' = 1 achieves §2 = 67 = 1/18,
R2=R?=1,and ) & =) ¢ = 2. Using a combi-
nation of the two kernels with A = 0.5, the following
table show the margins 744, 7,:, and the combined
margin y; = 0.57,,; + 0.57;,; for each of the 6 exam-
ples.

i ’Ya,i ’Yb,i ’)/l' Al(05, 10) Al(05, 15)
1110120 15 0.0 0.0
212010010 0.0 0.5
3100 10| 05 0.5 1.0
4|10 |10 1.0 0.0 0.5
513000 15 0.0 0.0
600 |30] 15 0.0 0.0

The table also shows the SV Redundancy at I' = 1.0
and ' = 1.5. When a support vector (i.e. margin
equal to 1) in one representation meets a non support
vector in the other representation (i.e. margin greater
than 1), their combined margin is larger than 1. This
leads to low SV Redundancy even for large values of
[, in particular when the margin of the non support
vector is large (e.g. examples 5 and 6). A similar ef-
fect occurs also when training errors meet non support
vectors. Overall, with I' = 1.5 and C' = 1 the theorem
bounds the value of B for the combined classifier with
18/1.5% + 2 -2 = 12. Note that the value of B for the
original classifiers was 20.

While the bound in the theorem is not necessarily tight
in practice, it shows two major influence factors for
soft-margin reduction when combining kernels. First,
the soft margin decreases the lower the SV redundancy
on the training set. Note that the SV redundancy on
an example x; decreases for some I' > 1, if x; is a
Support Vector for one of the kernels, but not for the
other. Second, the soft margin increases compared to
using kernel K, by itself the larger R? /47 compared to
R2/62, and vice versa.

To get to a simple rule for combining kernels that can
easily be applied in practice, our intuitive conclusion
from the theoretical results is as follows. Combining
kernels in an SVM is beneficial, if both kernels achieve
approximately the same performance individually (e.g.
R?/62 ~ R2 /67 with similar training error) while their
Support Vectors are different. In the following, we will
evaluate experimentally in how far this prediction of
the theory applies in practice. Our hope is that this
rule does capture the major influence factors, making
it an easy to use heuristic for guiding the construc-
tion of kernels in practice. The rule would already be
valuable, if it could eliminate highly suboptimal design



individual combined (A = 0.5)
error (%) BOWbm BOWtfidf BOL BOWbm/BOL BOWtfidf/BOL
course 4.33 £0.07 | 589 £0.05 | 4.33 £0.12 2.75% 0.09 4.40 £ 0.18
student 9.57 £ 0.16 | 13.55 £ 0.11 | 1.10 £ 0.03 1.28 £ 0.04 1.65 £ 0.05
faculty 2.67+£0.10 | 3.79 £0.06 | 2.12 £ 0.09 1.60 £ 0.06 2.57 £ 0.08

Table 1. Error rates of the word, the link, and the combined kernels on 800 training examples.

individual overlap
#SV BOWyn, | BOWypigr | BOL || BOWy,,,/BOL | BOW,yiqr /BOL
course 158.0 413.4 519.3 || 116.3 (102.6) 285.4 (268.3)
student 273.6 618.1 458.9 || 158.3 (156.9) 359.6 (354.6)
faculty 127.7 368.3 290.1 61.3 (46.3) 146.8 (133.6)

Table 2. Number of support vectors for the word and the link kernels on 800 training examples, as well as the number of
common support vectors. The number is parenthesis is the expected overlap, if the SV sets were independent.

choices so that formal and more expensive model se-
lection (e.g. cross-validation) could be focused on the
most promising design options.

4. Experiments

The experiments in this section analyse the properties
of combined kernels on a Web-page classification task
and evaluate how the results relate to the theory.

Experimental Setup The experiments are based
on the WebKB dataset collected at CMU. It consists
of the pages from the computer science departments
of four universities (Cornell, University of Washing-
ton, University of Texas, and University of Wisconsin).
The particular setup used here was compiled by Sean
Slattery! for the experiments in (Slattery & Mitchell,
2000). It consists of three binary classification tasks,
namely identifying course, faculty, and student home
pages. There is a total of 4186 examples.

The pages in the corpus contain approximately 41.000
different words and 10.000 links within the universi-
ties. We will use two different BOW representations in
the following. The corpus comes with a bag-of-words
representation including 623 terms with binary word
weighting (BOWy;,,). Their selection is described by
Slattery and Mitchell (2000). In addition, we will use a
“tfc” TFIDF-weighted representation (Salton & Buck-
ley, 1988)) using all words (BOWyy;4¢). The hyperlink-
based representation (BOL) is generated from incom-
ing hyperlinks as described in Section 2.2. For both
the word and the hyperlink representations, each fea-
ture vector is normalised to unit length.

"http:/ /www.cs.cmu.edu/~WebKB/ICML2000-
data.html

The results presented in the following are averages over
10 random test/training splits of the full 4186 docu-
ment corpus. While the evaluation is done in terms of
error rate here, the results are qualitatively the same
also for the Fj-measure (see e.g. Joachims (2001) for
a definition of F}). The value of the SVM parameter
C was chosen by optimising leave-one-out error on the
training set for values C' € {0.01,0.1,1.0,10,100}. The
selection of C' by leave-one-out was performed for each
individual test/training split using the algorithm de-
scribed by Joachims (2001). The error rates reported
in the following are estimated from the test set.

Can the Combination of Kernels Improve Ac-
curacy? Table 1 shows the average error rates for
the two bag-of-words, the hyperlink, and the combined
kernels with A = 0.5. Comparing the two individual
bag-of-words kernels BOWp;, and BOW,;4¢, the ker-
nel with binary weighting exhibits lower error rates on
all three tasks. This is consistent with the findings of
Joachims (2001) on a similar Web-page classification
task. The link kernel BOL shows approximately the
same performance as BOWy;, on “course” and “fac-
ulty”, while being substantially better on “student”.

The combined kernel BOWy;,,/BOL outperforms each
individual kernel on the tasks “course” and “faculty”,
while not improving performance for “student”. For
the “student” task the bag-of-words representation
performs particularly poorly. This is in contrast to the
hyperlink representation, which is particularly well-
suited. The combined BOW,s;qr/BOL kernel does
not lead to improved performance on any of the three
tasks. However, the loss of performance for the com-
bined kernel is small and far below the arithmetic av-
erage of the error rates of the individual kernels.



individual combined
error (%) BOWyp RBF BOWy;,,/RBF
course [4.33 &+ 0.07 |4.15 £ 0.09|| 4.10 £ 0.06
student [9.57 & 0.16 |9.26 £ 0.12|| 9.84 £+ 0.13
faculty |2.67 &£ 0.10 |3.20 & 0.07| 2.75 £ 0.04
(a)
individual overlap
#SV BOWy;,, | RBF || BOW,,;,,/RBF
course 158.0 285.5 157.6 (56.3)
student 273.6 427.3 || 273.3 (146.1)
faculty 127.7 245.4 127.5 (39.2)

(b)

Table 3. (a) Error rate for the BOWy;,,, the RBF, and the
combined kernel. (b) Numbers of support vectors and their
overlap. All results are for A = 0.5 and 800 training exam-
ples.

How do the Experimental Results Relate to the
Theoretical Results? The theoretical results indi-
cate that the performance of the individual classifiers
and their SV overlap are indicators for the perfor-
mance of the combined kernel. In particular, the com-
bined classifier will improve performance compared to
each individual kernel, if both individual kernels have
approximately the same error rate, and if their SV-
overlap is low.

The experimental results are consistent with this pre-
diction. The combined kernel performs relatively best
if both individual kernels have a similar error rate, and
when the SV overlap is small. Table 2 shows the num-
ber of support vectors for each individual kernel, as
well as the number of support vectors that the BOL
and the BOW kernels share. The overlap is small com-
pared to the number of SVs of the individual kernels.
For both combined kernels the overlap is substantially
less than each individual number of SVs, and it is only
slightly higher than the expected overlap assuming
that the SVs were drawn at random (in parenthesis).

To construct an example with high SV overlap consider
combining the BOWy;,, kernel with an RBF-Kernel
(see (Cristianini & Shawe-Taylor, 2000)) with ¢ = 0.5
on the same representation. The error rates and the
SV overlap are given in Table 3. While for these two
kernels the individual error rates are very similar, there
is almost perfect SV overlap between the RBF and the
BOW kernel. As predicted by the theory, the com-
bined kernel does not show substantial improvements.

How Important is the Relative Weight A7 In
the previous experiments, kernels were combined with
equal relative weight. Figure 1 shows the error rates

Error

Error

Combining Kernels with Different Weighting (WebKB, 800 training examples, random sampling)
20 T T T

" student ——
faculty ---x---
course ---%---

15 |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O S o
,,,,,,,,,,,,, UENIVRE
M
0 ) ‘ ‘
° 02 04 06 08 1

lambda

Figure 1. Error rate depending on the value of A for the
BOW;,, /BOL-combined kernel on 800 training examples.

Combining Kernels (WebKB course, random sampling)
T T

BOW —+—
combination ---&--
BO

0 L L
100 200 1600 3200

800
Training Examples

Figure 2. Error rate depending on the size of the training
set for “course” using BOWy;,, BOL, and A = 0.5.

dependent on the value of A for BOWy;,,/BOL. While
there was no improvement for “student” in combining
kernels with A = 0.5, the plot indicates a very slight
improvement for A = 0.95. The respective plot for
BOW,;qr /BOL reveals a similarly small gain “course”
for 0.9 < XA < 0.95, but no improvement for the other
two tasks. Similarly, combining BOWy;,, /RBF the re-
spective plot does not show substantial improvements
for any value of .

Overall, the plot shows a surprisingly low dependency
on A over much of its range. Either combining helps
for almost any value of A, or no value of X leads to a
substantial improvement.

Does the Improvement Depend on the Num-
ber of Training Examples? The previous results
were for training sets of 800 examples. As a typical ex-



ample, Figure 2 shows the learning curve for “course”
using BOWy;,,, BOL, and their combination. For small
training sets combining kernels does not improve per-
formance. With increasing training set size the im-
provement first grows and then saturates. In terms
of SV overlap this behaviour can be explained as fol-
lows. For small training set, the fraction of training
examples that become SVs is high. On training sets of
size 100, the BOL kernel leads to 85 and the BOW;,,
kernel to 45 support vectors on average. The number
of shared SVs is 41, leading to a similar amount of
overlap as for the RBF kernel. The amount of overlap
then decreases with an increasing number of training
examples (see e.g. Table 2).

5. Conclusions

We have introduced a new type of kernel whose Gram
matrix is the co-citation matrix known in bibliomet-
rics. We have shown how such matrix can be com-
bined with the document-by-document similarity ma-
trix known in information-retrieval, to obtain a valid
kernel that can perform better that the other two con-
sidered separately. We have then addressed the gen-
eral issue of combining kernels, obtaining some general
conditions in which a combined kernel can be expected
to generalise better than a single one.

This technique is very promising in fields in which
there is no real understanding of a good similarity
measure between data, but several independent ap-
proaches seem to perform well (e.g. in image retrieval
one can retrieve by color, texture, shapes ...). If one
has many independent kernels that show equal per-
formance, it is possible to combine them in a way to
obtain a stronger one. In addition to evaluating com-
bined kernels also in other domains, theoretical aspects
need to be further pursued to get more refined condi-
tions. Further work can be found in (Cristianini et al.,
2001).
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