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Abstract

The Rocchio relevance feedback algorithm is
one of the most popular and widely applied
learning methods from information retrieval.
Here, a probabilistic analysis of this algo-
rithm is presented in a text categorization
framework. The analysis gives theoretical
insight into the heuristics used in the Roc-
chio algorithm, particularly the word weight-
ing scheme and the similarity metric. It also
suggests improvements which lead to a prob-
abilistic variant of the Rocchio classi�er. The
Rocchio classi�er, its probabilistic variant,
and a naive Bayes classi�er are compared
on six text categorization tasks. The results
show that the probabilistic algorithms are
preferable to the heuristic Rocchio classi�er
not only because they are more well-founded,
but also because they achieve better perfor-
mance.

1 Introduction

Text categorization is the process of grouping docu-
ments into di�erent categories or classes. With the
amount of online information growing rapidly, the
need for reliable automatic text categorization has in-
creased. Text categorization techniques are used, for
example, to build personalized netnews �lter which
learn about the news-reading preferences of a user
[Lang, 1995]. They are used to index news stories
[Hayes et al., 1988] or guide a user's search on the
World Wide Web [Joachims et al., 1997].

One of the most widely applied learning algorithms
for text categorization is the Rocchio relevance feed-
back method [Rocchio, 1971] developed in information
retrieval. Originally designed for optimizing queries
from relevance feedback, the algorithm can be adapted
to text categorization and routing problems. Although

the algorithm is intuitive, it has a number of problems
which - as I will show - lead to comparably low clas-
si�cation accuracy: (1) The objective of the Rocchio
algorithm is to maximize a particular functional (in-
troduced in section 3.2.1). Nevertheless Rocchio does
not show why maximizing this functional should lead
to a high classi�cation accuracy. (2) Heuristic compo-
nents of the algorithm o�er many design choices and
there is little guidance when applying this algorithm
to a new domain. (3) The algorithm was developed
and optimized for relevance feedback in information
retrieval; it is not clear which heuristics will work best
for text categorization.

The major heuristic component of the Rocchio algo-
rithm is the TFIDF (term frequency / inverse docu-
ment frequency) [Salton, Buckley, 1988] word weight-
ing scheme. Di�erent 
avors of this heuristic lead to a
multitude of di�erent algorithms. Due to this heuristic
this class of algorithms will be called TFIDF classi�ers
in the following.

A more theoretically founded approach to text cate-
gorization provide naive Bayes classi�ers. These algo-
rithms use probabilistic models for classi�cation and
allow the explicit statement of simplifying assump-
tions.

The contribution of this paper is a probabilistic ana-
lysis of a TFIDF classi�er. This analysis makes the
implicit assumption of the TFIDF classi�er as explicit
as for the naive Bayes classi�er. Furthermore it pro-
vides insight into how the TFIDF algorithm can be im-
proved, leading to a probabilistic version of the TFIDF
algorithm, called PrTFIDF. PrTFIDF optimizes the
di�erent design choices of the TFIDF algorithm as a
whole and gives clear recommendations on how to set
the parameters involved. Empirical results on six cate-
gorization tasks show that PrTFIDF not only enables
a better theoretical understanding of the TFIDF al-
gorithm, but also performs better in practice without
being conceptually or computationally more complex.
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Figure 1: Bag-of-words representation in an attribute
value style.

This paper is structured as follows. Section 2 in-
troduces the de�nition of text categorization used
throughout this paper. A TFIDF classi�er and a naive
Bayes classi�er are described in section 3. Section 4
presents the probabilistic analysis of the TFIDF clas-
si�er and states its implications. Empirical results and
conclusions can be found in sections 5 and 6.

2 Text Categorization

The goal of text categorization is the classi�cation
of documents into a �xed number of prede�ned cat-
egories. The working de�nition used throughout this
paper assumes that each document d is assigned to ex-
actly one category. To put it more formally, there is a
set of classes C and a set of training documentsD � D.
Furthermore, there is a target concept T : D ! C
which maps documents to a class. T (d) is known for
the documents in the training set. Through super-
vised learning the information contained in the train-
ing examples can be used to �nd a model or hypothesis
H : D ! C which approximates T . H(d) is the func-
tion de�ning the class to which the learned hypothesis
assigns document d; it can be used to classify new doc-
uments. The objective is to �nd a hypothesis which
maximizes accuracy, i.e. the percentage of times H
and T agree.

3 Learning Methods for Text
Categorization

This section describes the general framework for the
experiments presented in this paper and de�nes the
particular TFIDF classi�er and the naive Bayes classi-
�er used. The TFIDF classi�er provides the basis for
the analysis in section 4.

3.1 Representation

The representation of a problem has a strong impact
on the generalization accuracy of a learning system.
For categorization a document, which typically is a
string of characters, has to be transformed into a rep-
resentation which is suitable for the learning algorithm
and the classi�cation task. IR research suggests that
words work well as representation units and that their
ordering in a document is of minor importance for
many tasks. This leads to a representation of docu-
ments as bags of words.

This bag-of-words representation is equivalent to an
attribute-value representation as used in machine
learning. Each distinct word corresponds to a feature
with the number of times the word occurs in the doc-
ument as its value. Figure 1 shows an example feature
vector for a particular document. To avoid unneces-
sarily large feature vectors words are considered as fea-
tures only if they occur in the training data at least
m (e.g. m = 3) times. The set of considered features
(i.e. words) will be called F .

3.2 Learning Algorithms

3.2.1 TFIDF Classi�er

This type of classi�er is based on the relevance
feedback algorithm originally proposed by Rocchio
[Rocchio, 1971] for the vector space retrieval model
[Salton, 1991]. Due to its heuristic components, there
are a number of similar algorithms corresponding to
the particular choice of those heuristics. The three
main design choices are

� the word weighting method

� the document length normalization

� the similarity measure.

An overview of some heuristics is given in
[Salton, Buckley, 1988]. In the following the most
popular combination will be used (known as \tfc"):
\tf" word weights [Salton, Buckley, 1988], document
length normalization using Euclidian vector length and
cosine similarity.

Originally developed for information retrieval, the
algorithm returns a ranking of documents without
providing a threshold to de�ne a decision rule for
class membership. Therefore the algorithm has to be
adapted to be used for text categorization. The variant
presented here seems to be the most straightforward
adaptation of the Rocchio algorithm to text catego-
rization and domains with more than two categories.

The algorithm builds on the following representation
of documents. Each document d is represented as a



vector ~d = (d(1); : : : ; d(jF j)) so that documents with
similar content have similar vectors (according to a
�xed similarity metric). Each element d(i) represents
a distinct word wi. d(i) for a document d is calcu-
lated as a combination of the statistics TF (wi; d) and
DF (wi) [Salton, 1991]. The term frequency TF (wi; d)
is the number of times word wi occurs in document
d and the document frequency DF (wi) is the number
of documents in which word wi occurs at least once.
The inverse document frequency IDF (wi) can be cal-
culated from the document frequency.

IDF (wi) = log

�
jDj

DF (wi)

�
(1)

Here, jDj is the total number of documents. Intu-
itively, the inverse document frequency of a word is
low if it occurs in many documents and is highest if
the word occurs in only one. The so-called weight d(i)

of word wi in document d is then

d(i) = TF (wi; d) � IDF (wi) (2)

This word weighting heuristic says that a word wi is
an important indexing term for document d if it occurs
frequently in it (the term frequency is high). On the
other hand, words which occur in many documents are
rated less important indexing terms due to their low
inverse document frequency.

Learning is achieved by combining document vectors
into a prototype vector ~cj for each class Cj. First,
both the normalized document vectors of the positive
examples for a class as well as those of the negative
examples for a class are summed up. The prototype
vector is then calculated as a weighted di�erence of
each.

~cj = �
1

jCjj

X
~d2Cj

~d

jj~djj
� �

1

jD � Cjj

X
~d2D�Cj

~d

jj~djj
(3)

� and � are parameters that adjust the relative impact
of positive and negative training examples. As recom-
mended in [Buckley et al., 1994] � = 16 and � = 4
will be used in the following. Cj is the set of train-

ing documents assigned to class j and jj~djj denotes the

Euclidian length of a vector ~d. Additionally Rocchio
requires that negative elements of the vector cj are
set to 0. Using the cosine as a similarity metric and
� = � = 1, Rocchio shows that each prototype vector
maximizes the mean similarity of the positive training
examples with the prototype vector cj minus the mean
similarity of the negative training examples with the
prototype vector cj.

1

jCjj

X
~d2Cj

cos(~cj ; ~d)�
1

jD �Cj j

X
~d2D�Cj

cos(~cj; ~d) (4)

Nevertheless it is unclear if or how maximizing this
functional connects to the accuracy of the resulting
classi�er.

The resulting set of prototype vectors, one vector for
each class, represents the learned model. This model
can be used to classify a new document d0. Again

the document is represented as a vector ~d0 using the
scheme described above. To classify d0 the cosines of

the prototype vectors ~cj with ~d0 are calculated. d0 is
assigned to the class with which its document vector
has the highest cosine.

HTFIDF (d
0) = argmax

Cj2C
cos(~cj ; ~d0) (5)

argmaxf(x) returns the argument x for which f(x)
is maximum and HTFIDF (d0) is the category to which
the algorithm assigns document d0. The algorithm can
be summarized in the following decision rule:

HTFIDF (d
0)= argmax

Cj2C

~cj

jj~cjjj
�

~d0

jj~d0jj
(6)

= argmax
Cj2C

PjF j
i=1 c

(i)
j � d0(i)qPjF j

i=1(c
(i)
j )2

(7)

In (7) the normalization with the length of the docu-
ment vector is left out since it does not in
uence the
argmax.

3.2.2 Naive Bayes Classi�er

The classi�er presented in this section uses a proba-
bilistic model of text. Although this model is a strong
simpli�cation of the true process by which text is gen-
erated, the hope is that it still captures most of the
important characteristics.

In the following word-based unigram models of text
will be used, i.e. words are assumed to occur indepen-
dently of the other words in the document. There are
jCj such models, one for each category. All documents
assigned to a particular category are assumed to be
generated according to the model associated with this
category.

The following describes one approach to estimating
Pr(Cjjd

0), the probability that a document d0 is in class
Cj. Bayes' rule says that to achieve the highest clas-
si�cation accuracy, d0 should be assigned to the class
for which Pr(Cjjd

0) is highest.

HBAYES(d
0) = argmax

Cj2C
Pr(Cjjd

0) (8)

Pr(Cjjd
0) can be split up by considering documents

separately according to their length l.

Pr(Cjjd
0) =

X1

l=1
Pr(Cjjd

0; l) � Pr(ljd0) (9)

Pr(ljd0) equals one for the length l0 of document d0



and is zero otherwise. After applying Bayes' theorem
to Pr(Cj jd

0; l) we can therefore write:

Pr(Cj jd
0) =

Pr(d0jCj; l
0) � Pr(Cj jl

0)P
C02C Pr(d

0jC0; l0) � Pr(C0jl0)
(10)

Pr(d0jCj; l
0) is the probability of observing document

d0 in class Cj given its length l0. Pr(Cjjl
0) is the prior

probability that a document of length l0 is in class
Cj. In the following we will assume, that the cate-
gory of a document does not depend on its length, so
Pr(Cjjl

0) = Pr(Cj). An estimate P̂r(Cj) for Pr(Cj)
can be calculated from the fraction of training docu-
ments that is assigned to class Cj.

P̂r(Cj) =
jCjjP

C02C jC
0j
=
jCjj

jDj
(11)

jCjj denotes the number of training documents in class
Cj and jDj is the total number of documents.

The estimation of Pr(d0jCj; l
0) is more di�cult.

Pr(d0jCj; l
0) is the probability of observing a document

d0 in class Cj given that we consider only documents of
length l0. Since there is - even for a simplifying repre-
sentation as used here - a huge number of di�erent doc-
uments, it is impossible to collect a su�ciently large
number of training examples to estimate this proba-
bility without prior knowledge or further assumptions.
In our case the estimation becomes possible due to the
way documents are assumed to be generated. The un-
igram models introduced above imply that a word's
occurrence is only dependent on the class the docu-
ment comes from, but that it occurs independently1

of the other words in the document and that it is not
dependent on the document length. So Pr(d0jCj; l

0)
can be written as:

Pr(d0jCj; l
0) �

Yjd0j

i=1
Pr(wijCj) (12)

wi ranges over the sequence of words in document d0

which are element of the feature vector F . jd0j is the
number of words in document d0. The estimation of
Pr(d0jCj) is reduced to estimating each Pr(wijCj) in-
dependently. A Bayesian estimate is used for Pr(wijCj).

P̂r(wijCj) =
1 + TF (wi; Cj)

jF j+
P

w02jF j TF (w
0; Cj)

(13)

TF (w;Cj) is the overall number of times word w oc-
curs within the documents in class Cj. This estima-
tor, which is often called the Laplace estimator, is sug-
gested in [Vapnik, 1982] (pages 54-55). It assumes that
the observation of each word is a priori equally likely. I
found that this Bayesian estimator works well in prac-
tice, since it does not falsely estimate probabilities to
be zero.

1The weaker assumption of \linked-dependence" is ac-
tually su�cient [Cooper, 1991], but not considered here for
simplicity.

The following is the resulting decision rule if equations
(8), (10) and (12) are combined.

HBAYES(d
0)= argmax

Cj2C

Pr(Cj) �
jd0jQ
i=1

Pr(wijCj)

P
C02C

Pr(C0) �
jd0jQ
i=1

Pr(wijC0)

(14)

= argmax
Cj2C

Pr(Cj) �
Q
w2F

Pr(wjCj)TF (w;d
0)

P
C02C

Pr(C0) �
Q
w2F

Pr(wjC0)TF (w;d0)
(15)

If Pr(Cj jd
0) is not needed as a measure of con�dence,

the denominator can be left out since it does not change
the argmax.

4 PrTFIDF: A Probabilistic Classi�er
Derived from TFIDF

In the following I will analyze the TFIDF classi�er
in a probabilistic framework. I will propose a classi-
�er, called PrTFIDF, and then show its relationship to
the TFIDF algorithm. In terms of the design choices
listed above I will show that the PrTFIDF algorithm
is equivalent to a TFIDF classi�er using the following
settings:

� the word weighting mechanism uses a re�ned IDF
weight especially adapted to text categorization,

� document length normalization is done using the
number of words and

� the similarity measure is the inner product.

Other researchers have already proposed theoret-
ical interpretations of the vector space retrieval
model [Bookstein, 1982][Wang et al., 1992] and the
TFIDF word weighting scheme [Wong, Yao, 1989]
[Wu, Salton, 1981]. However, their work analyzes only
parts of the TFIDF algorithm and is based on infor-
mation retrieval instead of on text categorization.

4.1 The PrTFIDF Algorithm

The naive Bayes classi�er proposed in the previous sec-
tion provided an estimate of the probability Pr(Cjjd

0)
that document d0 is in class Cj, making the simplifying
assumption of word independence. The PrTFIDF Al-
gorithm uses a di�erent way approximating Pr(Cjjd

0)
inspired by the \retrieval with probabilistic indexing"
(RPI) approach proposed in [Fuhr, 1989]. In this ap-
proach a set of descriptors X is used to represent the
content of documents. A descriptor x is assigned to a
document d with a certain probability Pr(xjd). So us-
ing the theorem of total probability (in line (16)) and
Bayes' theorem (in line (17)) we can write



Pr(Cjjd) =
X
x2X

Pr(Cjjx; d) � Pr(xjd) (16)

=
X
x2X

Pr(djCj; x)

Pr(djx)
Pr(Cjjx) � Pr(xjd) (17)

To make the estimation tractable the simplifying as-
sumption that Pr(djCj; x) = Pr(djx) is made now.

Pr(Cjjd) �
X
x2X

Pr(Cjjx) �Pr(xjd) (18)

The validity of the assumption depends on the classi�-
cation task and the choice of the set of descriptors X.
It states that descriptor x provides enough informa-
tion about d so that no information about document
d is gained by taking its category Cj into account.

As mentioned above the set of descriptors X is part
of the design. A pragmatic choice for X used in the
following is to consider all bags with n words from the
feature set F as potential descriptors; e.g., for n = 3
these are all bags containing three words from F . The
number n of words is a parameter which controls the
quality of the approximation versus the complexity of
the estimation.

Another way of looking at equation (18), especially
suited for the choice of X considered here, is the fol-
lowing. Pr(Cjjd) is approximated by the expectation
of Pr(Cjjx), where x consists of a sequence of n words
drawn randomly from document d. For both interpre-
tations the underlying assumption is that text docu-
ments are highly redundant with respect to the classi�-
cation task and that any sequence of n words from the
document is equally su�cient for classi�cation. For
example, classifying documents according to whether
they are cooking recipes or not, it is probably equally
su�cient to know either of the sentences from the doc-
ument. For n = jdj Pr(Cjjd) equals Pr(Cjjx), but with
decreasing n this simplifying assumption (like the in-
dependence assumption for the naive Bayes classi�er)
will be violated in practice. Nevertheless this simpli�-
cation is worth trying as a starting point.

In the following the simplest case, namely n = 1, will
be used and will lead to a TFIDF classi�er like the one
introduced in section 3.2.1. For n = 1 line (18) can be
written as

Pr(Cj jd) �
X
w2F

Pr(Cj jw) �Pr(wjd) (19)

It remains to estimate the two probabilities from line
(19). Pr(wjd) can be estimated from the representa-
tion of document d.

P̂r(wjd) =
TF (w; d)P

w02F TF (w0; d)
=

TF (w; d)

jdj
(20)

jdj denotes the number of words in document d.
Pr(Cjjw), the remaining part of equation (19), is the

probability that Cj is the correct category of d given
that we only know the randomly drawn word w from
d. Bayes' formula can be used to rewrite Pr(Cj jw):

Pr(Cjjw) =
Pr(wjCj) � Pr(Cj)P
C02C Pr(wjC

0) � Pr(C0)
(21)

As in the previous section, Pr(Cj) can be estimated
from the fraction of the training documents that are
assigned to class Cj.

P̂r(Cj) =
jCjjP

C02C jC
0j
=
jCjj

jDj
(22)

Finally Pr(wjCj) can be estimated as

P̂r(wjCj) =
1

jCjj

X
d2Cj

P̂r(wjd) (23)

The resulting decision rule for PrTFIDF is

HPrTFIDF (d
0) =

argmax
Cj2C

X
w2F

Pr(wjCj) � Pr(Cj)P
C02C

Pr(wjC0) � Pr(C0)
� Pr(wjd0) (24)

4.2 The Connection between TFIDF and
PrTFIDF

This section will show the relationship of the PrTFIDF
classi�cation rule to the TFIDF algorithm from section
3.2.1. In the following I will start with the decision rule
for PrTFIDF and then transform it into the shape of
a TFIDF classi�er. From equation (24) we have

HPrTFIDF (d
0) =

argmax
Cj2C

X
w2F

Pr(Cj) � Pr(wjCj)P
C02C

Pr(C0) � Pr(wjC0)
� Pr(wjd0) (25)

The term
P

C02C Pr(C
0) �Pr(wjC0) in equation 25 can

be re-expressed using a modi�ed version of the inverse
document frequency IDF (w). The de�nition of in-
verse document frequency as stated in section 3.2.1
was

IDF (w) = log

�
jDj

DF (w)

�
(26)

DF (w) =
X
d2D

�
1 d containsw
0 otherwise

(27)

I now introduce a re�ned version of IDF (w) suggested
by the PrTFIDF algorithm.

IDF 0(w) = sqrt

�
jDj

DF 0(w)

�
(28)

DF 0(w) =
X
d2D

TF (w; d)

jdj
(29)

There are two di�erences between this de�nition of
IDF (w) and the usual one. First, DF 0(w) is not the



HPrTFIDF (d
0) = argmax

Cj2C

X
w2F

jCjj

jDj
� (

1

jCjj
�
X
d2Cj

TF (w; d)

jdj
) � IDF 0(w)2 �

TF (w; d0)

jd0j
(36)

= argmax
Cj2C

X
w2F

(
jCjj

jDj
�

1

jCjj
�
X
d2Cj

TF (w; d) � IDF 0(w)

jdj
) � (

TF (w; d0) � IDF 0(w)

jd0j
) (37)

number of documents with an occurrence of word w,
but rather is the sum of the relative frequencies of w in
each document. So IDF 0(w) can make use of fre-
quency information instead of just considering binary
occurrence information. Nevertheless the dynamics
of DF (w) and DF 0(w) are similar. The more often
a word w occurs throughout the corpus, the higher
DF (w) and DF 0(w) will be. The dynamics are di�er-
ent only in case there is a small fraction of documents
in which the word w occurs very frequently. Then
DF 0(w) will rise faster than DF (w). The second dif-
ference is that the square root is used to dampen the
e�ect of the document frequency instead of the log-
arithm. Nevertheless, both functions are similar in
shape and reduce the impact of high document fre-
quencies.

Replacing probabilities with their estimators, the ex-
pression

P
C02C Pr(C

0) �Pr(wjC0) can be reduced to a
function of IDF 0(w).P

C02C Pr(C
0) � Pr(wjC0) (30)

=
X
C02C

jC0j

jDj
�

1

jC0j
�
X
d2C0

TF (w; d)

jdj
(31)

=
X
C02C

1

jDj
�
X
d2C0

TF (w; d)

jdj
(32)

=

P
C02C

P
d2C0

TF (w;d)
jdj

jDj
(33)

=

P
d2D

TF (w;d)
jdj

jDj
(34)

=
1

IDF 0(w)2
(35)

Using this and again substituting probabilities with
their estimators, the decision rule can be rewritten as
in (37) above. Extracting the prototype vector com-
ponent and the document representation component
we get to the decision rule

HPrTFIDF (d
0) = argmax

Cj2C

~cj

1
�
~d0

jd0j
(38)

~cj =
jCjj

jDj
�

1

jCjj
�
X
d2Cj

~d

jdj
(39)

d(i) = TF (wi; d) � IDF 0(wi) (40)

From the form of the decision rule in the previous
lines it is easy to see that the PrTFIDF decision rule
is equivalent with the TFIDF decision rule using the
modi�ed inverse document frequency weight IDF 0(w),
the number of words as document length normaliza-
tion and the inner product for measuring similarity.
Furthermore it suggests how to set the parameters �

and �. For each category �j =
jCjj
jDj whereas � = 0.

4.3 Implications of the Analysis

The analysis shows how and under which preconditions
the TFIDF classi�er �ts into a probabilistic frame-
work. The PrTFIDF classi�er o�ers a new view on
the vector space model and the TFIDF word weight-
ing heuristic for text categorization and advances the
theoretical understanding of their interactions. The
analysis also suggests improvements to the TFIDF al-
gorithm and that the following changes should lead to
a better classi�er. PrTFIDF is an implementation of
TFIDF incorporating these changes, namely

� Incorporation of prior probabilities Pr(Cj)
through �.

� Use of IDF 0(w) for word weighting instead of
IDF (w).

� Use of the number of words for document normal-
ization instead of the Euclidian length.

� Use of the inner product for computing similarity.

5 Experiments

The following experiments were performed to �nd out
in how far the implications of the theoretical analysis
lead to an improved classi�cation algorithm in prac-
tice. The performances of PrTFIDF, TFIDF, and the
naive Bayes classi�er BAYES are compared on six cat-
egorization tasks.

5.1 Data Sets

5.1.1 Newsgroup Data

This data set consists of Usenet articles Ken Lang col-
lected from 20 di�erent newsgroups (table 1). 1000 ar-
ticles were taken from each of the newsgroups, which



comp.graphics sci.electronics
comp.windows.x sci.crypt
comp.os.ms-windows.misc sci.space
comp.sys.mac.hardware sci.med
comp.sys.ibm.pc.hardware misc.forsale

talk.politics.guns alt.atheism
talk.politics.mideast rec.sport.baseball
talk.politics.misc rec.sport.hockey
talk.religion.misc rec.autos
soc.religion.christian rec.motorcycles

Table 1: Usenet newsgroups used in newsgroup data.

PrTFIDF BAYES TFIDF

Newsgroups 91.8 89.6 86.3
\acq" 88.9 88.5 84.5
\wheat" 93.9 94.8 90.9
\crude" 90.2 95.5 85.4
\earn" 90.5 90.9 90.6
\cbond" 91.9 90.9 87.7

Table 2: Maximum accuracy in percentages.

makes a total of 20000 documents in this collection.
Except for a small fraction of the articles, each docu-
ment belongs to exactly one newsgroup. The task is
to learn which newsgroup an article was posted to2.

The results reported on this dataset are averaged over
a number of random test/training splits using binomial
sign tests to estimate signi�cance. In each experiment
33% of the data was used for testing.

5.1.2 Reuters Data

The Reuters-22173 data was collected by the Carnegie
group from the Reuters newswire in 1987. Instead of
averaging over all 135 categories, the following presents
a more detailed analysis of �ve categories - namely
the three most frequent categories (\earn", \acq", and
\cbond") and two categories with special properties
(\wheat" and \crude").

The \wheat" and the \crude" category have very nar-
row de�nitions. Classifying according to whether a
document contains the word wheat yields an accu-
racy of 99.7% for the \wheat" category. The category
\acq" (corporate acquisitions) for example does not
have such an obvious de�nition. Its concept is more
abstract and a number of words are reasonable predic-
tors.

2About 4% of the articles were cross-posted among two
of the newsgroups. In these cases predicting either of the
two newsgroups is counted as a correct prediction.

60

65

70

75

80

85

90

95

100

670 1340 2680 6700 13400

A
cc

ur
ac

y 
T

es
t (

%
)

Training examples

20 Newsgroups

PrTFIDF
BAYES
TFIDF

Figure 2: Accuracy versus the number of training ex-
amples on the newsgroup data.
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Figure 3: Accuracy versus the number of training ex-
amples on the Reuters categories \acq".

In the following experiments articles which appeared
on April 7, 1987 or before are in the training set. Ar-
ticles which appeared later are in the test set. This
results in a corpus of 14,704 training examples and
6,746 test examples. Since the TFIDF classi�er does
not have a principled way of dealing with uneven class
distributions, to allow a fair comparison the data is
subsampled randomly so that there is an equal num-
ber of positive and negative examples. The results pre-
sented here are averaged over a number of trials and
binomial sign tests are used to estimate signi�cance.

5.2 Experimental Results

Table 2 shows the maximum accuracy each learn-
ing method achieves. On the newsgroup data PrT-
FIDF performs signi�cantly better than BAYES and
BAYES is signi�cantly better than TFIDF. Compared
to TFIDF, PrTFIDF leads to a reduction of error of
about 40%.
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Figure 4: Accuracy versus the number of training ex-
amples on the Reuters categories \wheat".
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Figure 5: Accuracy versus the number of training ex-
amples on the Reuters categories \crude".

PrTFIDF and BAYES outperform TFIDF on the
Reuters categories \acq", \wheat", \crude", and
\cbond" as well. Comparing PrTFIDF and BAYES,
BAYES tends to work better on the tasks where cer-
tain single keywords have very high prediction accu-
racy - namely the tasks \wheat" and \crude". The
opposite is true for the PrTFIDF classi�er. It achieves
comparable performance or performance gains over
BAYES on the categories \acq" and \cbond" as well
as on the newsgroup data. This behaviour is interest-
ing, since it is plausible given the di�erent simplifying
assumptions PrTFIDF and BAYES make. All classi-
�ers perform approximately the same on the category
\earn".

Figures 2 to 7 show accuracy in relation to the num-
ber of training examples. As expected the accu-
racy increases with the number of training examples.
This holds for all learning methods and categoriza-
tion tasks. Nevertheless, there are di�erences in how
quickly the accuracy increases. In contrast to BAYES,
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Figure 6: Accuracy versus the number of training ex-
amples on the Reuters categories \earn".
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Figure 7: Accuracy versus the number of training ex-
amples on the Reuters categories \cbond".

PrTFIDF does particularly well in the newsgroup ex-
periment (�gure 2) for small numbers of training ex-
amples. The performance of BAYES approaches the
one of PrTFIDF for high numbers, but stays below
TFIDF for small training sets. The accuracy of the
TFIDF classi�er increases less steeply with the num-
ber of training examples compared to the probabilistic
methods.

For the Reuters category \acq" BAYES and PrTFIDF
show nearly identical curves (�gure 3). TFIDF is sig-
ni�cantly below the two probabilistic methods over the
whole spectrum. For the tasks \wheat" (�gure 4),
\crude" (�gure 5), and \cbond" (�gure 7) all classi-
�ers perform similar for small training sets and the
di�erence generally increases with an increasing num-
ber of training examples.



6 Conclusions

This paper shows the relationship between text classi-
�ers using the vector space model with TFIDF word
weighting and probabilistic classi�ers. It presents a
probabilistic analysis of a particular TFIDF classi-
�er and describes the algorithm using the same ba-
sic techniques from statistical pattern recognition that
are used in probabilistic classi�ers like BAYES. The
analysis o�ers a theoretical explanation for the TFIDF
word weighting heuristic in combination with the vec-
tor space retrieval model for text categorization and
gives insight into the underlying assumptions.

Conclusions drawn from the analysis lead to the PrT-
FIDF classi�er, which eliminates the ine�cient param-
eter tuning and design choices of the TFIDF method.
This makes the PrTFIDF classi�er easy to use and
empirical results on six classi�cation tasks support its
applicability on real world classi�cation problems. Al-
though the TFIDF method showed reasonable accu-
racy on all classi�cation tasks, the two probabilistic
methods BAYES and PrTFIDF showed performance
improvements of up to 40% reduction of error rate on
�ve of the six tasks. These empirical results suggest
that a probabilistically founded modelling is preferable
to the heuristic TFIDF modelling. The probabilistic
methods are preferable from a theoretical viewpoint,
too, since a probabilistic framework allows the clear
statement and easier understanding of the simplify-
ing assumptions made. The relaxation as well as the
combination of those assumptions provide promising
starting points for future research.
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