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ABSTRACT

We present a general probabilistic framework for predicting the
outcome of pairwise matchups (e.g. two-player sport matches) and
pairwise preferences (e.g. product preferences), both of which have
widespread applications ranging from matchmaking in computer
games to recommendation in e-commerce. Unlike existing mod-
els for these tasks, our model not only learns representations of the
items in a more expressive latent vector space, but also models how
context modifies matchup and preference outcomes. For example,
the context “weather” may alter the winning probability in a ten-
nis match, or the fact that the user is on a mobile device may alter
his preferences among restaurants. More generally, the model is
capable of handling any symmetric game/comparison problem that
can be described by vectorized player/item and game/context fea-
tures. We provide a comprehensive evaluation of its predictive per-
formance with real datasets from both domains to show its ability
to predict preference and game outcomes more accurately than ex-
isting models. Furthermore, we demonstrate on synthetic datasets
the expressiveness of the model when compared against theoretical
limits.

1. INTRODUCTION

A wide range of real-world prediction problems require model-
ing a pairwise relation between a potentially large set of objects.
For example, when modeling competitive matchups in sports, the
goal is to predict the outcome and the associated winning proba-
bility of a game between two players. By learning from histori-
cal game records among the players, traditional statistical models
and their extensions [42, 7, 27] have been applied to both real-
world sports prediction [29] and the matchmaking systems of on-
line competitive video games [18]. Similarly, pairwise-relation
models have been used for learning to predict human preferences
and decision making. This ranges from purchasing choices people
make between pairs of product, to aggregating pairwise preferences
for learning the ranking of many items [12, 11]. In the context of
search engines especially, it has been shown that treating clicks as
revealing pairwise preferences is more reliable than treating clicks
as absolute judgments [23].
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What motivates the work in this paper is that matchups and com-
parisons typically take place in varying contexts that can alter the
outcome, and that both contexts and objects can be described by
generalizing features. For example, in modeling sports matchups,
characteristics of the game (i.e. the context) include weather, the
time the game is played at, the importance of the game, the referee,
antd the prize money. All these factors can affect the outcome of the
game, and they are different from features describing the players
(i.e. objects), like age, world ranking, recent game record, whether
just returning from injury or not, and playing at home or away.
Similarly in the preference domain, imagine the choices between
restaurants. Each restaurant could have object features like food
it serves, distance from current location, the environment, whether
AC or Wi-Fi is installed. However, a customer’s particular choice
is also affected by context like whether he is hungry or not, lunch
or dinner, weekday or weekend [3].

In this paper, we propose a general probabilistic framework for
modeling pairwise relations that applies to any problem that can
be modeled through object and context features. In particular, we
show how the framework applies to accurately modeling and pre-
dicting the outcome of any type of game between two players, as
well as to modeling human pairwise choices that are affected by
context. This problem of learning from contextual pairwise com-
parisons has not been studied before, and we discuss how it is dif-
ferent from existing works in Section 4. In particular, unlike pre-
vious works on learning from pairwise preferences, our model nat-
urally incorporates both features of objects (e.g., players, choices)
and features of the context (e.g, game, framing). Furthermore, by
building upon a recently introduced choice model that can repre-
sent intransitivity, our approach can model inherently intransitive
relations that exist in sports matchups, and it can represent appar-
ent intransitivities due to changing contexts in preference relations.
The new model is evaluated in both the matchup and the prefer-
ence domains, showing that it can produce results that surpass the
fidelity of conventional models.

2. PRELIMINARIES

In this section, we first formally define the learning task. Then
we discuss several conventional preference models, showing how
they do not adequately address the task. They serve as baselines for
empirical investigation later.

From now on, we are going to use the following concepts inter-
changeably for competitive matchup and pairwise preference mod-
eling: matchup/pairwise preference, player/item, game/context, win/
prefer. In this work we focus on modeling matchups between two
players, and we assume the result for each individual match cannot
be a draw. In the most general setting we are concerned about, a
player a encounters player b in a game g. At the end of the game,



there can be only one winner. We can assume it is a without loss of
generality. In addition, we also have feature vectors that describe
the players and the games: x,,x, € R% and z, € R%. These
feature vectors take very general form and can be used to encode
any information we have regarding the players and game. Think
about a professional tennis game for example. The feature vector
of a player could contain: identity, age, nationality, world ranking,
whether on a winning/losing streak, etc. These features are differ-
ent for the two players. On the other hand, the feature vector of a
game could contain: weather, surface of the ground, indoor or out-
door match, how deep into the tournament bracket, etc. They are
the same for both players, but could affect them differently.

By learning from a training set D that contains multiple matches
(triples of (a, b, g) and associated feature vectors), we want to pre-
dict the outcome of any future matchup as accurately as possible
in terms of the probability Pr(a beats b|g). In the following sub-
sections, we discuss a few conventional methods from the existing
literature that can be used for this learning task.

2.1 Rote learning

The most straightforward method for addressing the task is esti-
mating each matchup probability Pr(a beats b) individually while
ignoring the context. The maximum likelihood estimator gives an
intuitive formula
Na

Pr(a beats b) = oo
Ng + My

)]
where n, and n; are the numbers of times a and b wins respectively
among the n, + n, matches. The model contains O(n2) param-
eters, with n being the total number of players. One can imagine
that, given enough data and assuming that context has no influence,
it can model any matchup probability arbitrarily accurately. How-
ever, in reality not every possible matchup may be played enough
times to get a good sample, or even played at all. For example, a
comparatively lesser player who usually gets eliminated by a much
better player in the first round of a tournament due to seeding, rarely
gets a chance to play someone of similar competence. On the other
hand, the duel between two big names takes place much more fre-
quently in the later stages of the tournament. Some n, and np
could be zero, or even both of them, making it hard to model that
matchup accurately. This also gives rise to a negative infinite log-
likelihood, which is one of our evaluation measures. To avoid it,
we do a simple add-one smoothing [24].

Nneg +1
Ng + Np + 2’
We call this the rote learning method. Note that it cannot make

use of any features of players or games except for the player’s iden-
tity.

Pr(a beats b) = (2)

2.2 Bradley-Terry model

The seminal work of Bradley-Terry model [7, 27] is the basis
of many research works in pairwise comparison, which naturally
extends to matchup prediction. In the Bradley-Terry model, each
player’s strength is represented by a single real number -y, and there
are O(n) parameters. The probability of player a beating player b
is modeled as

Pr(a beats b) = exp(gpfgip(%)
1
T T+ exp(—(va — )
= S(M(a,b)). @

Here S(z) = 1/(1 4 exp(—=x)) is the sigmoid or logistic func-
tion. M (a, b) is what we call the matchup function of player a and
player b, and it simply measures the edge given to player a when
matched up against player b. In the Bradley-Terry model, it is mod-
eled as M (a,b) = va — s, the difference of strengths between two
players. Some properties of the Bradley-Terry model are:

1. The range of M(a,b) is R, with positive/negative meaning
player a/b has more than 50% chance of winning, and 0
meaning it is an even matchup.

2. When M (a,b) — 400, Pr(a beats b) — 1. Similarly when
M(a,b) — —oo, Pr(a beats b) — 0.

3. M(a,b) = —M (b, a). This makes sure that we always have
Pr(a beats b) = 1 — Pr(b beats a) satisfied.

Note that these three properties follow the properties of the sigmoid
function. In fact, any real-valued function M (a, b) that takes two
players as arguments and satisfies property 3 can be plugged in and
gives us a Bradley-Terry-like model.

The learning problem is to figure out the best strength parameter
for each player from the training dataset, and is usually done via
maximum likelihood estimation. Although the issue with O(n?)
parameters is avoided, the Bradley-Terry model still only makes
use of the identity of players, not additional features for players
and games.

2.3 Pairwise logistic regression model

There is one way to extend the Bradley-Terry model to incorpo-
rate additional player information. One can model each player’s
strength as a weighted sum

Yo =W X )

Then the matchup function becomes M (a,b) = w” (x,—x3). The
model can be interpreted as a logistic regression [6]: the input is the
difference of the two player’s feature vectors, and the output is 1/0
for the first player to win/lose. In fact, the Bradley-Terry model can
be considered as a special case of this model, where the only feature
used is the player’s identity. Naturally, this model could and should
be trained with regularization. We use an L2-norm regularizer in
our experiments.

The inability to handle game features remains unfixed by the lo-
gistic model. One may think game features could be added to this
model in two straightforward ways. For one, one could add an ad-
ditional weight vector for the game feature M (a,b) = w’ (xq —
xp) + W'ng. However, this is not a valid matchup function, be-
cause it does not satisfy property 3 introduced above. For the other,
one could stack player and game feature vectors to form a new
player feature vector, with the matchup function being

v (2] 2] o

However, the parts that are corresponding to the game features are
the same for two players, and thus cancel out and have no effect on
the output.

3. OUR FRAMEWORK

In this section, we detail our framework for general matchup
modeling, which avoids the O(n?) paprameters, and can naturally
incoporate all the player and game features. We first briefly review
the blade-chest model from [10], which serves as the top layer of
our framework. Then we introduce the bottom layers and explain
how different features are added in.
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Figure 1: A metaphorical illustration of the blade-chest model
for intransitivity. Player a and player b are in a sword duel.
Player a’s blade is closer to player b’s chest than vice versa, as
shown by the two blue dashed lines. This illustrates how player
a has a better chance of winning than player b.

3.1 The blade-chest model

Most of the previous works have the following in common: they
use one single scalar to model the absolute strength of a player.
Many of these works root from the Bradley-Terry model, and are
surveyed in [8]. In some cases, a single scalar is an oversimplifi-
cation, specifically since such models are not able to capture any
intransitive rock-paper-scissors relation among three players if it
exists in the data.

Our recent work of [10] models the intransitivity explicitly by
using two d-dimensional vectors to represent a player. One is called
the blade vector, and the other the chest vector. The winning and
losing probabilities are decided based on the distance between one
player’s blade to his opponent’s chest and vice versa. As depicted
in Figure 1, player a has an edge over player b in this matchup.

Mathematically, one can write down the corresponding matchup
function as

M(a, b) = belade - bchesl‘ |§1 (6)

which we call the blade-chest-dist model. The blade and chest vec-
tors are the parameters of the model, and are learned from training
data. Training this model on a synthetic rock-paper-scissors dataset
gives us an interlocking visualization that correctly represents all
three matchups as shown in Figure 2.

One variation of the blade-chest-dist model is to replace the Eu-
clidean distance in the matchup function with the inner product,
which gives

2
achesl||2 - Hablade -

M(a’7 b) = Aplade * Dehest — Dblade * Achest- (7)

We call it the blade-chest-inner model. According to our empir-
ical results in [10], modeling intransitivity this way is generally
advantageous over the single-scalar methods. Between the two, the
blade-chest-inner model usually performs better in terms of test-
ing log-likelihood and accuracy, and is also more stable. Still these
models cannot incorporate features other than the player’s identity.
In the later experimental section, we compare to this original blade-
chest-inner model as a baseline, and call it the featureless model. In
the rest of this section, we build upon the blade-chest-inner model
for the general matchup modeling framework.
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Figure 2: The visualization of the blade-chest-dist model trained
on a synthetic rock-paper-scissors dataset with 1, 000 games for
each matchup. d is set to 2. Each player is represented by an
arrow, with the head being the blade vector and the tail being
the chest vector.

3.2 The blade-chest model as the top layer

Our framework has a two-layer structure. At the top layer, we
use the blade-chest-inner model to output the winning probability,

Pr(a beats b|lg) = S(M(a, blg))

= S(avlade(Xa, Zg) - Denest (Xb, Zg) — Dolade (Xb, Zg) * Achest (Xa, Zg))-

®)

This top layer guarantees the needed symmetry, as M (a, blg) =
—M (b, a|g) still holds. Instead of being d-dimensional vectors of
free parameters for training, now the blade and chest vectors are
functions of the player and game feature vectors. Our bottom layer
serves as a feature mapper that bridges the blade/chest vectors and
feature vectors, as detailed in the following subsections.

3.3 Bottom layer for player features only

For simplicity, we first discuss how the bottom layer works when
we only use the player feature vectors. A natural way to link the
space of blade/chest vectors and the space of feature vectors is by
using a linear transformation. That is

Aplade (Xa) = BXq
bbiade (X6) = BXp
Achest (Xa) = CXaq
behest (X5) = CXp, )

where B and C are d X dj, parameter matrices that transform player
feature vectors into blade or chest vectors respectively', and d is a
tunable parameter. Alternatively, we can link the two spaces by
using a fully-connected feedforward neural network layer:

Aplade (Xa) = f(Bxa)
bbiage (x6) = f(Bxs)
achest(Xa) = f(Cxa)
benest (x6) = f(Cx), (10)

'Note that when x, and x; are 0-1 vectors that only encode
the players’ identities, this recovers the original blade-chest-inner
model as a special case.



where f is the element-wise activation function. We choose hy-
perbolic tangent function tanh(-) as f (over other popular choices
including the sigmoid function and the rectified linear unit), as its
range includes both positive and negative values, similar to the orig-
inal blade/chest vectors with free parameters.

The linear transformation Eq. (9) can also be viewed as the spe-
cial case of Eq. (10), with the identity function as activation func-
tion. We will refer to the two different options as NOACT and
TANH in later discussions.

3.4 Adding game feature vectors

Next we add game feature vectors so that they affect the two
players differently, and the effects do not cancel out. Unlike for the
logistic model, the concatenation of player vector and game vector
is now sensible

Aplade (Xa; Zg) = folade (B { Xa )
zg |
bblade (Xb, Zg) = folade (B { )Z(b )
9 |
achest(xay Zg) - fchest <C |: Xa )
Zg |
bchest(xluzg) = fchest (C |: }Z(b :|) . (1
g

Passing through a NOACT layer, there will be nonzero cross terms
%7z, and x{ z, left to represent different influence of the game on
each player. It applies to TANH similarly. We denote this choice
of model as CONCAT. It is depicted in Figure 3.

An alternative model is to let the game feature vectors warp
the blade and chest vectors directly. To do so, we first separately
map the game feature vector into the same d-dimensional space as
blade/chest vectors by applying a NOACT/TANH layer. Then we
apply a Hadamard/entry-wise product for the warping,

Aplade (Xa, Zg) = f(B/Zg) f(Bxa)
bbtade (Xb, Zg) = f(B'zg) o f(Bxyp)
Achest(Xa, Zg) = f(c zg) o f(CXa)
benesi(Xb, 2g) = f(C'zg) o f(Cxp). 12)

We call this model choice SPLIT, as the mapping of the player and
game features happens separately. The entire pipeline is shown in
Figure 4.

3.5 Training

We train our model to maximize the log-likelihood on the train-
ing dataset, that is (assuming a is the winner)

argmax Z log Pr(a beats b|©, g). (13)
(a,b,g)eD

© denotes all the parameters, and it typically consists of B and C,
with additional B’ and C’ for the SPLIT model. We use the Frobe-
nius norms of these parameter matrices as regularization terms.

The training of our model is done via online backpropagation
[38]. Until convergence, we iterate through the entire training dataset
repeatedly, feed one game to the model at a time, update the pa-
rameters immediately based on the result of backpropagation. Our
implementation in C that contains all the different training options
and is available at http://www.cs.cornell.edu/~shuochen/.
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Figure 3: Pipeline of CONCAT model.
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Figure 4: Pipeline of SPLIT model.

4. RELATED WORK

Pairwise comparison has been studied since the seminal work of
[42], which later led to the well-known Bradley-Terry model [7,
27]. They paved the way for most of the research in the area, as
surveyed in [8].

Learning to rank a player’s strength in order to predict results
or do matchmaking in sports or online video games has been a
successful application of pairwise comparison modeling. The fa-
mous Elo rating system [17], a variation of Bradley-Terry model,
started in rating chess players, and is now widely used in many
sports prediction applications and matchmaking systems of online
video games (a.k.a esports) [1]. Another example is the Trueskill™
ranking system [18] developed by Microsoft. It uses a univariate
Gaussian distribution to model each player’s skill and uncertainty,
and its Bayesian inference is done via approximate message pass-
ing on a factor graph. Its follow-up works include [13, 32]. [45]
proposes a factorization method to model players’ ratings in dif-
ferent contexts®. There are also works that aim at inferring each
player’s strength through learning from group competition [19, 30].
The goal of these works and many others along the line is to learn
a scalar parameter for each of the players from historical pairwise
comparison data. These parameters usually represent the absolute
strengths of the individuals, with larger values favored for the win
over smaller values in future games.

ZA context in their paper is represented by a set of discrete vari-
ables, e.g. a map one round of online video game is played on.



However, for many real-world settings, these types of models can
be an oversimplification. For example, they are unable to capture
effects like intransitivity (rock-paper-scissors relation) that exist in
real data [10]. To remedy this, several works used more expressive
ways of modeling players, and report improved performance. [9,
10] use one or more vectors to represent a player, and are able to
explicitly model the intransitive behaviors. [21, 43] generalize the
Bradley-Terry model with vectorized representations of a player’s
ranking. The previously discussed [19] could also fall into this
category, as the player is represented by a vector of its ratings for
different discrete contexts. [2] designs a matrix factorization algo-
rithm to predict scores of professional basketball games.

It is worth noting that the intransitivity caused by multiple at-
tributes has been studied in economics and decision theory [28, 16,
26]. Instead of taking a learning perspective, these works assume
the features/attributes of items are given, and study what type of
underlying thought process could cause intransitivity. Thus, it is an
inverse process of what our work and the above works are about.

The BalanceNet model proposed in [14] is closely related to our
work. It uses a multi-layer neural network to help matchmaking
in Ghost Recon Online, a first-person shooter (FPS) online video
game developed by Ubisoft. It can also account for player features
such as number of matches played, average kill/death ratio, etc.
The main differences that make it incomparable with our work are
twofold. First, the game they addressed is asymmetric. The oppos-
ing players in one match are playing different roles, which means
if you switch the input of them, you do not get one minus your
previous probability. This comes with the nature of Ghost Recon
Online, and makes it not applicable to general symmetric matchups
unlike our framework®. Second, it is not designed to make use of
any game features.

Most of the aforementioned works on player modeling and game
prediction only take into account players’ identities, with excep-
tions of [19] considering discrete context variables and [14] using
additional player features. Different from them, our work in this pa-
per is a general probabilistic matchup modeling framework for any
two-player game with more expressive power than player-ranking.
It can also utilize any vectorized player features and game features,
no matter whether the features are discrete or continuous.

Another application of pairwise comparison is preference learn-
ing [15, 11, 44]. Instead of one player beating the other, here one
observation in the dataset is one item being preferred (by a human)
over the other. In a typical preference learning setting, the training
data consists of pairwise preferences of instances, represented by
a feature vector. The goal is to learn an underlying ranking func-
tion (with scalar output) that satisfies the training data as much as
possible. A similar task arises in the context of search engines. It
is studied as the “learning from implicit feedback problem” [12,
22, 34, 23], where user expresses his/her preference by clicking on
retrieved items. The major difference between these work and our
work is threefold. First, the items’ identities are usually not part of
the feature vectors in their empirical tests (although theoretically
can be). Other auxiliary features are used instead. Second, sim-
ilar to aforementioned player-ranking models, they try to learn a
scalar ranking function for the instance, which has limited expres-
siveness in representing the relations between items. Lastly, there is
no notion or no natural way of accounting for context information
in which the choice is made.

*We would argue that a symmetric matchup is a more general form,
as if the game is asymmetric, it could still be modeled as a sym-
metric one. One possible approach could be adding to the player
feature vector to specify what asymmetric role he is playing in this
game.

Learning with context has been studied in the recommendation
community, and one line of research that is related to our work
is context-aware recommender systems. While traditional recom-
mender systems [37] consider only the ratings of users given to
items®, context-aware recommendation systems recognize that the
context in which users rate items could be a crucial factor that im-
pacts the evaluation [3]. There is also evidence from the research
in decision-making domain that different contexts can change hu-
man decisions significantly [40, 20]. As a result, making use of
the context information could significantly boost the performance
of the recommender system, as reported in representative works
like [5, 25, 39, 36]. Here, the task is learning from user ratings
of items under different contexts to predicting any missing values,
the unknown ratings for any triple of user, item and context. It is
usually measured by mean average error (MAE) of the predicted
ratings, or normalized discounted cumulative gain (NDCG) for re-
trieval tasks. This differs from our work, which concerns learning
from user’s pairwise preferences instead of cardinal ratings to pre-
dict the choice and its probability, not ratings for items, as accu-
rately as possible.

S. EXPERIMENTS

We conducted an extensive empirical evaluation of the models
on both competitive matchup data and pairwise preference data. In
each domain, we report results on both real-world data to demon-
strate applicability and practicality, and on synthesized data to demon-
strate the expressiveness of our models.

5.1 Experiment setup

We first introduce the general setup of all the experiments. If
not specified otherwise, the experiments are run as follows. We
train various models (both ours and baselines) with different d’s
(where applicable) and regularization intensities® on the training
dataset. The model that reports the best performance on the vali-
dation dataset in terms of log-likelihood is then tested on the test
dataset.

For evaluation, we use two metrics: average test log-likelihood
and test accuracy. The average test log-likelihood is defined sim-
ilarly to the training log-likelihood. For the test partition D’, as-
suming a is the winner,

L(D'|©) = ﬁ >

(a,b,g)ED’

log(Pr(a beats b|©, g)),  (14)

where |D’| is the total number of games in the testing set. Log-
likelihood is always a negative value. The higher the value is, the
better the model performs. The test accuracy is defined as

]l{Pr(abeatsb\@,g)zO.S}. (15)

A(D'|©) = 1,‘ 3

|D
(a,b,g)eD’

1{} is the indicator function. This metric is a real number in [0, 1],
representing the percentage of matches whose binary outcome can
be correctly predicted by the model. The higher the value is, the
better the model performs.

For the baselines, we compare our methods with Rote Learning,
Bradley-Terry, the Pairwise Logistic Model and the Trueskill™

“Works that make use of the inherent features of users and items
also exist [4, 41].

5The selection of these hyperparameters is through grid search,
with d from 2 to 100, and the shared regularization hyperparam-
eter \ across all parameter matrices from 1E-7 to 1E3.



ranking system®. For our methods, we also vary the information we
input into the models, from featureless (Section 3.1) , player/item
features only to both player/item features and game/context fea-
tures. Note that methods from context-aware recommender system
are not applicable to pairwise preference prediction as explained in
the last paragraph of Section 4.

5.2 Experiments with synthetic datasets

We first explore the expressiveness of the models on three syn-
thetic datasets that correspond to plausible real-world scenarios, but
allow us to control the effect we aim to study.

5.2.1 Synthetic Datasets

For all datasets, we vary the amount of data, but always split to
have roughly a 5: 2: 3 training, validation and testing ratio.

Dataset “syn-rand”. With this dataset, we explore how changes
in context make the outcome of a game more random (e.g., bad
weather making a tennis match more random). Furthermore, we
simulate how the home-field advantage gives the home player an
edge. Data is generated as follows. We create 50 players in total. In
any game, there are also 2 game features: weather being normal or
bad. Each happens 50% of the times. If the weather is bad, the out-
come of the matchup is 50/50 before considering the home-field’s
effect discussed below. Otherwise, we assign a 75/25 chance for
each player to win prior to considering home-field advantage. The
favored player is selected via a coin toss. In addition to the game
features, there are 3 players features (in addition to player’s iden-
tity features): playing at home, playing away or playing in a neutral
environment. In any game, one of the following two is true: one
player is at home and the other is away, or both players are playing
in neutral environments. The two scenarios are equally likely. If
one player has the home-field advantage, the player’s chances of
winning increase by 10 percent (e.g. a 75/25 matchup when the
favored player is away becomes a 65/35 matchup). Otherwise, the
probability is not altered. To generate a game, we randomly sam-
ple two different players, the home-field and the weather features.
We then sample the outcome according to the resulting matchup
probability.

Dataset “syn-determ”. This dataset is analogous to “syn-rand”,
but now context (i.e., weather) makes a game more deterministic.
In particular, there are also 2 game features: weather being normal
or good. Good weather alters the winning probability to 100/0
while disregarding the home-field feature. Normal weather does
not alter the winning probability.

Dataset “syn-attr”. With this dataset we study a scenario where
context can switch the polarity of a preference. For example, imag-
ine a case when the user choose between two restaurant. If the user
is already in town and logs on via a mobile device, the distance to
the restaurants may be the most important factor in the decision. On
the other hand, if we are still at home with a desktop, the quality of
the restaurant may overweigh the distance, as we need to drive any-
way. Using this scenario, the data contains 50 restaurants in total.
Each restaurant is associated with two binary 0/1 numbers that rep-
resent distance and quality. The chance for each number to be 0 or
1 is 50%. For each pairwise comparison, we uniformly select two
restaurants and the mobile/desktop context, which is also equally
likely. We compare the two 0/1 numbers of the given context. If

®The original Trueskill™ ranking system runs in an online fashion:
it sees a game, updates the parameters, and never sees that game
again. However, to make it a fair comparison with other methods
that run in batch mode, we also pass the training set through the
Trueskill™ model multiple times until we have the best validation
results.

they are the same, we select the winner via a coin toss. Otherwise,
the one with larger number (1 in this case) wins the comparison.

5.2.2  Empirical results

We test our models with different input information, and tune
them across all training option combinations (NOACT, TANH, CON-
CAT, SPLIT) on the validation set. This ends up with “featureless”
(no additional feature used other than identities), “player only”
(best result by using only player features) and “player+game” (best
result by using both player and game features)’. We compare the
results against the aforementioned baselines. Note that “player
only” and “logistic” do not apply to the preference data, as there
are no player/item features other than identity. They are essentially
the same as “featureless” and “Bradley-Terry”.

We plot the performance metrics against the size of the dataset
in Figure 5 and 6. In addition, we introduce two limits, denoted as
“theoretical best” and “theoretical best rote”®. For the first, it is the
limit we could get by being fully aware of how the data is generated
and having an infinite amount of training and testing data. For the
second, it is similar to “theoretical best”, but the infinite amount
of data only contains players’ identities, not additional player and
game features. This corresponds to the input information that fea-
tureless, Bradley-Terry, and Trueskill™ can make use of.

How do our models compare against the baselines? We ob-
serve that our models generally outperform all the baselines. With
full information, our models are favored when compared with the
rest in terms of log-likelihood, and are almost always better in terms
of accuracy. The only exception is test accuracy for syn-determ
data in the middle panel of Figure 6, where all methods perform
well since there are so many 100/0 matchups generated.

How do different levels of input information affect our mod-
els? In general, we see that extra information helps improve the
performance when comparing the curves of “player+game”, “player
only” and “featureless” in all plots, especially as the numbers of
games grow. It is interesting to point out that including player
feature does not help much when comparing against the feature-
less baselines on syn-determ, as the “player only” curve is barely
above “featureless” in the middle panels of Figure 5 and Figure 6.
This is due to the way in which the dataset is generated (when the
weather is good, home-field advantage is ignored and the better
player wins).

How do our models compare against the theoretical limits?
On the syn-rand data where bad weather makes a game much more
unpredictable, it seems that more games are needed for “feature-
less” to approach “theoretical best rote” (the two curves are still
noticeably apart at the right end in the left panels of Figure 5 and
Figure 6). Other than that we can see our context-sensitive methods
“player+game” tend to converge to the corresponding theoretical
limits as the numbers of games grow in all six plots. This provides
evidence that our methods can indeed capture the underlying gen-
eration process, including the three distinct effects that context has
in the three datasets.

5.3 Experiments with real-world datasets

We now turn to the real-world applications to verify the applica-
bility and practicality of our methods. The datasets span the com-
petitive matchup and preference domains: professional tennis and
Starcraft 1l data for competitive matchups, and three datasets con-
verted from context-aware recommender system research for pair-
wise preferences.

"We only report the best results for each level of input information
to keep the plots uncluttered.

8The derivations of the two limits are omitted due to limited space.
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Figure 5: Average log-likelihood on syn-rand (left panel), syn-determ (middle panel) and syn-attr (right panel) datasets.
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right panel.

5.3.1 Real-World Datasets

Tennis Datasets. We first look at the data of matches between
top male tennis players in the world from year 2005-2015 and fe-
male players from year 2007-2015. These games are from all levels
of tournaments organized by Association of Tennis Professionals
(ATP) and Women’s Tennis Association (WTA). The full collec-
tion of data can be found at http://tennis-data.co.uk/alldata.php. It
contains match history of in total 914 players and 28,054 games
for ATP, and 775 players and 21,488 games for WTA. For the
experiments, we use the games before (including) the year 2012
for training and validation, and the later games for testing. The
training/validation ratio is roughly 4: 1. We end up with 17,622
training games, 4,401 validation games and 6, 031 testing games
for ATP, and 11, 725 training games, 2, 928 validation games and
6, 835 testing games for WTA.

The data source above also contains more detailed information
about the players and games, which serves as feature vectors in
our model. For players features we have player’s identity, world
ranking when the game was played, points for world ranking when
the game was played, whether on a winning/losing streak and odds
from several betting companies/websites (Bet365, Expekt, Lad-
brokes, Pinnacles Sports and Stan James). The game features con-
tain the location at which the game took place, the series the game
belongs to (e.g. International Gold, Masters), indoor or outdoor
court, surface of the court (e.g. Grass, Clay, Hard, Carpet), the
stage the game was at (e.g. Group stage, Round of 16, Semifi-
nal, Final) and the format of the game (usually best of 3 or best of
5). Overall, we extracted 927 player features for ATP and 788 for

WTA, and also 119 games features. As one can see from above
that most of the features are discrete, these feature vectors are very
sparse.

Starcraft 1l Dataset. Starcraft Il is an online military science
fiction real-time strategy game developed and published by Bliz-
zard Entertainment’. Tt is one of the most popular games in the
esports scene. In the most common competitive setting, two play-
ers face off against each other. Each player as a war commander
picks one from the three distinct in-game races: Terran, Protoss or
Zerg as his army, each of which has different strengths, powers and
abilities. The battle takes place on a battleground which is called
a map. Both players collect resources on the map and build vari-
ous of combat units to fight the opponents, until one player’s force
is completely wiped out and the other claims victory. The com-
bat units all have different attributes such as building cost, building
time, movement speed, attack range, toughness, etc. A set of Star-
craft I strategies include managing different resources, building an
army with right components at the right time, scouting and reacting
to opponents’ moves properly, etc.

We crawled Starcraft II competition data from a third-party web-
site aligulac.com from the beginning of their database to April 8th,
2015. It contains 129, 005 matches among 4, 761 professional Star-
craft 11 players from various online and offline tournaments. They
are randomly divided into training, validation, testing sets accord-
ingtoaroughly 5: 2: 3ratio, giving us 64, 505 for training, 25, 800
for validation, and 38, 700 for testing. The reason we did not di-
vide them according to some chronological order like the tennis

*http://us.battle.net/sc2/en/



data is because the game is evolving. There are at least two major
phases of the game: the original release of the game with the sub-
title Wings of Liberty (WoL), and an expansion three years later
called Heart of the Swarm (HotS). Within each phase, there are
many patches that modify the rules, the units or the maps to make
the game more balanced and enjoyable. Some of these patches are
more important than the others. By mixing up all games, we elim-
inate the possibility that the training and testing parts being based
on very different phases of the game.

The website aligulac.com also contains rich information about
these games, from which we select a few that we believe to be the
most informative as player features. There are 4,851 in total, in-
cluding player’s identity, in-game race, nationality'®, overall rating
and standard deviation from aligulac.com and rating and standard
deviation versus opponent’s race from aligulac.com. We also use
40 game features, including the phase of the game (WoL or HotS),
game being played online or offline, the quarter of the year in which
the game was played and various keyword features contained in the
event names that appear most often (e.g. Group, Qualifier, Invita-
tional, Europe, ProLeague, Playoff, Dreamhack, etc.).

Context-Sensitive Preference Datasets. For our experiments, the
ideal setting for collecting data would be presenting two choices to
a human judge in various context and ask them to pick one over the
other. However, there is no such a dataset that is publicly available
as far as we know. Instead, we take the datasets from context-
aware recommender systems and process them into the format we
need. In these datasets, each entry is a user’s rating for a given item
under certain context. We group all the entries by user and context.
Within each group, for any two items with different ratings, we
can generate a pairwise comparison along with the context. The
datasets we use are:

1. The Food dataset from [33]. It contains 4, 036 comparisons
among 20 food menus from 212 users''. The user are in three
different levels of hunger, each of which could either be real
or supposed situation.

2. The Tijuana restaurant dataset from [35]. It is a dataset of 50
people taking questionnaire about their preference on nearby
40 restaurants. There are two different contexts: time (week-
day or weekend) and location (at school, work or home)
when the options are provided. We generate 4, 041 compar-
isons in total.

3. The DePaul movie dataset from [46]. 97 students of De-
Paul University participated in an online survey regarding 79
movies for different occasions. The context contains time
(weekday, weekend or N/A), location (home, cinema or N/A)
and companion (alone, partner, family or N/A). We create
26, 264 comparisons out of the original data.

Each dataset is randomly divided into training, validation and test-
ing in aroughly 5: 2: 3 ratio.

5.3.2 Empirical results

The results are in Table 1, 2, 3 and 4. In each table, we sepa-
rate the baselines and our methods with a horizontal double line.
In the lower section for our models, different training options are
blocked and ordered according to increasing information for train-
ing: featureless for using only player/item’s identity, NOACT and
TANH for using all the player/item features, and the rest for using

OWe think it is an important feature as the Starcraft Il competitive
scene is mostly dominated by Korean players.

"'We directly use the data processed by [31], which can be found at
https://github.com/trungngv/gpfm

both player/item and game/context features. There are fewer rows
in Table 3 and 4 than in Table 1 and 2. This is because we do not
have additional item features there and therefore some methods are
essentially the same.

How do our models compare against the baselines across dif-
ferent applications? Overall, our methods are favored against all
the baselines. In all of the four tables, the best results appear in the
sections of our models that use all information available. We also
do paired t-tests between our best results and the best baselines'?,
and all of them pass 0.05 significance level except for the accuracy
on Food and WTA, for which we have a p-value of 0.76 and 0.18
against rote. When comparing our best results among “TANH” and
“NOACT” with pairwise logistic regression, all of which only use
player features, ours are also always better except for the accuracy
on WTA (p-value of 0.07, while others are less than 0.05). On the
other hand, our featureless model do not always beat its feature-
less counterparts in the baselines. This is similar to what we found
in [10], where we need to include a Bradley-Terry-like bias term
in our model in order to surpass the baselines on certain datasets.
In terms of the extent of improvement over the best baselines, the
results on Starcraft 11, Tijuana and DePaul stand out.

How do additional player features affect the models? Com-
paring “featureless” with NOACT/TANH in Table 1 and 2, we can
see the positive effect of adding additional player features, and all
of the comparisons pass a p < 0.05 paired t-test. Moreover, the
player features we use for tennis seem to be more influential than
those used for Starcraft Il (more than 5% boost versus about 1%
in accuracy). Our conjecture is that the world ranking and points
features, as well as the betting companies’ odds features are the
ones responsible. By using them, we are bootstrapping from other
unknown prediction models. To test it, we run experiments while
withholding some of these features. The results on ATP and WTA
are quite similar: when the betting odds features are withheld, the
performance dropped to around halfway in between TANH and
“featureless”. On the other hand, it is only slightly pushed down
when the world ranking and points features are withheld. This sug-
gests that the betting odds features are crucial in the improvement
of performance on tennis data.

Does the contextual information have different effects in the
two domains? Yes. Looking at the improvements between the best
results with and without the game/context features, it seems the
preference modeling, especially on Tijuana and DePaul, benefits
more. In terms of accuracy, they both gain about 8%, while on
matchup data it is around 1% (all pass p < 0.05 t-test except for
WTA with p-value of 0.18). This suggests that in competition, the
outcome depends more on the players’ intrinsic properties than the
environmental factors, while for human preference, the context in
which the decision is made plays a much more important role.

Which training options are preferred? TANH appears to be
better than NOACT for both log likelihood and accuracy and on
all the datasets. When it comes to the choice between CONCAT
and SPLIT, the choice is less clear. There are few occasions where
SPLIT beats CONCAT as the bold numbers suggest, but usually
not by a lot. On the other hand, SPLIT can be outperformed by the
methods without using contextual features, on the tennis datasets
for example. The significance tests suggest that TANH beats NOACT
and CONCAT beats SPLIT in all scenarios (p < 0.05) except ac-
curacy of TANH against NOACT on WTA and log-likelihood of
CONCAT against SPLIT on Tijuana (both with p-values of 0.27).

">The t-tests here and hereafter are done on 10 random splits of the
datasets, with hyperparameters fixed to the optimal values obtained
from the main experiments. Bonferroni correction is used for mult-
ple comparisons.



Model ATP WTA Starcraft 11
rote —0.6764 | —0.6873 —0.5831
Bradley-Terry —0.6092 | —0.6721 —0.5778
Trueskill™ —0.6209 | —0.6643 —0.6001
logistic —0.5777 | —0.6229 —0.5808
featureless —0.6590 | —0.6722 —0.5886
NOACT —0.5974 | —0.6174 —0.5299
TANH —0.5633 | —0.5874 —0.5232
NOACT CONCAT | —0.5970 | —0.6166 —0.5229
TANH CONCAT || —0.5616 | —0.5865 | —0.5177
NOACT SPLIT —0.6051 | —0.6283 —0.5249
TANH SPLIT —0.5981 | —0.6228 —0.5178

Table 1: Test log-likelihood on competitive matchup datasets.

Model ATP WTA Starcraft Il
rote 55.63% | 53.52% 68.77%
Bradley-Terry 66.66% | 61.26% 69.21%
Trueskill™ 66.97% | 61.96% | 69.82%
logistic 69.89% | 68.02% 71.68%
featureless 63.70% | 58.45% 73.08%
NOACT 69.72% | 68.09% 73.75%
TANH 70.35% | 68.46% 74.07%
NOACT CONCAT || 69.86% | 68.20% 74.22%
TANH CONCAT 70.40% | 68.62% 74.66%
NOACT SPLIT 69.41% | 67.18% 73.87%
TANH SPLIT 69.87% 68.11% 75.10%

Table 2: Test accuracy on competitive matchup datasets.

Model Food Tijuana DePaul
rote —0.6943 | —0.7371 | —0.6255
Bradley-Terry —0.6927 | —0.6929 | —0.6082
Trueskill™ —0.6720 | —0.7014 | —0.5916
featureless —0.6750 | —0.6864 | —0.6009
NOACT CONCAT || —0.6709 | —0.4321 | —0.6033
TANH CONCAT —0.6709 | —0.4108 | —0.5038
NOACT SPLIT —0.6741 | —0.5597 | —0.5927
TANH SPLIT —0.6701 | —0.4207 —0.5531

Table 3: Test log-likelihood on pairwise preference datasets
with context.

Model Food Tijuana | DePaul

rote 59.08% | 50.33% | 65.60%
Bradley-Terry 58.33% | 54.79% | 66.69%
Trueskill™ 57.59% | 75.33% | 67.67%
featureless 59.08% | 58.00% | 68.21%
NOACT CONCAT | 57.34% | 81.85% | 68.29%
TANH CONCAT 57.26% | 82.10% | 75.56%
NOACT SPLIT 58.75% | 80.53% | 71.13%
TANH SPLIT 60.81% | 80.36% | 73.13%

Table 4: Test accuracy on pairwise preference datasets with
context.

As a result, we would suggest TANH CONCAT to be the go-to
option of our model.

6. CONCLUSIONS

We presented in this paper a general probabilistic framework for
modeling competitive matchup and pairwise preference that can

utilize any vectorized player/item and game/context features. We
conducted experiments on synthetic datasets that simulate plausible
real-world scenarios in both domains. The results demonstrate that
our models, while outperforming the baselines, can also approach
the theoretical best limit as the number of games/comparisons grows.
Experimental results on the real-world datasets also clearly demon-
strate the advantage of our models and the benefit of utilizing the
additional features. It is interesting to see that the contextual fea-
tures are more influential in the preference domain than in compet-
itive matchups.
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