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ABSTRACT
This paper summarizes and analyzes the results of the 2004
KDD-Cup. The competition consisted of two tasks from the
areas of particle physics and protein homology detection. It
focused on the problem of optimizing supervised learning
to different performance measures (accuracy, cross-entropy,
ROC area, SLAC-Q, squared error, average precision, top
1, and rank of last). A total of 102 groups participated in
the competition, 6 of which received awards or honorable
mentions. Their approaches are described in other papers
in this issue of SIGKDD Explorations. In this paper we do
not analyze any particular approach, but give insight into
the performance of the field of competitors as a whole. We
study what fraction of the participants found good solutions,
how well participants were able to optimize to different per-
formance measures, how homogeneous their submitted pre-
dictions are, and if the best submissions represent the max-
imal performances that could reasonably be achieved. We
are keeping the KDD-Cup 2004 WWW site open and have
added an automatic scoring system for new submissions in
order to encourage further research in this area.

1. INTRODUCTION
Real-world applications of data mining typically require op-
timizing to non-standard performance measures that depend
on the specific application. For example, in direct market-
ing, accuracy is a poor indicator of performance, since there
is a strong imbalance in cost between missing a customer and
making the advertisement effort a little too broad. Even for
the same dataset, we often want to have different classifica-
tion rules that optimize different criteria. For example, in
information retrieval, we sometimes want to optimize pre-
cision, at other times want to optimize recall, and at other
times need to optimize to a measure that balances both pre-
cision and recall (e.g. F-Score). The need for data min-
ing methods that allow optimizing to different performance
measures inspired the tasks of this year’s KDD-Cup. In
particular, this year’s KDD-Cup focused on optimizing pre-
dictions to a variety of performance measures in supervised
classification.

The 2004 KDD-Cup competition included two datasets —
a binary classification task for a quantum physics problem,
and a protein homology prediction task. We provided a
supervised training set and an unlabeled test set for each
task. Participants were asked to submit 4 sets of predic-

tions for each test set, each set of predictions maximizing
performance according to a particular measure. The four
performance metrics for the physics problem were accuracy,
cross-entropy, ROC area, and SLAC Q-Score. The four met-
rics for the protein problem were squared error, average pre-
cision, top1, and rank of last. These eight metrics are de-
scribed in Sections 2.1 and 2.2. We provided software1 to the
participants to standardize how the performance measures
were computed. The same software was used to determine
the winners of the competition.

In this report we describe the two KDD-Cup 2004 tasks in
detail2, provide participation statistics, and announce the
winners and how they were determined. We also analyze
the results of the competition. The submissions of more
than 100 participants are an interesting dataset to mine for
patterns of how the field as a whole performed on the two
data-mining tasks. For example, what percentage of the
field provided reasonable solutions? Did the winners per-
form significantly better than the rest of the field? Did
the participants improve their performance by optimizing
to particular performance measures? Did all groups that
performed well find essentially the same solutions? These
are some of the questions we address in this report.

2. DATASETS AND TASKS

2.1 Particle Physics Task
The first of the two KDD-Cup 2004 tasks is a particle physics
classification problem. At the Stanford Linear Accelerator
Center (SLAC), high energy particle beams are collided to
generate subatomic particles. A major challenge in some of
these experiments is to correctly classify the particle tracks.
In the Physics Task, the goal is to learn a classification rule
that differentiates between two types of particles generated
in collider experiments based on 78 attributes. The train-
ing set has 50,000 examples, and the test set has 100,000
examples. The data set was contributed by Charles Young
et al. from SLAC. The source of the data set, the identity
of the two particles, and the definitions of the 78 attributes
were hidden from participants to prevent competitors from
trying to gain an advantage by studying the physics of the
problem.3

1http://kodiak.cs.cornell.edu/kddcup/software.html
2Additional information can be found on the KDD-Cup 2004
WWW-site at http://kodiak.cs.cornell.edu/kddcup
3One might argue that in data mining one should take ad-
vantage of background knowledge and any other domain-
specific information that is available, which argues against
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In the competition, we measure performance on the particle
physics problem using four metrics:

ACC (maximize) We use the usual definition of accuracy –
the number of cases predicted correctly, divided by the
total number of cases. Predictions must be made for
all cases. The predictions submitted for accuracy were
allowed to be boolean or continuous. For this met-
ric, participants were required to submit a prediction
threshold: predictions above or equal to this threshold
were treated as class 1, predictions below threshold as
class 0. The goal, of course, is to maximize accuracy
on the test set. An accuracy of 1.00 is perfect predic-
tion. Accuracy near 0.00 is poor. Because the Physics
Task is a balanced problem, baseline accuracy is 0.50.

AUC (maximize) We use the usual definition for area under
the ROC curve. An ROC plot shows the true positive
rate vs. false positive rate as the prediction thresh-
old sweeps through all the possible values. This is
the same as plotting sensitivity vs. 1-specificity as the
threshold is swept. AUC is the area under this curve.
An AUC of 1 indicates perfect predictions – all posi-
tive cases sorted above all negative cases. AUC of 0.5
is random prediction – there is no relationship between
the predicted values and truth. AUC below 0.5 indi-
cates there is a relationship between predicted values
and truth, but the model is backwards, i.e. tends to
predict smaller values for positive cases! An alternate
way to think of AUC is to imagine sorting the data by
predicted values, and counting the number of swaps
needed to properly order the data by class:

AUC = 1.0−
# swaps

(# positives)× (# negatives)

CXE (minimize) We use the usual definition for cross-entropy,
but protect the cross-entropy from becoming infinite.
Cross-entropy, like squared error, measures how close
predicted values are to target values. Unlike squared
error, cross-entropy assumes the predicted values are
probabilities on the interval [0,1] that indicate the prob-
ability that the case is class 1.

CXE = −

∑

cases

[(T )× log(P ) + (1− T )× log(1− P )]

where T is the Target Class (0 or 1) and P is the
predicted probability that the case is class 1. Note
that the terms (T ) and (1 − T ) are alternately 0 or 1
so log(P ) is added to the sum for positive cases and
log(1−P ) is added for negative cases. Note that cross
entropy is infinite if T = 0 but P = 1, or if T = 1 but
P = 0. In the code provided to calculate cross-entropy
we protect against this by returning a very, very large

us hiding the identity of the problem. However, we decided
to not provide participants with the identity of the task and
the contributor because we thought few participants would
be able to spend the time to learn enough particle physics
to understand the problem, and because we did not want
to burden our collaborators at SLAC with requests from
participants for additional information.

number instead of infinity. This helps minimize plat-
form dependence. To make cross-entropy independent
of data set size, we use the mean cross-entropy, i.e.,
the sum of the cross-entropy for each case divided by
the total number of cases.

SLQ (maximize) The Slac Q-Score (SLQ) is a domain-specific
performance metric devised by researchers at the Stan-
ford Linear Accelerator (SLAC) to measure the quality
of predictions made for certain kinds of particle physics
problems. SLQ works with models that make contin-
uous predictions on the interval [0-1]. It breaks this
interval into a series of bins. For the KDD-CUP we
used 100 equally sized bins: 0.00-0.01, 0.01-0.02, ...,
0.98-0.99, 0.99-1.00. SLQ places predictions into the
bins based on their predicted values. In each bin SLQ
keeps track of the number of true positives and true
negatives. SLQ is maximized if bins have high purity,
e.g. if all bins contain all 0’s or all 1’s. This is unlikely,
so SLQ computes a score based on how pure the bins
are:

SLQ =
∑

bins

ε(1− 2w)2

where ε is the percent of events accepted for prediction,
and w is the probability of misclassification. Note that
SLQ only cares about the purity in each node. A model
would have poor accuracy, and AUC below 0.5, if you
switch the labels used for positive and negatives after
training, but SLQ is insensitive to this.

Collaborators at SLAC tell us that SLQ is an impor-
tant quantity custom designed for this particle physics
problem that estimates the statistical power of the
learned model. Increasing SLQ by 5% is equivalent
to having 5% more data, which potentially saves hun-
dreds of thousands of dollars or more in accelerator
time.

On both the Physics and Protein tasks contestants are al-
lowed to optimize their learning methods for each metric
and submit different predictions for the test set for each of
the four metrics on each task.

2.2 Protein Homology Task
Unlike the Physics problem where each training or test case
is independent, this task has more complex structure. The
goal in this task, contributed by Ron Elber, is to predict
which proteins are homologous to a native sequence. The
data is grouped into blocks around each native sequence. We
provided 153 native sequences as the training set, and 150
native sequences as the test set. For each native sequence,
there is a set of approximately 1000 protein sequences for
which homology predictions are needed. Homologous se-
quences are marked as positive examples, non-homologous
sequences (also called ”decoys”) are the negative examples.

On average, each native sequence contains over 100 decoys
per homologous sequence, making this a very unbalanced
problem. The goal is to predict which of the 1000 proteins
are homologous to the native protein based on 74 attributes.
These 74 attributes are a variety of scores that describe the
match between two proteins. These scores include, for ex-
ample, the length of the longest local alignment, the per-
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centage sequence identity after alignment, or the z-score of
the global alignment4.

Evaluation measures are applied to each block correspond-
ing to a native sequence, and then averaged over all blocks.
Most of the measures are rank-based and assume that model
predictions provide a ranking within each block from “most
likely homologous” to “least likely homologous”. The task is
to provide 4 sets of predictions for the test set, each of which
optimizes one of the following 4 performance measures.

TOP1 (maximize) This measure is defined as the fraction
of blocks with a homologous sequence ranked highest.
TOP1 is calculated conservatively when there are ties.
If multiple sequences are tied for rank 1, all of them
must be homologous. If any of the sequences tied for
rank 1 are not homologous, the TOP1 score is 0 for
that block. (This means it is never beneficial to have
ties.) TOP1 captures how well the model predicts on
the most confident cases. If search engines such as
Google could achieve perfect TOP1, instead of return-
ing a list of potential hits they could just jump directly
to the correct hit.

RKL (minimize) This score is the average over the blocks
of the rank of the lowest ranked homologous sequence.
Again ties are treated conservatively: if multiple se-
quences tie, the lowest element of the tie determines
the rank, so ties are not beneficial. RKL complements
TOP1 and measures the accuracy of predictions on the
least confident homologs. If a search engine has better
RKL, users do not have to search as far down the list
of potential hits to find the correct hit.

RMS (minimize) RMS measures the root mean squared er-
ror with 0/1 targets. This is one way of evaluating
how well the predicted values approximate probabili-
ties. For the competition we calculate the RMSE for
each block, and then take the average RMSE across
the blocks.

APR (maximize) This score is defined as the average of
the average precision of each block. Average precision
is a measure that is widely used to evaluate rankings
in information retrieval. It can be thought of as the
area under the precision/recall curve [1] and provides
an overall evaluation of ranking quality. There are a
variety of methods for calculating average precision.
The methods differ in how they handle ties and in
how they accumulate area under the precision/recall
plot. After careful consideration, we decided to define
average precision as the average of the precisions at
each of the recall values for which precision is well
defined. If there are multiple precision values for the
same recall value, we used only the highest one in our
average. To resolve situations where multiple cases
are predicted with the same value (ties), we consider
all possible orderings of the tied cases, and take the
expected precision over these orderings.

Note that three of the measures (TOP1, RLK, and APR)
depend only on the relative ordering of the matches within
4To conceal the identity of the proteins and prevent partici-
pants from looking up known homologs in public databases,
no description of the proteins and features was given to the
participants during the competition.
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Figure 1: Number of Downloads

each block, not on the predicted values themselves. Only
RMS measures the accuracy of the predicted values beyond
the ordering that they induce.

3. COMPETITION RULES & SCHEDULE
The competition started on April 28th with the publication
of the datasets and the task descriptions on the WWW.
The datasets each included a labeled training set as well
as a test set from which we withheld the labels. To down-
load the data, groups had to register and were assigned an
anonymous ID under which they could later submit their
results. The anonymous ID was also used to publish results,
so that groups which did not wish to be identified could
remain anonymous. Groups that did want to be identified
were allowed to replace their anonymous ID with a group
name.

The contest was open to any party planning to attend the
SIGKDD 2004 Conference. Since the two tasks were evalu-
ated separately, each group could enter in both tasks, in only
one task, or in only one particular performance measure on
one task. Each person was allowed to participate in only one
competing group per task. Each group was allowed to make
multiple submissions for each task and performance mea-
sure. We did not provide any feedback about performance
when submissions were made. Only the last submission be-
fore the deadline was evaluated for the competition. All
previous submissions from the same group were discarded.

Submissions were made via a WWW interface. The web
interface performed tests on submissions to make sure that
the formatting of the submission was correct and that pre-
dictions were submitted for all test cases. To help detect
formatting problems in the submissions, each test example
was assigned a unique identifier. Groups had to submit their
predictions including those case identifiers. This allowed the
submission interface to give immediate feedback on the in-
tegrity of the predictions (e.g. wrong number of lines, du-
plicate or missing example id’s, etc.).

By the deadline for the submission of predictions on July
14th, more than 500 groups had registered to download the
data. The cumulative number of downloads over time is
depicted in Figure 1. We suspect that some of the last-
minute registrations just before the July 14 deadline are
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Figure 2: Performance of group vs. rank of group on Physics task.

from groups that registered a second time after forgetting
their assigned login information. The registration interface
remained open after the submission deadline, so that it is
still possible to download the data. Since the end of the
competition, more than 100 new users have registered.

By the July 14th deadline, 102 groups had submitted predic-
tions. Of these, 65 groups participated in the Physics task
and 59 groups participated in the Protein task. 22 groups
participated in both tasks. An analysis of the email ad-
dresses revealed a broad international participation. We re-
ceived submission from 49 country suffixes (including .com,
.edu, etc.). The broad international participation is also
reflected in the distribution of winners. As described be-
low, the winners and honorable mentions went to groups
from China, Germany, India, New Zealand, and the USA.
Roughly half of the winners are primarily affiliated with
commercial companies, the other half are from academia.

At the opening day of the SIGKDD Conference, the win-
ners were officially announced. There were two main prizes:
“Overall Winner of the Quantum Physics Task” and “Over-
all Winner of the Protein Homology Prediction Task”. These
overall winners were determined according to the following
method. All participants were ranked according to their
performance on the test set for each task and performance
measure (four measures per task). Not submitting predic-
tions for a performance measure resulted in being ranked
last for that measure. The overall winner of a task was the
participant who had the best average rank over the four

performance measures for that task.

In addition to the overall winners, we also awarded eight
honorable mentions, one for each metric on each task. Hon-
orable mentions were given to the group who ranked highest
for that particular task and performance measure.

4. RESULTS AND WINNERS
Tables 1 and 2 show the test-set performance of the sub-
missions made by each group on each task and metric. The
tables also include the rank for each of these scores. In ad-
dition, the first column in each table is the overall rank of
each group on the whole task. This rank is based on the
average rank of each group across the four tasks (last col-
umn), as well as on a statistical analysis of the ranks that is
described later in this section. Entries in bold in the tables
placed either 1st, 2nd, or 3rd overall (based on average rank),
or received an honorable mention for one or more metrics.

While the rules outlined in the previous section provide clear
guidelines for determining winners, we also were interested
in the significance of the performance differences between
the top competitors. Let’s begin with a qualitative overview
of the performances before jumping into a detailed statisti-
cal analysis of the observed differences in performance. Fig-
ures 2 and 3 show the performances for each task and per-
formance measure plotted in increasing order, so that the
leftmost point of each graph represents the group with the
best performance.

Interestingly, most plots have roughly the same shape. The
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Table 1: Quantum Physics Results Table.
Rank Group Accuracy AUCA Cross Entropy SLQ Score Avg Rank

Rank Score Rank Score Rank Score Rank Score
1 MEDai/AI Insight 2.0 0.73187 1.0 0.83054 1.0 0.70949 1.0 0.33280 1.333
2 Inductis 1.0 0.73255 2.0 0.82754 2.0 0.72456 2.0 0.32648 1.667
3 Golden Helix 3.0 0.72775 3.0 0.82250 4.0 0.73001 3.0 0.31749 3.333
4 Ahmad abdulKader 5.0 0.72744 6.0 0.81791 3.0 0.72798 6.0 0.30982 4.667
5 Salford Systems 4.0 0.72745 4.0 0.82109 8.0 0.74371 4.0 0.31447 5.333
6 Probing - JL&BZ 6.0 0.72522 5.0 0.81906 6.0 0.73634 5.0 0.31142 5.667
7 Andre and Tiny 7.0 0.72424 8.0 0.81412 7.0 0.74137 9.0 0.30217 7.333
8 FEG, Japan 11.0 0.72060 7.0 0.81572 5.0 0.73583 7.0 0.30591 7.667
9 191 9.0 0.72304 9.0 0.81252 10.0 0.74632 8.0 0.30410 9.333
10 14 8.0 0.72332 10.0 0.81208 14.0 0.75432 - - 10.667
11 Tiberius 12.0 0.71884 11.0 0.81116 13.0 0.75301 10.0 0.29569 12.000
12 CoSCo 15.0 0.71836 13.0 0.80952 11.0 0.74999 12.0 0.29307 13.000
13 UIUCSFP 13.0 0.71883 12.0 0.81028 15.0 0.75644 11.0 0.29441 13.333
14 159 14.0 0.71870 15.0 0.80829 12.0 0.75015 14.0 0.29176 13.667
15 408 21.0 0.71584 16.0 0.80699 18.0 0.75878 15.0 0.28814 18.333
16 64 16.0 0.71833 25.0 0.80310 16.0 0.75789 - - 19.000
17 415 19.0 0.71790 21.0 0.80456 20.0 0.76745 24.0 0.27987 20.000
18 584 20.0 0.71633 24.0 0.80419 22.0 0.77181 - - 22.000
19 Weka 18.0 0.71824 20.0 0.80458 29.0 0.78607 23.0 0.28297 22.333
20 Rueping 26.0 0.71357 23.0 0.80428 19.0 0.76196 19.0 0.28440 22.667
21 7 33.0 0.71096 31.0 0.79646 9.0 0.74423 18.0 0.28441 24.333
22 167 25.0 0.71359 22.0 0.80445 27.0 0.78032 22.0 0.28332 24.667
23 347 10.0 0.72196 14.0 0.80934 52.0 1.742E73 13.0 0.29295 25.333
24 362 30.0 0.71234 26.0 0.80211 24.0 0.77623 21.0 0.28360 26.667
25 182 27.0 0.71311 17.0 0.80642 38.0 0.86928 17.0 0.28478 27.333
26 433 31.0 0.71141 27.0 0.79860 26.0 0.77967 - - 28.000
27 27 32.0 0.71139 29.0 0.79779 28.0 0.78481 27.0 0.26959 29.667
28 585 34.0 0.70972 30.0 0.79748 25.0 0.77690 26.0 0.27092 29.667
29 agileumbrella 45.0 0.69863 28.0 0.79796 17.0 0.75798 25.0 0.27694 30.000
30 382 36.0 0.70663 32.0 0.79420 23.0 0.77459 28.0 0.26659 30.333
31 66 37.0 0.70588 35.0 0.79074 21.0 0.76813 32.0 0.25839 31.000
32 3 22.0 0.71560 19.0 0.80535 60.0 8.100E73 20.0 0.28437 33.667
33 586 23.0 0.71544 18.0 0.80582 61.0 9.000E73 16.0 0.28626 34.000
34 UIUCstat 39.0 0.70511 37.0 0.78783 31.0 0.79766 35.0 0.25245 35.667
35 8 41.0 0.70428 36.0 0.78959 30.0 0.79063 33.0 0.25722 35.667
36 117 40.0 0.70508 34.0 0.79257 34.0 0.83395 29.0 0.26410 36.000
37 Claudio Favre 29.0 0.71238 33.0 0.79303 50.0 1.449E73 30.0 0.26351 37.333
38 500 43.0 0.70299 38.0 0.78413 32.0 0.80406 37.0 0.24607 37.667
39 60 38.0 0.70577 40.0 0.77886 37.0 0.85489 39.0 0.23758 38.333
40 Jylin 17.0 0.71832 48.0 0.71813 53.0 2.535E73 46.0 0.19088 39.333
41 138 46.0 0.69766 41.0 0.77626 35.0 0.83694 40.0 0.23265 40.667
42 Monash SBS 51.0 0.68778 39.0 0.78269 33.0 0.80625 38.0 0.23876 41.000
43 PG445 UniDo 42.0 0.70426 43.0 0.77386 40.0 0.98868 41.0 0.22493 41.667
44 26 24.0 0.71438 49.0 0.71429 54.0 2.571E73 47.0 0.18385 42.333
45 276 49.0 0.69057 44.0 0.76975 39.0 0.87045 42.0 0.22243 44.000
46 13 28.0 0.71304 51.0 0.71284 55.0 2.583E73 - - 44.667
47 42 55.0 0.66814 47.0 0.73973 36.0 0.85084 45.0 0.19766 46.000
48 Orrego-WVU 52.0 0.68649 46.0 0.75629 43.0 1.14441 44.0 0.20091 47.000
49 jacek 50.0 0.69006 45.0 0.76322 49.0 1.317E73 43.0 0.20832 48.000
50 219 48.0 0.69284 54.0 0.63626 47.0 1.63563 34.0 0.25298 49.667
51 409 54.0 0.67311 50.0 0.71333 45.0 1.18190 48.0 0.17636 49.667
52 153 44.0 0.70010 52.0 0.69997 56.0 2.699E73 49.0 0.16020 50.667
53 WizSoft 53.0 0.68107 53.0 0.68107 51.0 1.656E73 50.0 0.15401 52.333
54 518 61.0 0.57431 55.0 0.63547 44.0 1.14744 - - 53.333
55 148 62.0 0.53276 59.0 0.54706 42.0 1.04035 54.0 0.00964 54.333
56 154 59.0 0.58207 58.0 0.59276 46.0 1.37861 52.0 0.08170 54.333
57 352 64.0 0.29094 62.0 0.31402 41.0 1.00119 - - 55.667
58 187 63.0 0.49942 61.0 0.50224 48.0 1.170E73 36.0 0.24698 57.333
59 HKNN 57.0 0.62920 57.0 0.62918 58.0 3.337E73 53.0 0.06680 57.333
60 142 58.0 0.61752 56.0 0.63344 59.0 3.714E73 - - 57.667
61 264 60.0 0.57565 60.0 0.52715 57.0 3.264E73 51.0 0.09919 59.000
62 206 - - - - - - 31.0 0.26032 -
63 318 35.0 0.70858 - - - - - - -
64 385 47.0 0.69455 42.0 0.77415 - - - - -
65 568 56.0 0.64672 - - - - - - -
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Table 2: Protein Homology Results Table.
Rank Group Top 1 RMSE RKL APR Avg Rank

Rank Score Rank Score Rank Score Rank Score
1 Weka 3.5 0.90667 8.0 0.03833 3.0 52.44667 2.0 0.84091 4.125
1 ICT.AC.CN 2.0 0.91333 1.0 0.03501 14.0 54.08667 1.0 0.84118 4.500
1 MEDai/AI Insight 1.0 0.92000 5.0 0.03805 13.0 53.96000 3.0 0.83802 5.500
4 Mario Ziller 3.5 0.90667 4.0 0.03766 15.0 55.00667 6.0 0.82422 7.125
5 Rong Pan 11.0 0.88667 2.0 0.03541 16.0 58.85333 5.0 0.82459 8.500
6 Probing - JL&BZ 6.5 0.89333 18.0 0.03952 2.0 52.42000 10.0 0.81931 9.125
7 560 16.5 0.88000 6.0 0.03826 9.0 53.24000 13.0 0.81344 11.125
8 285 11.0 0.88667 16.0 0.03923 11.0 53.30000 8.0 0.82066 11.500
9 PG445 UniDo 28.0 0.86667 14.0 0.03878 1.0 45.62000 4.0 0.82995 11.750
10 587 11.0 0.88667 3.0 0.03692 24.0 64.58667 9.0 0.82006 11.750
11 206 5.0 0.90000 17.0 0.03941 18.0 59.11333 12.0 0.81883 13.000
12 591 22.0 0.87333 7.0 0.03830 4.0 52.84667 23.0 0.79938 14.000
13 575 22.0 0.87333 9.0 0.03838 6.5 53.06667 21.0 0.80187 14.625
14 584 11.0 0.88667 21.0 0.04097 23.0 61.71333 7.0 0.82420 15.500
15 513 22.0 0.87333 11.0 0.03848 12.0 53.37333 19.0 0.80298 16.000
16 276 6.5 0.89333 22.0 0.04135 21.0 59.80667 15.0 0.80672 16.125
17 541 22.0 0.87333 10.0 0.03847 8.0 53.20000 27.0 0.79629 16.750
18 539 28.0 0.86667 12.5 0.03850 5.0 52.90000 22.0 0.79941 16.875
19 540 28.0 0.86667 12.5 0.03850 10.0 53.26667 30.0 0.79560 20.125
20 14 16.5 0.88000 26.0 0.04541 27.0 68.37333 14.0 0.80706 20.875
21 504 11.0 0.88667 29.5 0.05182 22.0 60.86667 25.0 0.79783 21.875
22 Salford Systems 16.5 0.88000 19.0 0.03962 40.0 96.78667 16.0 0.80631 22.875
23 588 11.0 0.88667 33.0 0.05436 29.0 70.10667 20.0 0.80292 23.250
24 578 22.0 0.87333 24.0 0.04314 37.0 93.02667 11.0 0.81902 23.500
25 382 28.0 0.86667 27.0 0.04991 26.0 68.28667 18.0 0.80500 24.750
26 Martine Cadot 28.0 0.86667 25.0 0.04499 20.0 59.74000 26.0 0.79728 24.750
27 FEG, Japan 16.5 0.88000 20.0 0.03989 39.0 95.72667 29.0 0.79569 26.125
28 561 22.0 0.87333 15.0 0.03900 33.0 79.88667 35.0 0.77032 26.250
29 362 31.5 0.86000 23.0 0.04284 34.0 84.88667 17.0 0.80545 26.375
30 595 22.0 0.87333 32.0 0.05433 28.0 69.39333 24.0 0.79895 26.500
31 182 11.0 0.88667 36.0 0.09157 41.0 101.96667 31.0 0.79009 29.750
32 593 44.5 0.72667 29.5 0.05182 6.5 53.06667 45.5 0.64391 31.500
33 159 31.5 0.86000 50.0 0.16669 19.0 59.67333 28.0 0.79622 32.125
34 98 40.5 0.80000 31.0 0.05375 17.0 58.92667 40.0 0.73852 32.125
35 212 42.5 0.78667 28.0 0.05023 36.0 89.60667 41.0 0.71418 36.875
36 471 33.5 0.85333 38.0 0.10133 44.0 116.20667 34.0 0.77871 37.375
37 154 39.0 0.82000 49.0 0.15974 30.0 74.56000 32.0 0.78721 37.500
38 594 35.0 0.84000 54.0 0.26759 25.0 66.36667 37.0 0.76827 37.750
39 167 33.5 0.85333 39.0 0.10276 43.0 114.85333 38.0 0.76495 38.375
40 590 36.5 0.83333 48.0 0.13528 32.0 77.63333 39.0 0.76341 38.875
41 Pierron/Martino 36.5 0.83333 34.0 0.05856 46.0 179.98667 42.0 0.70717 39.625
42 500 40.5 0.80000 58.0 8.062E4 35.0 86.94000 33.0 0.78668 41.625
43 3 47.0 0.64000 51.0 0.20492 31.0 75.38000 43.0 0.69035 43.000
44 398 38.0 0.82667 56.0 0.48079 45.0 154.10667 36.0 0.76865 43.750
45 WizSoft 42.5 0.78667 35.0 0.06701 56.0 557.98000 44.0 0.64550 44.375
46 589 44.5 0.72667 55.0 0.32017 38.0 94.35333 45.5 0.64391 45.750
47 544 49.5 0.52667 40.5 0.13206 47.5 364.07333 48.5 0.40547 46.500
48 548 49.5 0.52667 40.5 0.13206 47.5 364.07333 48.5 0.40547 46.500
49 545 49.5 0.52667 44.5 0.13329 49.5 375.52000 50.5 0.40466 48.500
50 cai cong zhong 49.5 0.52667 44.5 0.13329 49.5 375.52000 50.5 0.40466 48.500
51 26 56.0 0.07333 37.0 0.09668 55.0 416.32667 47.0 0.44952 48.750
52 546 52.5 0.52000 46.5 0.13337 51.5 389.48667 52.5 0.39686 50.750
53 554 52.5 0.52000 46.5 0.13337 51.5 389.48667 52.5 0.39686 50.750
54 ID16 54.5 0.46667 42.5 0.13241 53.5 398.24667 55.5 0.37974 51.500
55 581 54.5 0.46667 42.5 0.13241 53.5 398.24667 55.5 0.37974 51.500
56 264 57.5 0.02000 53.0 0.23782 42.0 114.82000 54.0 0.39570 51.625
57 187 59.0 0.01333 52.0 0.22880 57.0 810.53333 57.0 0.01727 56.250
58 Eric Group 57.5 0.02000 57.0 0.99076 58.0 851.46000 58.0 0.01453 57.625
59 476 46.0 0.68667 - - - - - - -
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Figure 3: Performance of group vs. rank of group on Protein task.

middle of the plots are rather flat, indicating that a broad
fraction of the participants achieved roughly the same per-
formance. At around rank 40 the performance starts drop-
ping rapidly on most measures5. This means that roughly
65% of the participants managed to achieve good perfor-
mance on each of the tasks and metrics. The leftmost end
of the graphs is particularly interesting. For many measures
the graphs show a change in slope that indicates that the top
performers pulled away from the pack and did substantially
better than the majority of participants in midfield.

4.1 Bootstrap Analysis
To quantify the statistical significance of the performance
gap among the winning predictions, we conducted a boot-
strap analysis. This analysis allows us to evaluate how much
the overall ranking of the groups on each of the tasks de-
pends on our particular (random) choice of test sets. More
precisely, it allows us to estimate the probability that a
group would place differently in the competition if we re-
peated the competition with different randomly drawn test
sets.

The setup of our bootstrap experiment was as follows. For
r repetitions we drew a bootstrap sample from the original
test set. For a test set of size k, this bootstrap sample is gen-
erated by drawing k examples from the original test set with
replacement. We then evaluated the submitted predictions

5An exception is the RKL measure, where the steep decrease
in performance starts at around rank 20-25.

on the bootstrap sample and ranked all groups by overall
performance (average rank across the four metrics for each
task). Tables 3 and 4 show how often the 5 groups with the
highest performance on the original test sets achieved a par-
ticular rank on bootstrap samples. For the Physics task we
used k = 100, 000 and r = 1000 repetitions. For the Protein
task we took bootstrap samples over the k = 150 blocks in
the test set with r = 10, 000 repetitions.

As Table 3 shows, on the Physics task, the participant order-
ing derived from the original 100k test set is very likely to be
the correct ordering. With high probability, the groups that
placed first, second, and third on the original test set also
placed first, second, and third, respectively, on bootstrap
samples. We conclude that there is little uncertainty on the
Physics task about which groups won the competition and
we can be 95% confident that we have assigned first, second,
and third place to the correct groups.

The results are very different for the Protein task. The first
column of Table 4 shows that all three groups that scored
highest on the original test set have a significant chance
of winning first place on bootstrap samples. Surprisingly,
the bootstrap analysis suggests that the group that placed
second has the highest probability of being in first place.
If we interpret the bootstrap results as a significance test,
only once we go down to the fourth ranked group, can we
conclude with 95% confidence that they did not win the
competition independent of a particular test set. Based on
this analysis, we declared a three-way tie for first place on
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Table 3: Bootstrap Analysis of Results for Physics.
Overall rank Overall rank on bootstrap sample
on test set 1st 2nd 3rd 4th 5th

1st 100% 0% 0% 0% 0%

2nd 0% 100% 0% 0% 0%

3rd 0% 0% 94% 6% 0%

4th 0% 0% 6% 93% 1%

5th 0% 0% 0% 1% 76%

MEDai Inc. / Univ. of Central Florida David
S. Vogel, Eric Gottshalk, Morgan C. Wang

• 1st Place Overall
• Honorable Mention for ROC Area
• Honorable Mention for Cross Entropy
• Honorable Mention for SLQ Score

Inductis Inc. Arpita Chowdhury, Dinesh Bharule,
Don Yan,Lalit Wangikar, Sandeep Tyagi, Titik-
sha Gautam, Vineet Agrwal, Vivek Gupta

• 2nd Place Overall
• Honorable Mention for Accuracy

Golden Helix Inc. Christophe Lambert
• 3rd Place Overall

Figure 4: Winners and honorable mentions for Physics task.

the Protein task instead of declaring separate first, second,
and third place winners as we were able to do on the Physics
task.

All winners and honorable mentions are listed in Figures 4
and 5. A description of the approaches they used for the
competition can be found in other papers of this issue of
SIGKDD Explorations.

5. ANALYSIS OF THE RESULTS

5.1 Did Groups Effectively Optimize to Indi-
vidual Performance Measures?

Most reasonable performance metrics are strongly corre-
lated: predictions that yield good performance on one met-
ric often yield good performance on other metrics as well.
However, because different metrics reflect different tradeoffs
between the predictions and ground truth, a prediction rule
that is optimal for one measure is not necessarily optimal
for a different measure. This was part of the motivation for
this year’s KDD-Cup. We wondered how much teams who
submitted different sets of predictions for different metrics
benefitted by optimizing to each metric. Did the winners
win because they understood the data better and were able
to train models that would have performed well on any met-
ric, or were they able to gain additional benefit by separately
optimizing their models for each metric?

About half of the competitors took advantage of the op-
portunity to submit different predictions for different per-
formance measures. In the following we analyze their sub-
missions to examine the extent to which teams improved
performance by optimizing to specific performance metrics.
Specifically, we evaluate whether the teams’ efforts to op-
timize to individual performance metrics gave them higher
scores or not. Clearly, if a team submitted the same predic-

Table 4: Bootstrap Analysis of Results for Protein.
Overall rank Overall rank on bootstrap sample
on test set 1st 2nd 3rd 4th 5th

1st 14% 29% 26% 16% 8%

2nd 59% 24% 10% 5% 2%

3rd 22% 28% 23% 14% 7%

4th 4% 12% 22% 26% 17%

5th 0% 2% 6% 12% 20%

Univ. of Waikato Bernhard Pfahringer
• 1st Place Overall

Chinese Academy of Sciences Yan Fu, RuiXiang
Sun, Qiang Yang, Simin He, Chunli Wang,
Haipeng Wang, Shiguang Shan, Junfa Liu, Wen
Gao

• Tied for 1st Place Overall
• Honorable Mention for Squared Error
• Honorable Mention for Average Precision

MEDai Inc. / Univ. of Central Florida David
S. Vogel, Eric Gottshalk, Morgan C. Wang

• Tied for 1st Place Overall
• Honorable Mention for Top-1

Univ. of Dortmund Dirk Dach, Holger Flick,
Christophe Foussette, Marcel Gaspar, Daniel
Hakenjos, Felix Jungermann, Christian Kull-
mann, Anna Litvina, Lars Michele, Katharina
Morik, Martin Scholz, Siehyun Strobel, Marc
Twiehaus, Nazif Veliu

• Honorable Mention for Rank-of-Last Mea-
sure

Figure 5: Winners and honorable mentions for Protein task.

tions for all four metrics on one task, we do not gain any
insight into whether that team could have benefitted from
optimizing to the metrics. However, if we received 2 or more
different sets of predictions from one team, we can study
which set performs best on which performance metric. In
particular, does the submission for a particular metric really
outperform the predictions from the same team submitted
for other metrics?

We first evaluate the team’s performance on some metric,
A, with the set of predictions that team gave us for metric
A. Next, we take one of the other sets of predictions that
the same team gave us for a different metric, and evaluate
those predictions on metric A. If the team did better with
the predictions submitted for metric A, this indicates that
their optimization for metric A was effective. If, however,
swapping the prediction sets improves performance on the
metric, then clearly the team was less effective at optimizing
to each metric and in fact would have done better if they
had submitted their predictions for a different metric.

Tables 5 and 6 show how often swapping sets of predictions
between pairs of metrics helps or hurts performance on those
metrics. The columns in the tables show what metric the
predictions were originally submitted for. The rows in the
tables are the new metrics those predictions are used for.
Each entry is the table is a pair of numbers. The positive
number is the number of times swapping metrics helped per-
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Table 5: Cross metric score for Physics.
Submitted for

Tested on ACC CXE AUC SLQ

ACC +9,-9 +6,-7 +8,-8
CXE +4,-16 +0,-17 +3,-12
AUC +4,-9 +8,-9 +8,-8
SLQ +4,-12 +8,-7 +5,-9

Table 6: Cross metric score for Protein.
Submitted for

Tested on APR RKL RMS TOP1

APR +14,-10 +14,-15 +5,-11
RKL +6,-18 +1,-18 +7,-19
RMS +1,-27 +1,-28 +2,-29
TOP1 +6,-6 +13,-9 +12,-16

formance. The negative entry is the number of times swap-
ping performance hurt performance. If competitors always
achieved the best performance on each metric using the pre-
dictions they submitted for that metric, all entries would be
negative.

From the tables we can see that it is fairly common that
a team would have achieved better performance on some
metric by using predictions they had submitted for a dif-
ferent metric for that metric instead. In fact, the predic-
tions groups submitted for rank last (RKL) more often than
not would have been better predictions for average precision
(APR) and TOP1 than the predictions submitted for those
metrics. On average, however, swapping hurts performance
more than it helps. On the Physics task, swapping submis-
sions helped 67 times but hurt 123 times. On the Protein
task, swapping helped 82 times but hurt 206 times.

Unfortunately, swapping sets of predictions is not always
sensible: for many pairs of metrics, a good submission for
one metric might simply be inappropriate for another met-
ric. For example, a good set of predictions for TOP1 might
have a single prediction of class 1 for one case in each block,
while the rest of the cases in that block might be predicted
as 0. This is a perfectly reasonable set of predictions for
TOP1. But these same predictions are unlikely to give a
good RMSE score. An even more catastrophic example
comes from ordering metrics such as APR and AUC. For
these metrics, only the ordering induced by the predictions
matters. The predictions can be any numbers (real or in-
teger) on any scale, as long as they provide a well-defined
ordering. Since predictions for RMSE, CXE, and SLQ must
be between 0 and 1, some APR and AUC predictions can
not be used for RMSE, CXE, or SLQ. There are additional
instances of predictions that make sense for one metric, but
are incompatible with another metric.

Luckily, most teams submitted predictions between 0 and 1
that were more likely to be compatible across performance
measures. In order to eliminate invalid swaps, we employ
the following test. We define as δ the change in rank result-
ing from substituting some other set of predictions for the
intended set. If the rank of the team on the metric we were
testing increased or decreased by more than δmax when we
used the predictions from a different metric, then we consid-
ered the swap to be invalid. For example, with a δmax of 10,
if we found that using a team’s APR predictions for RMSE
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Figure 6: Percentage of swaps that increase performance vs.
δmax for Physics.
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Figure 7: Percentage of swaps that increase performance vs.
δmax for Protein.
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Figure 8: Mean rank change vs. δmax for Physics.
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Figure 9: Mean rank change vs. δmax for Protein.
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Figure 10: Two dimensional representation of AUC and APR predictions. Normalized stress is 0.08 for AUC and 0.09 for
APR.

caused that team’s RMSE rank to drop from 5th to 30th, we
assumed that those APR predictions were not acceptable as
RMSE predictions. This approach assumes that when a set
of predictions is incompatible with a performance metric for
which it was not submitted, large drops in performance will
be observed, enabling us to filter out the incompatibilities.

To avoid bias, if a team’s rank on a metric increased by
a large amount when using predictions for another metric,
we supposed that the predictions the team originally gave
us for that metric were somehow flawed, and so we did not
include those cases either. For example, most teams pre-
vented predictions from reaching 0 or 1 for the CXE metric
because even a single misclassification would then cause a
near-infinite loss in cross-entropy. But a number of teams
did submit predictions for CXE that were 0 or 1. For these
teams, the predictions they submitted for AUC might ac-
tually yield better CXE than their CXE predictions. We
exclude these cases because clearly they have made major
mistakes in the predictions they submitted for one or more
metrics.

Finally, as we saw in the previous section, the teams towards
the bottom third of the rankings did much worse than the
top two-thirds of the teams. We are mainly interested in the
effect of optimizing to a metric for groups that were able to
achieve good performance on these problems, so we did not
include in our analysis those predictions that performed very
poorly.

Once we had determined which sets of predictions were rea-
sonable to swap, we did a swap analysis for each problem.
The number of valid swaps varies with δmax, but there were
over 100 on each problem even for moderate values of δmax.
For each swap we determined if the swap gave a better per-
formance or a worse performance than the original predic-
tions on that metric. We counted the total number of score
increases, inc, and the total number of score decreases, dec,
and then computed the fraction of times that swapping im-

proved performance as opposed to hurt performance. Fig-
ure 6 and Figure 7 show the probability that swapping im-
proved performance plotted against δmax, using the top 40
predictions on each metric.

On the physics problem, the probability that swapping pre-
diction sets helps performance is relatively constant at about
p = 0.35. This is well below 0.5, and the error bars do not
include 0.5. This indicates that regardless of δmax, swap-
ping caused decreases in performance significantly more of-
ten than swapping caused increases. This means that on the
physics problem, groups that optimized to each performance
metric improved their performance on the physics metrics at
least 65% of the time by doing this optimization.

The protein problem has a slightly different story. For small
values of δmax, the graph is actually above 0.5, which indi-
cates that using predictions for an alternate metric tended
to help a little in cases where the change in rank (delta)
was very small. Note, however, that the error bars for all
points above 0.5 include 0.5, so this might be just statistical
fluctuation. Also, the swapping score is not as informative
for small values of δmax. For example, when δmax is 0, it
means that the rank remains the same when using alternate
predictions. For the rank to remain the same, the change
in score must have been very small. As δmax increases from
0, the fraction of cases for which swapping improves per-
formance quickly drops to 0.4, and for moderate values of
δmax, the probability that swapping helps is similar to that
of the physics problem, about 0.35. We conclude that most
participants who submitted different predictions for differ-
ent metrics on the Protein task were able to achieve better
performance on each metric by optimizing to each metric.

Up to this point, we have only counted the number of swaps
that cause scores to increase or decrease. We showed that
making a swap does tend to decrease performance, suggest-
ing that the groups were effective at optimizing to each met-
ric. But how big is the difference? Unfortunately, many of
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Figure 11: Consistency of predictions among the top 10 (left) and top 30 (right) groups on the Physics task. The y-axis show
fraction of test examples. The x-axis shows the number of groups that classify a particular example correctly.

the metrics are non-linear and on different scales, so a simple
average of the change in score is not informative. Instead,
we will look at the mean rank change caused by swapping.
Figure 8 and Figure 9 show the mean rank change as a func-
tion of δmax. The plots suggest that, while optimizing to a
particular metric does give some benefit, this benefit is typ-
ically modest. On the Physics task, swapping submissions
between metrics on average lowers a group’s rank on that
metric only about 1-2 places. On the Protein Task, swapping
predictions between metrics would cause a group to rank
about 2-7 places lower on each metric. These differences
in performance can be substantial in a competition where
ranking a few positions lower can be the difference between
coming in first and not even being in the top three, but the
changes in performance that yield a decrease in rank of 1-7
places typically is rather small6. Furthermore, roughly half
of the highest scoring competitors did not submit multiple
sets of predictions, indicating that optimizing to the partic-
ular performance measures was not essential for performing
well.

5.2 How Different are each Group’s Predic-
tions?

Do good predictions for a particular metric tend to be sim-
ilar? That is, given two high-scoring sets of predictions for
a problem and metric, are the predictions very similar? To
answer this question, we looked at the top 30 submissions
on 4 different performance metrics. We treated each sub-
mission as a vector in Euclidean space, and determined the
Euclidean distance between the two vectors of predictions
for each pair of submissions. To normalize predictions for
the rank based measures (e.g. APR and AUC), we sorted
the predictions, and converted each prediction to be its rank,
divided by the total number of predictions. After calculat-
ing the matrix of all pairwise distances between submissions
for a metric, we examined the distance matrix. To visualize
the distances, we use Multi-Dimension Scaling (MDS). Pro-
jecting the data down to two dimensions with MDS reduces

6See Tables 1 and 2 for an idea of how large a difference
in performance must be to move several positions in the
rankings.

normalized stress to below 0.1, suggesting that the predic-
tions submitted by the top 30 competitors for a metric vary
along a low-dimensional manifold.

Figure 10 shows the MDS plots for Physics AUC and Protein
APR. Surprisingly, they show that good predictions need not
be very similar to each other. Moreover, predictions that are
somewhat similar to each other can have surprisingly differ-
ent performance. For example, in the APR plot, the top
3 sets of predictions are relatively close to each other near
the center of the plot. But the distance between the 25th

submission and the 2nd submission is less than the distance
between the 1st submission and the 2nd submission7. Fur-
thermore, notice that the 4th place predictions are all the
way up in the upper right corner, far away from the 1st, 2nd

and 3rd place predictions. This shows that models with ex-
cellent performance do not always achieve that performance
by making similar predictions, and models with fairly similar
predictions do not always achieve comparable performance.

5.3 The Easy, the Dif£cult, and the Impossible
The previous section showed that the predictions of the best
performing groups were not homogeneous. In this section
we examine how these differences are distributed among the
test examples. Figure 11 plots the fraction of test examples
that a particular number of groups predicted correctly for
the Physics accuracy task. The left-hand plot includes the
10 groups with the highest accuracy on the Physics task,
the right-hand plot includes the 30 groups with the highest
accuracy.

Most groups agree on the classification of a large fraction of
the examples. On roughly 55% of the test examples, all top
10 groups make the same prediction and classify the exam-
ple correctly (right-most point of the left-hand graph). Even
when considering the top 30 groups, the fraction remains
high with 45% of the test cases being correctly classified
(and therefore classified the same) by all groups. Interest-
ingly, the predictions also are consistent on many incorrectly
classified examples. On about 12% of the test examples the

7We have verified by looking at the raw Euclidean distances
that this is real and not just an artifact of the 2-d MDS
projection.
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Figure 12: Performance of ensemble on Physics task.

top 10 groups all predict the wrong class (left-most point of
the left-hand graph). Again, this figure changes little when
including the top 30 groups.

In summary, the graphs show that there is a large fraction
of test examples that all groups agree upon in their predic-
tions. The top 10 groups agree on the prediction for 67%
of the test cases, and even the top 30 groups agree on more
than 50% of the test cases. However, 8% to 12% of the
test cases are consistently misclassified. Between the two
extremes, the graph is rather flat. This means that only a
fairly small fraction of the test cases account for the differ-
ences in prediction that were observed for different groups
in previous sections.

6. ARE WE HITTING THE CEILING?
Because the Physics and Protein tasks are real-world prob-
lems (as opposed to synthetic problems), we do not know
what performance ultimately is achievable on each task and
metric. On most metrics, the top models have performance
close to each other. This might suggest that the best mod-
els are at or near the ceiling and better performance is not
possible. In this section we try to determine if better per-
formance can be achieved on these problems, or if the best
models are already near the ceiling.

An ensemble is a collection of models whose predictions are
combined by weighted averaging or voting. Dietterich[3]
states that “A necessary and sufficient condition for an en-
semble of classifiers to be more accurate than any of its indi-

vidual members is if the classifiers are accurate and diverse.”
Recent work shows that models trained with different learn-
ing algorithms often make uncorrelated errors. When this
is true, an ensemble of good models trained with differ-
ent learning algorithms often outperforms the best model
trained by one of the learning algorithms.[2]

We wondered if ensembles of the best models submitted for
each task and metric would improve upon the performance
of these best models. To answer this question, we created
ensembles that average the predictions of the best N models
for each task and metric. To focus our attention on the best
models, we vary N from 1 to 20. We then evaluate each of
these ensembles on the final test set using the appropriate
performance metric.8

Figure 12 shows the performance of ensembles formed by
averaging the predictions of the best N models for the four
Physics metrics. Figure 13 shows the performance of ensem-
bles that combine the best N models submitted for the Pro-
tein metrics. The x-axis is the number of models included
in the ensemble. The first ensemble (N = 1) in each of the
eight plots contains only the single best model submitted
for that task and metric. Thus N = 1 is the performance
of the winning model submitted in the competition for each
metric. At N = 2, the ensembles average the predictions of

8Because we use the same test sets to find the best N models,
and then to evaluate the performance of ensembles contain-
ing these best N models, we do not have truly independent
test sets.
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Figure 13: Performance of ensemble on Protein task.

the best two models submitted for that task and metric.

In seven of the eight plots, better performance is achieved
for N greater than one. On most problems and metrics,
better performance can be achieved by combining the pre-
dictions of a few of the best models. For example, on the
physics problem, ensembles that average the top 2-9 mod-
els all achieve higher accuracy than the best single model.
The best accuracy is achieved for an ensemble that com-
bines the top two models. This ensemble yields an accuracy
of 73.56%, up 0.30% from the best submitted model which
has accuracy 73.26%. While this increase is modest, it is
four times larger than the 0.07% difference in performance
between the top two submitted models.

Similarly, the best AUC and the best SLAC-Q Score are
achieved by averaging the best three models submitted for
these metrics. On the cross-entropy metric, however, the
best submitted model outperforms any of the ensembles,
presumably because there is a large gap in cross-entropy
performance between the best model and all other models.

On the protein problem, an ensemble outperforms the best
submitted models on each of the four metrics. An ensem-
ble of the best six models increases Top 1 performance from
0.920 to 0.927. An ensemble of 5 models lowers RMS from
0.0350 to 0.0342. An ensemble of the best 13 models lowers
Rank of Last from 45.6 to 44.5. And an ensemble contain-
ing the top 4 models increases average precision from 0.841
to 0.849. While all of these increases in performance are
modest, for three of the four metrics they are equal to or

larger than the differences in performance between the best
two models submitted for that metric. On Rank of Last, the
best model (RKL = 45.62) is dramatically better than the
second best model (RKL = 52.42), and we were surprised
to see that ensembles combining the best 2-13 models all
improve upon the best single model.

In summary, on 7 of 8 metrics, ensembles that average the
predictions of the best N models outperform the best sub-
mitted models by margins comparable to the differences in
performance we see between the best two submitted mod-
els. The best number of models to include in each ensemble
depends on the task, metric, and submissions. To be fair,
the decision about the best N should not be made using
the final test set as we have done here, so the results we
present must be taken with a grain of salt. But the graphs
do seem to suggest that on both problems and most metrics
there still is room for improvement, and the submissions
for the competition have not hit the ceiling. As further
evidence that we have not achieved peak performance on
these problems and metrics, we have received several sub-
missions since the competition closed that improve upon the
best performances observed during the competition. See
http://kodiak.cs.cornell.edu/kddcup for the latest re-
sults on each problem.

7. ACKNOWLEDGMENTS
We would like to thank the contributors of the datasets, Ron
Elber (Cornell CS) and Charles Young (SLAC), for the time

SIGKDD Explorations. Volume 6,Issue 2 - Page 107 



and effort they invested in creating the data and helping us
prepare it for the KDD-Cup 2004. We also thank Johannes
Gehrke (Cornell CS) and Mirek Riedewald (Cornell CS) for
help with the Physics dataset and SLQ metric. We thank
Alex Niculescu, Filip Radlinski, and Claire Cardie for their
help with the PERF evaluation software, and also thank the
participants from the University of Dortmund and the Chi-
nese Academy of Science who detected bugs in early releases
of PERF. This work was partially supported by NSF grants
IIS-0412894 and IIS-0412930.

8. CONCLUSION
We presented the tasks and the winners of the 2004 KDD-
Cup competition. Our analysis of the results revealed that
roughly two thirds of the participating groups found good
solutions. While there was evidence that some participants
did benefit by optimizing to the different performance mea-
sures, the benefits typically were modest, and on average
would change their ranks only a few places. Comparing
submissions from different groups, we found a substantial
amount of diversity in the predictions from different groups,
yet determined that much of this diversity occurs on less
than 50% of the test cases. The results of an ensemble
learning experiment confirms that there is useful diversity
among the top competitors, and gives some evidence that
it is possible to achieve somewhat better performance than
the winning submissions.

While the original KDD-Cup 2004 competition is officially
closed, the datasets and a new submission interface remain
available on the KDD-Cup WWW site:

http://kodiak.cs.cornell.edu/kddcup.

New submissions will be scored immediately after submis-
sion and the results are inserted into an expanding table of
post KDD-Cup results. A count of the total number of new
submissions a group makes for each task and metric is dis-
played in this table to help prevent groups from overfitting
to the test sets by testing too many models. We encour-
age further participation and research on the tasks of the
KDD-Cup 2004.
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