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ABSTRACT
Accurately evaluating new policies (e.g. ad-placement models, rank-

ing functions, recommendation functions) is one of the key prereq-

uisites for improving interactive systems. While the conventional

approach to evaluation relies on online A/B tests, recent work has

shown that counterfactual estimators can provide an inexpensive

and fast alternative, since they can be applied o�ine using log data

that was collected from a di�erent policy �elded in the past. In this

paper, we address the question of how to estimate the performance

of a new target policy when we have log data from multiple his-

toric policies. �is question is of great relevance in practice, since

policies get updated frequently in most online systems. We show

that naively combining data from multiple logging policies can be

highly suboptimal. In particular, we �nd that the standard Inverse

Propensity Score (IPS) estimator su�ers especially when logging

and target policies diverge – to a point where throwing away data

improves the variance of the estimator. We therefore propose two

alternative estimators which we characterize theoretically and com-

pare experimentally. We �nd that the new estimators can provide

substantially improved estimation accuracy.

CCS CONCEPTS
•Computing methodologies →Learning from implicit feed-
back; Causal reasoning and diagnostics; •Information systems
→Evaluation of retrieval results;

KEYWORDS
counterfactual estimators, log data, implicit feedback, o�-policy

evaluation

1 INTRODUCTION
Interactive systems (e.g., search engines, ad-placement systems,

recommender systems, e-commerce sites) are typically evaluated

according to online metrics (e.g., click through rates, dwell times)

that re�ect the users’ response to the actions taken by the system.

For this reason, A/B tests are of widespread use in which the new
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policy to be evaluated is �elded to a subsample of the user popu-

lation. Unfortunately, A/B tests come with two drawbacks. First,

they can be detrimental to the user experience if the new policy to

be evaluated performs poorly. Second, the number of new policies

that can be evaluated in a given amount of time is limited, sim-

ply because each A/B test needs to be run on a certain fraction of

the overall tra�c and should ideally span any cycles (e.g. weekly

pa�erns) in user behavior.

Recent work on counterfactual evaluation techniques provides a

principled alternative to A/B tests that does not have these draw-

backs [2, 11, 13, 21]. �ese techniques do not require that the new

policy be deployed online, but they instead allow reusing logged

interaction data that was collected by a di�erent policy in the past.

In this way, these estimators address the counterfactual inference

question of how a new policy would have performed, if it had been

deployed instead of the old policy that actually logged the data.

�is allows reusing the same logged data for evaluating many new

policies, greatly improving scalability and timeliness compared to

A/B tests.

In this paper, we address the problem of counterfactual evalua-

tion when log data is available not just from one logging policy, but

from multiple logging policies. Having data from multiple policies

is common to most practical se�ings where systems are repeat-

edly modi�ed and deployed. While the standard counterfactual

estimators based on inverse propensity scores (IPS) apply to this

situation, we show that they are suboptimal in terms of their esti-

mation quality. In particular, we investigate the common se�ing

where the log data takes the form of contextual bandit feedback

from a stochastic policy, showing that the variance of the conven-

tional IPS estimator su�ers substantially when the historic policies

are su�ciently di�erent – to a point where throwing away data

improves the variance of the estimator. To overcome the statisti-

cal ine�ciency of the conventional IPS estimator, we explore two

alternative estimators that directly account for the data coming

from multiple di�erent logging policies. We show theoretically that

both estimators are unbiased, and have lower variance than the

conventional IPS estimator. Furthermore, we quantify the amount

of variance reduction in an extensive empirical evaluation that

demonstrates the e�ectiveness of both the estimators.

2 RELATEDWORK
�e problem of re-using logged bandit feedback is o�en part of coun-

terfactual learning [2, 11, 21], and more generally can be viewed as

part of o�-policy evaluation in reinforcement learning [17, 20].

In counterfactual learning, solving the evaluation problem is

o�en the �rst step to deriving a learning algorithm [2, 19, 21].

�e key to being able to counterfactually reason based on logged



data is randomness in the logged data. Approaches di�er in how

randomness is being included in the policies. For example, in [11]

randomization is directly applied to the actions of each policy,

whereas [2] randomizes individual policy parameters to create a

distribution over actions.

In exploration scavenging [10], the authors address counterfac-

tual evaluation in a se�ing where the actions do not depend on

the context. �ey mention the possibility of combining data from

di�erent policies by interpreting each policy as an action. Li et al.

[14] propose to use naturally occurring randomness in the logged

data when policies change due to system changes. Since this natu-

ral randomness may not be entirely under the operator’s control,

the authors propose to estimate the probability that a certain log-

ging policy was in place to recover propensities. �e balanced IPS

estimator studied in this paper could serve as a starting point for

further techniques in that direction.

Evaluation from logged data has o�en been studied with respect

to speci�c domains, for example in news recommendation [11–

13] as well as in information retrieval [8, 11]. �e work by Li et

al. [13] highlights another common use-case in practice, where

di�erent logging policies are all active at the same time, focusing

on the evaluation of di�erent new methods. �e estimators in this

paper can naturally be applied to this scenario as well to augment

logging data of one policy with the data from others. An interesting

example for probabilistic policies can be found in [8], where the

authors consider policies that are the probabilistic interleaving of

two deterministic ranking policies and use log data to pre-select

new candidate policies.

Very related to combining logs from di�erent policies is the

problem of combining samples coming from di�erent proposal dis-

tributions in importance sampling [5, 15, 16]. �ere, samples are

drawn from multiple proposal distributions and need to be com-

bined in a way that reduces variance of the combined estimator.

Multiple importance sampling has been particularly studied in com-

puter graphics [22], as Monte Carlo techniques are employed for

rendering. Most related to the weighted IPS estimator presented

later in the paper is adaptive multiple importance sampling (AMIS)

[4, 6] that also recognizes that it is not optimal to weigh contribu-

tions from all proposal distributions the same, but instead updates

weights as well as the proposal distributions a�er each sampling

step. �e most notable di�erences to our se�ing here are that (i)

we regard the sampling distributions as given and �xed, and (ii)

the sampled log data is also �xed. An interesting avenue for future

work would be to use control variates to further reduce variance

of our estimators [7, 15], although this approach is computation-

ally demanding since it requires solving a quadratic problem to

determine optimal weights.

Another related area is sampling-based evaluation of informa-

tion retrieval systems [3, 18, 23]. Instead of feedback data that stems

from interactions with users, the observed feedback comes from

judges. A policy in this case corresponds to a sampling strategy

which determines the query-document pairs to be sent out for judge-

ment. As shown by Cartere�e et al. [3], relying on sampling-based

elicitation schemes cuts down the number of required judgements

substantially as compared to a classic deterministic pooling scheme.

�e techniques proposed in our paper could also be applied to the

evaluation of retrieval systems when data from di�erent judgement

pools need to be combined.

3 PROBLEM SETTING
In this paper, we study the use of logged Bandit feedback that

arises in interactive learning systems. In these systems, the system

receives as input a vector x ∈ X, typically encoding user input

or other contextual information. Based on input x , the system

responds with an action y ∈ Y for which it receives some feedback

in the form of a cardinal utility value δ : X × Y 7→ R. Since the

system only receives feedback for the action y that it actually takes,

this feedback is o�en referred to as Bandit feedback [21].

For example, in ad placement models, the input x typically en-

codes user-speci�c information as well as the web page content,

and the system responds with an ad y which is then displayed on

the page. Finally, user feedback δ (x ,y) for the displayed ad is pre-

sented, such as whether the ad was clicked or not. Similarly, for

a news website, the input x may encode user-speci�c and other

contextual information to which the system responds with a per-

sonalized home page y. In this se�ing, the user feedback δ (x ,y)
could be the time spent by the user on the news website.

In order to be able to counterfactually evaluate new policies, we

consider stochastic policies π that de�ne a probability distribution

over the output space Y. Predictions are made by sampling y ∼
π (Y|x) from a policy given input x . �e inputs are assumed to be

drawn i.i.d. from a �xed but unknown distribution x
i .i .d .∼ Pr (X).

�e feedback δ (x ,y) is a cardinal utility that is only observed at

the sampled data points. Large values for δ (x ,y) indicate user

satisfaction with y for x , while small values indicate dissatisfaction.

We evaluate and compare di�erent policies with respect to their

induced utilities. �e utility of a policy U (π ) is de�ned as the

expected utility of its predictions under both the input distribution

as well as the stochastic policy. More formally:

De�nition 3.1 (Utility of Policy). �e utility of a policy π is

U (π ) ≡ Ex∼Pr(X)Ey∼π (Y |x )[δ (x ,y)]

=
∑
x ∈X
y∈Y

Pr(x)π (y |x)δ (x ,y)The

Our goal is to re-use the interaction logs collected from multiple

historic policies to estimate the utility of a new policy. In this paper,

we denote the the new policy (also called the target policy) as π̄ ,

and the m logging policies as π1, . . . ,πn . �e log data collected

from each logging policy πi is

Di = {(x i
1
,yi

1
,δ i

1
,pi

1
), . . . , (x ini ,y

i
ni ,δ

i
ni ,p

i
ni )},

where ni data-points are collected from logging policy πi , x
i
j ∼

Pr(X), yij ∼ πi (Y|x
i
j ), δ

i
j ≡ δ (x

i
j ,y

i
j ), and pij ≡ πi (y

i
j |x

i
j ). Note that

during the operation of the logging policies, the propensities πi (y |x)
are tracked and appended to the logs. We will also assume that the

quantity πi (y |x) is available at all (x ,y) pairs. �is is a very mild

assumption since the logging policies were designed and controlled

by us, so their code can be stored. Finally, let D =
m⋃
i=1

Di
denote

the combined collection of log data over all the logging policies,

and n =
∑m
i=1

ni denote the total number of samples.



Unfortunately, it is not possible to directly compute the utility

of a policy based on log data using the formula from the de�nition

above. While we have a random sample of the contexts x and the

target policy π (y |x) is known by construction, we lack full informa-

tion about the feedback δ (x ,y). In particular, we know δ (x ,y) only

for the particular action chosen by the logging policy, but we do not

necessarily know it for all the actions that the target policy π (y |x)
can choose. In short, we only have logged bandit feedback, but

not full-information feedback. �is motivates the use of statistical

estimators to overcome the infeasibility of exact computation. In

the following sections, we will explore three such estimators and

focus on two of their key statistics properties, namely their bias

and variance.

4 NAIVE INVERSE PROPENSITY SCORING
A natural �rst candidate to explore for the evaluation problem

using multiple logging policies as de�ned above is the well-known

inverse propensity score (IPS) estimator. It simply averages over all

datapoints, and corrects for the distribution mismatch betweenthe

logging policies πi and the target policy π̄ using a weighting term:

De�nition 4.1 (Naive IPS Estimator).

Ûnaive (π̄ ) ≡
1

n

m∑
i=1

ni∑
j=1

δ ij

π̄ (yij |x
i
j )

pij
.

�is is an unbiased estimator as shown below, as long as all

logging policies have full support for the new policy π̄ .

De�nition 4.2 (Support). Policy π is said to have support for policy

π ′ if for all x ∈ X and y ∈ Y,

δ (x ,y)π ′(y |x) , 0⇒ π (y |x) > 0.

Proposition 4.3 (Bias of Naive IPS Estimator). Assume each
logging policy πi has support for target π̄ . For D consisting of i.i.d.
draws from Pr(X) and logging policies πi (Y|x), the naive IPS estima-
tor is unbiased:

ED [Ûnaive (π̄ )] = U (π̄ ).

Proof. By linearity of expectation,

ED [Ûnaive (π̄ )] =
1

n

m∑
i=1

ni∑
j=1

Ex∼Pr(X),y∼πi (Y |x )

[
δ (x ,y)π̄ (y |x)

πi (y |x)

]
=

1

n

m∑
i=1

ni
∑
x ∈X
y∈Y

Pr(x)πi (y |x)
δ (x ,y)π̄ (y |x)

πi (y |x)

=
∑
x ∈X
y∈Y

Pr(x)δ (x ,y)π̄ (y |x)

= Ex∼Pr (X)Ey∼π̄ (Y |x )[δ (x ,y)]
= U (π̄ ).

�e second equality is valid since each πi has support for π̄ . �

Note that the requirement that the logging policies πi have

support for the target policy can be satis�ed by ensuring that

πi (y |x) > ϵ when deploying policies.

x1 x2

Pr(x) 0.5 0.5

δ (x ,y) y1 10 1

y2 1 10

π1(y |x)
y1 0.2 0.8

y2 0.8 0.2

π2(y |x)
y1 0.9 0.1

y2 0.1 0.9

π̄ (y |x) y1 0.8 0.2

y2 0.2 0.8

Table 1: Dropping data samples from logging policy π1 low-
ers the variance of the naive and balanced IPS estimators
when estimating the utility of π̄ .

We can also characterize the variance of the naive IPS estimator.

VarD [Ûnaive (π̄ )] (1)

=
1

n2

m∑
i=1

ni

(∑
x ∈X
y∈Y

(δ (x ,y)π̄ (y |x))2
πi (y |x)

Pr(x) −U (π̄ )2
)
.

Having characterized both the bias and the variance of the Naive

IPS Estimator, how does it perform on datasets that come from

multiple logging policies?

4.1 Suboptimality of Naive IPS Estimator
To illustrate the suboptimality of the Naive IPS Estimator when we

have data from multiple logging policies, consider the following toy

example where we wish to evaluate a new policy π̄ given data from

two logging policies π1 and π2. For simplicity and without loss of

generality, consider logged bandit feedback which consists of one

sample from π1 and another sample from π2, more speci�cally, we

have two logs D1 = {(x1

1
,y1

1
,δ1

1
,p1

1
)}, and D2 = {(x2

1
,y2

1
,δ2

1
,p2

1
)}.

�ere are two possible inputs x1,x2 and two possible output predic-

tions y1,y2. �e cardinal utility function δ , the input distribution

Pr(X), the target policy π̄ , and the two logging policies π1 and π2

are given in Table 1.

From the table, we can see that the target policy π̄ is similar

to logging policy π2, but that it is substantially di�erent from π1.

Since the mismatch between target and logging policy enters the

IPS estimator as a ratio, one would like to keep that ratio small

for low variance. �at, intuitively speaking, means that samples

from π2 result in lower variance than samples from π1, and that

the π1 samples may be adding a large amount of variability to the

estimate. Indeed, it turns out that simply omi�ing the data from

D1
greatly improves the variance of the estimator. Plugging the

appropriate values into the variance formula in Equation (1) shows

that the variance VarD [Ûnaive (π̄ )] is reduced from 64.27 to 4.27

by dropping the sample from the �rst logging policy π1. Intuitively,

the variance of Ûnaive (π̄ ) su�ers because higher variance samples

from one logging policy drown out the signal from the lower vari-

ance samples to an extent that can even dominate the bene�t of



having more samples. �us, Ûnaive (π̄ ) fails to make the most of

the available log data by combining it in an overly naive way.

Under closer inspection of Equation (1), the fact that deleting

data helps improve variance also makes intuitive sense. Since the

overall variance contains the sum of variances over all individual

samples, one can hope to improve variance by leaving out high-

variance samples. �is motivates the estimators we introduce in

the following sections, and we will show how weighting samples

generalizes this variance-minimization strategy.

5 ESTIMATOR FROMMULTIPLE
IMPORTANCE SAMPLING

Having seen that Ûnaive (π̄ ) has suboptimal variance, we �rst ex-

plore an alternative estimator used in multiple importance sampling

[16]. We begin with a brief review of multiple importance sampling.

Suppose there is a target distribution p on S ⊆ Rd , a function f ,

and µ = Ep (f (X)) =
∫
S f (x)p(x)dx is the quantity to be estimated.

�e function f is observed only at the sampled points. In multiple

importance sampling, nj observations xi j ∼ X, i ∈ [nj ] are taken

from sampling distributions qj for j = 1, . . . , J . An unbiased esti-

mator that is known to have low variance in this case is the balance
heuristic estimate [16];

µ̃α =
1

n

J∑
j=1

nj∑
i=1

f (xi j )p(xi j )∑J
j=1

α jqj (xi j )
,

where n =
∑J
j=1

nj , and α j =
nj
n . Directly mapping the above to

our se�ing, we de�ne the Balanced IPS Estimator as follows.

De�nition 5.1 (Balanced IPS Estimator).

Ûbal (π̄ ) =
1

n

m∑
i=1

ni∑
j=1

δ ij

π̄ (yij |x
i
j )

πavд(yij |x
i
j )
,

where for all x ∈ X and y ∈ Y, πavд(y |x) =
∑m
i=1

niπi (y |x )
n .

Note that πavд is a valid policy since the convex combination of

probability distributions is a probability distribution. �e balanced

IPS estimator Ûbal (π̄ ) is also unbiased. Note that it now su�ces

that πavд has support, but not necessarily that each individual πi
has support.

Proposition 5.2 (Bias of Balanced IPS Estimator). Assume
the policy πavд has support for target π̄ . For D consisting of i.i.d.
draws from Pr(X) and logging policies πi (Y|x), the Balanced IPS
Estimator is unbiased:

ED [Ûbal (π̄ )] = U (π̄ ).

Proof. By linearity of expectation,

ED [Ûbal (π̄ )] =
1

n

m∑
i=1

ni∑
j=1

Ex∼Pr(X),y∼πi (Y |x )

[
δ (x ,y)π̄ (y |x)
πavд(y |x)

]
=

1

n

m∑
i=1

ni
∑
x ∈X
y∈Y

Pr(x)πi (y |x)
δ (x ,y)π̄ (y |x)
πavд(y |x)

=
1

n

∑
x ∈X,y∈Y

Pr(x)δ (x ,y)π̄ (y |x)
πavд(y |x)

m∑
i=1

niπi (y |x)

=
1

n

∑
x ∈X,y∈Y

Pr(x)δ (x ,y)π̄ (y |x)∑m
i=1

niπi (y |x )
n

m∑
i=1

niπi (y |x)

=
∑

x ∈X,y∈Y
Pr(x)δ (x ,y)π̄ (y |x)

= Ex∼Pr (X)Ey∼π̄ (Y |x )[δ (x ,y)]
= U (π̄ ).

�e second equality is valid since πavд has support for π̄ . �

�e variance of Ûbal (π̄ ) can be computed as follows:

VarD [Ûbal (π̄ )] =
1

n2

m∑
i=1

ni

(∑
x ∈X
y∈Y

(δ (x ,y)π̄ (y |x))2

πavд(y |x)2
πi (y |x) Pr(x)

−
(∑
x ∈X
y∈Y

(δ (x ,y)π̄ (y |x))
πavд(y |x)

πi (y |x) Pr(x)
)

2

)
.

A direct consequence of �eorem 1 in [22] is that the variance

of the balanced estimator is bounded above by the variance of the

naive estimator plus some positive term that depends on U (π̄ ) and

the log sizes ni .
Here, we provide a stronger result that does not require an extra

positive term for the inequality to hold.

Theorem 5.3. Assume each logging policy πi has support for
target π̄ . We then have that

VarD [Ûbal (π̄ )] ≤ VarD [Ûnaive (π̄ )].

Proof. From Equation 1, we have the following expression.

VarD [Ûnaive (π̄ )]

=
1

n2

m∑
i=1

ni

(∑
x ∈X
y∈Y

(δ (x ,y)π̄ (y |x))2
πi (y |x)

Pr(x) −U (π̄ )2
)
.

For convenience, and without loss of generality, assume ni = 1

∀i , and therefore, n =m. �is is easily achieved by re-labeling the

logging policies so that each data-sample comes from a distinctly

labeled policy (note that we don’t need the logging policies to be

distinct in our setup). Also, for simplicity, let c(x ,y) = δ (x ,y)π̄ (y |x).
�en



VarD [Ûnaive (π̄ )] ≥ VarD [Ûbal (π̄ )]

⇔
∑
x ∈X
y∈Y

c2(x ,y) Pr(x)
( m∑
i=1

1

πi (y |x)
)
−mU (π̄ )2

≥
∑
x ∈X
y∈Y

c2(x ,y) Pr(x)
πavд(y |x)2

( m∑
i=1

πi (y |x)
)
−

m∑
i=1

(∑
x ∈X
y∈Y

c(x ,y) Pr(x)
πavд(y |x)

πi (y |x)
)

2

�us, it is su�cient to show the following two inequalities

m∑
i=1

(∑
x ∈X
y∈Y

c(x ,y) Pr(x)
πavд(y |x)

πi (y |x)
)

2

≥ mU (π̄ )2 (2)

and for all relevant x ,y

m∑
i=1

1

πi (y |x)
≥ 1

πavд(y |x)2

( m∑
i=1

πi (y |x)
)

(3)

We get Equation 2 by applying Cauchy-Schwarz as follows( m∑
i=1

1
2

) ( m∑
i=1

(∑
x ∈X
y∈Y

c(x ,y) Pr(x)
πavд(y |x)

πi (y |x)
)

2
)

≥
( m∑
i=1

∑
x ∈X
y∈Y

c(x ,y) Pr(x)
πavд(y |x)

πi (y |x)
)

2

⇒
m∑
i=1

(∑
x ∈X
y∈Y

c(x ,y) Pr(x)
πavд(y |x)

πi (y |x)
)

2

≥
(∑
x ∈X
y∈Y

c(x ,y) Pr(x)
1

m
∑m
i=1

πi (y |x)

m∑
i=1

πi (y |x)
)

2

=mU (π̄ )2

Another application of Cauchy-Schwarz gives us Equation 3 in

the following way( m∑
i=1

1

πi (y |x)

) ( m∑
i=1

πi (y |x)
)
≥ m2

⇒
m∑
i=1

1

πi (y |x)
≥ 1

( 1

m
∑m
i=1

πi (y |x))2
m∑
i=1

πi (y |x)

=
1

πavд(y |x)2

( m∑
i=1

πi (y |x)
)

�

Returning to our toy example in Table 1, we can check the vari-

ance reduction provided by Ûbal (π̄ ) over Ûnaive (π̄ ). �e variance

of the Balanced IPS Estimator is VarD [Ûbal (π̄ )] ≈ 12.43, which is

substantially smaller than VarD [Ûnaive (π̄ )] ≈ 64.27 for the naive

estimator using all the dataD = D1
⋃D2

. However, the Balanced

IPS Estimator still improves when removing D1
. In particular, no-

tice that when using only D2
, the variance of the Balanced IPS

Estimator is VarD [Ûbal (π̄ )] = VarD [Ûnaive (π̄ )] ≈ 4.27 < 12.43.

�erefore, even the variance of Ûbal (π̄ ) can be improved in some

cases by dropping data.

6 WEIGHTED IPS ESTIMATOR
We have seen that the variances of both the Naive and the Balanced

IPS estimators can be reduced by removing some of the data points.

More generally, we now explore estimators that re-weight samples

from various logging policies based on their relationship with the

target policy. �is is similar to ideas that are used in Adaptive Multi-

ple Importance Sampling [4, 6] where samples are also re-weighted

in each sampling round. In contrast to the la�er scenario, here we

assume the logging policies to be �xed, and we derive closed-form

formulas for variance-optimal estimators. �e general idea of the

weighted estimators that follow is to compute a weight for each

logging policy that captures the mismatch between this policy and

the target policy. In order to characterize the relationship between a

logging policy and the new policy to be evaluated, we de�ne the fol-

lowing divergence. �is formalizes the notion of mismatch between

the two policies in terms of the Naive IPS Estimator variance.

De�nition 6.1 (Divergence). Suppose policy π has support for

target policy π̄ . �en the divergence from π to π̄ is

σ 2

δ (π̄ | |π ) ≡ Varx∼Pr(X),y∼π (Y |x )

[
δ (x ,y)π̄ (y |x)

π (y |x)

]
=

∑
x ∈X
y∈Y

(δ (x ,y)π̄ (y |x))2
π (y |x) Pr(x) −U (π̄ )2.

Recall that U (π̄ ) is the utility of policy π̄ .

Note that σ 2

δ (π̄ | |π ) is not necessarily minimal when π = π̄ . In

fact, it can easily be seen by direct substitution thatσ 2

δ (π̄ | |π̄imp ) = 0

where π̄imp is the optimal importance sampling distribution for

π̄ with π̄imp (y |x) ∝ δ (x ,y)π̄ (y |x). Nevertheless, informally, the

divergence from a logging policy to the target policy is small when

the logging policy assigns similar propensities to (x ,y) pairs as the

importance sampling distribution for the target policy. Conversely,

if the logging policy deviates signi�cantly from the importance

sampling distribution, then the divergence is large. Based on this

notion of divergence, we propose the following weighted estimator:

De�nition 6.2 (Weighted IPS Estimator). Assume σ 2

δ (π̄ | |πi ) > 0

for all 1 ≤ i ≤ m.

Ûweiдht (π̄ ) =
m∑
i=1

λ∗i

ni∑
j=1

δ ij π̄ (y
i
j |x

i
j )

pij

where the weights λ∗i are set to

λ∗i =
1

σ 2

δ (π̄ | |πi )
∑m
j=1

nj
σ 2

δ (π̄ | |πj )
. (4)

Note that the assumption σ 2

δ (π̄ | |πi ) > 0 is easily satis�ed as long

as the logging policy is not exactly equal to the optimal importance

sampling distribution of the target policy π̄ . �is is very unlikely

given that the utility of the new policy is unknown to us in the �rst

place.

We will show that the Weighted IPS Estimator is optimal in

the sense that any other convex combination by λi that ensures

unbiasedness does not give a smaller variance estimator. First, we

have a simple condition for unbiasedness:



Proposition 6.3 (Bias of Weighted IPS Estimator). Assume
each logging policy πi has support for target policy π̄ . Consider the
estimator

Ûλ(π̄ ) =
m∑
i=1

λi

ni∑
j=1

δ ij π̄ (y
i
j |x

i
j )

pij

such that λi ≥ 0 and
∑m
i=1

λini = 1. For D consisting of i.i.d.
draws from Pr(X) and logging policies πi (Y|x), the above estimator
is unbiased:

ED [Ûλ(π̄ )] = U (π̄ ).

In particular, Ûweiдht (π̄ ) is unbiased.

Proof. Following the proof of Proposition 4.3,

ED [Ûλ(π̄ )] =
m∑
i=1

λi

ni∑
j=1

Ex∼Pr(X),y∼πi (Y |x )

[
δ (x ,y)π̄ (y |x)

πi (y |x)

]
= U (π̄ )

m∑
i=1

λini = U (π̄ ).

Moreover,

∑m
i=1

λ∗ini = 1, which implies Ûweiдht (π̄ ) is unbiased.

�

Notice that making the weights equal reduces Ûλ(π̄ ) to Ûnaive (π̄ ).
Furthermore, dropping samples from logging policy πi is equivalent

to se�ing λi = 0.

To prove variance optimality, note that the variance of the Weighted

IPS Estimator for a given set of weights λ1, ..., λm can be wri�en

in terms of the divergences.

VarD [Ûλ(π̄ )] =
m∑
i=1

λi
2niσ

2

δ (π̄ | |πi ). (5)

We now prove the following theorem:

Theorem 6.4. Assume each logging policy πi has support for
target policy π̄ , and σ 2

δ (π̄ | |πi ) > 0. �en, for any estimator of the
form Ûλ(π̄ ) as de�ned in Proposition 6.3

VarD [Ûweiдht (π̄ )] =
1∑m

i=1

ni
σ 2

δ (π̄ | |πi )
≤ VarD [Ûλ(π̄ )].

Proof. �e expression for the variance of Ûweiдht (π̄ ) can be

veri�ed to be as stated by directly substituting λ∗i (4) into the vari-

ance expression in Equation (5). Next, by the Cauchy-Schwarz

inequality,( m∑
i=1

λi
2niσ

2

δ (π̄ | |πi )
) ( m∑

i=1

ni

σ 2

δ (π̄ | |πi )

)
≥

( m∑
i=1

λini

)
2

= 1

⇒ VarD [Ûλ(π̄ )] ≥ VarD [Ûweiдht (π̄ )]
�

Returning to the toy example in Table 1, the divergence values

are σ 2

δ (π̄ | |π1) ≈ 252.81 and σ 2

δ (π̄ | |π2) ≈ 4.27. �is leads to weights

λ∗
1
≈ 0.02 and λ∗

2
≈ 0.98, resulting in VarD [Ûweiдht (π̄ )] ≈ 4.19 <

4.27 on D = D1
⋃D2

. �us, the weighted IPS estimator does

be�er than the naive IPS estimator (including the case when D1
is

dropped) by optimally weighting all the available data.

Note that computing the optimal weights λi exactly requires

access to the utility function δ everywhere in order to compute the

divergences σ 2

δ (π̄ | |πi ). However, in practice, δ is only known at

the collected data samples, and the weights must be estimated. In

Section 7.6 we discuss a simple strategy for doing so, along with an

empirical analysis of the procedure.

6.1 �antifying the Variance Reduction
�e extent of variance reduction provided by the Weighted IPS

Estimator over the Naive IPS Estimator depends only on the relative

proportions of divergences and the log data sizes of each logging

policy. �e following proposition quanti�es the variance reduction.

Proposition 6.5. Let vi =
σ 2

δ (π̄ | |πi )
σ 2

δ (π̄ | |πm )
be the ratio of divergences

and ri =
ni
nm be the ratio of sample sizes of policy i and policym.

�en the reduction denoted as γ is

γ ≡
VarD [Ûweiдht (π̄ )]
VarD [Ûnaive (π̄ )]

=
(∑m

i=1
ri )2

(∑m
i=1

rivi )(
∑m
i=1

ri
vi )
≤ 1.

Proof. Substituting the expressions for the two variances, we

get that

VarD [Ûweiдht (π̄ )]
VarD [Ûnaive (π̄ )]

=
(∑m

i=1
ni )2

(∑m
i=1

niσ
2

δ (π̄ | |πi ))(
∑m
i=1

ni
σ 2

δ (π̄ | |πi )
)

So, normalizing by σ 2

δ (π̄ | |πn ) and nn , gives the desired expres-

sion. Applying the Cauchy-Schwarz inequality gives the upper

bound. �

For the case of just two logging policies, n = 2, it is particularly

easy to compute the maximum improvement in variance of the

Weighted IPS Estimator over the Naive estimator. �e reduction

γ is γ = (r1+1)2v1

(r1v1+1)(r1+v1) , which ranges between 0 and 1 depending

on r1 and v1. �e bene�t of the weighted estimator over the naive

estimator is greatest when the logging policies di�er substantially,

and there are equal amounts of log data from the two logging poli-

cies. Intuitively, this is because the weighted estimator mitigates

the defect in the naive estimator due to which abundant high vari-

ance samples drown out the signal from the equally abundant low

variance samples. On the other hand, the scope for improvement

is less when the logging policies are similar or when there are

disproportionately many samples from one logging policy.

7 EMPIRICAL ANALYSIS
In this section, we empirically examine the properties of the pro-

posed estimators. To do this, we create a controlled setup in which

we have logging policies of di�erent utilities, and try to estimate

the utility of a �xed new policy. We illustrate key properties of our

estimators in the concrete se�ing of CRF policies for multi-label

classi�cation, although the estimators themselves are applicable to

arbitrary stochastic policies and structured output spaces.

7.1 Setup
We choose multi-label classi�cation for our experiments because of

the availability of a rich feature space X and an easily scalable label

space Y. �ree multi-label datasets from the LibSVM repository



Figure 1: Variance of the Naive IPS Estimator using only π2 relative to the variance of the Naive IPS Estimator using data from
both π1 and π2 for di�erent π1 as the relative sample size changes. Dropping data can lower the variance of Naive IPS Estimator
in many cases.

Figure 2: Variance of the Balanced IPS Estimator relative to the variance of the Naive IPS Estimator for di�erent π1 as the
relative sample size changes. �eBalanced IPS Estimator can have substantially smaller variance than theNaive IPS Estimator.

Name # features # labels ntrain ntest

Scene 294 6 1211 1196

Yeast 103 14 1500 917

LYRL 47236 4 23149 781265

Table 2: Corpus statistics for di�erent multi-label datasets
from the LibSVM repository. LYRL was post-processed so
that only top level categories were treated as labels

with varying feature dimensionalities, number of class labels, and

number of training samples available are used. �e corpus statistics

are as summarized in Table 2.

Since these datasets involve multi-label classi�cation, the output

space is Y = {0, 1}q , i.e., the set of all possible labels one can

generate given a set of q labels. �e input distribution Pr(X) is the

empirical distribution of inputs as represented in the test set. �e

utility function δ (x ,y) is simply the number of correctly assigned

labels in y with respect to the given ground truth label y∗.
To obtain policies with di�erent utilities in a systematic manner,

we train conditional random �elds (CRFs) on incrementally varying

fractions of the labeled training set. CRFs are convenient since they

provide explicit probability distributions over possible predictions

conditioned on an input. However, nothing in the following analysis

is speci�c to using CRFs as the stochastic logging policies, and note

that the target policy need not be stochastic at all.

For simplicity and ease of interpretability, we use two logging

policies in the following experiments. To generate these logging

policies, we vary the training fraction for the �rst logging policy

π1 over 0.02, 0.05, 0.08, 0.11, 0.14, 0.17, 0.20, keeping the training

fractions for the second logging policy π2 �xed at 0.30. Similarly,

we generate a CRF classi�er representing the target policy π̄ by

training on 0.35 fraction of the data. �e e�ect is that we now get

three policies where the second logging policy is similar to the

target while the similarity of the �rst logging policy varies over a

wide range. �is results in a wide range of relative divergences

v1 =
σ 2

δ (π̄ | |π1)
σ 2

δ (π̄ | |π2)

for the �rst logging policy on which the relative performance of

the estimators depends.

We compare pairs of estimators based on their relative variance

since all the estimators being considered are unbiased (so, relative

variance 1 signi�es the estimators being compared have the same

variance). Since the variance of the di�erent estimators scales

inversely proportional to the total number of samples, the ratio of

their variances depends only on the relative size of the two data



logs

r1 =
n1

n2

,

but not on their absolute size. We therefore report results in terms

of relative size where we vary r1 ∈ {0.1, 0.25, 0.5, 1, 3, 5, 7, 9} to

explore a large range of data imbalances.

For a �xed set of CRFs as logging and target policies, and the

relative size of the data logs, the ratio of the variances of the di�erent

estimators can be computed exactly since the CRFs provide explicit

distributions over Y, and X is based on the test set. We therefore

report exact variances in the following. In addition to the exactly

computed variances, we also did some bandit feedback simulations

to verify the experiment setup. We employed the Supervised 7→
Bandit conversion method [1]. In this method, we iterate over

the test features x , sample some prediction y from the logging

policy πi (Y|x) and record the corresponding loss and propensity

to generate the logged data-setsDi
. For various se�ings of logging

policies and amounts of data, we sampled bandit data and obtained

estimator values over hundreds of iterations. We then computed

the empirical mean and variance of the di�erent estimates to make

sure that the estimators were indeed unbiased and closely matched

the theoretical variances reported above.

7.2 Can dropping data lower the variance of
Ûnaive (π̄ )?

While we saw that dropping data improved the variance of the

Naive IPS Estimator in the toy example, we �rst verify that this

issue also surfaces outside of carefully constructed toy examples.

To this e�ect, Figure 1 plots the variance of the Naive IPS Estimator

Ûnaive (π̄ ) that uses data only from π2 relative to the variance of

Ûnaive (π̄ ) when using data from both π1 and π2. �e x-axis varies

the relative amount of data coming from π1 and π2. Each solid

circle on the plot corresponds to a training fraction choice for π1

and a log-data-size ratio r1. A lot-data-size ratio of 0 means that no

data from π1 is used, i.e., all data from π1 is dropped. �e relative

divergence v1 is higher when π1 is trained on a lower fraction of

training data since in that case π1 di�ers more from π2. A solid

circle below the baseline at 1 indicates that dropping data improves

the variance in that case.

Overall, the experiments con�rm that the Naive IPS Estimator

shows substantial ine�ciency. We observe that for high v1 and

small r1, dropping data from π1 can reduce the variance substan-

tially for a wide range of realistic CRF policies. As v1 decreases

and r1 increases, dropping data becomes less bene�cial, ultimately

becoming worse than the using all the data. �is concurs with the

intuition that dropping a relatively small number of high variance

data samples can help utilize the low variance data samples.

7.3 How does Ûbal (π̄ ) compare with Ûnaive (π̄ )?
We proved that the Balanced IPS Estimator has smaller (or equal)

variance than the Naive IPS Estimator. �e experiments reported

in Figure 2 show the magnitude of variance reduction for Ûbal (π̄ ).
In particular, Figure 2 reports the variance of the Balanced IPS

Estimator relative to the variance of the Naive IPS Estimator for

di�erent logging policies π1 and di�erent data set imbalances. In

all cases, Ûbal (π̄ ) performs at least as well as Ûnaive (π̄ ) and the

variance reduction increases when the two policies di�er more (i.e.

v1 is large). �e variance reduction due to Ûbal (π̄ ) decreases as the

relative size of the log data from π1 increases.

7.4 How does Ûweiдht (π̄ ) compare with
Ûnaive (π̄ )?

We know that the Weighted IPS Estimator always has lower vari-

ance (or equal) than the Naive IPS Estimator. �e results in Figure 3

show the magnitude of the relative variance improvement for the

Weighted IPS Estimator. As in the case of the Balanced IPS Estima-

tor, Ûweiдht (π̄ ) performs be�er than Ûnaive (π̄ ) especially when

the two logging policies di�er substantially. �is con�rms the the-

oretical characterization of Ûweiдht (π̄ ) from Section 6.1, where

we computed the variance reduction given r1 and v1. �e empiri-

cal �ndings are as expected by the theory and show a substantial

improvement in this realistic se�ing. However, note that these

experiments do not yet address the question of how to estimate the

weights in practice, which we come back to in Section 7.6.

7.5 How does Ûweiдht (π̄ ) compare with Ûbal (π̄ )?
We did not �nd theoretical arguments whether Ûweiдht (π̄ ) is uni-

formly be�er than Ûbal (π̄ ) or vice versa. �e empirical results in

Figure 4 con�rm that either estimator can be preferable in some

situations. Speci�cally, Ûweiдht (π̄ ) performs be�er when the dif-

ference between the two logging policies is large, whereas Ûbal (π̄ )
performs be�er when they are closer. �is is an interesting phe-

nomenon that merits future investigation. In particular, one might

be able to combine the strengths of Ûweiдht (π̄ ) and Ûbal (π̄ ) to get

a weighted form of the Ûbal (π̄ ) estimator. Since we know from

the toy example that even Ûbal (π̄ ) can have lower variance with

dropping data, it is plausible that it could improve if the samples

were weighted non-uniformly.

7.6 How can we estimate the weights for
Ûweiдht (π̄ )?

We derived the optimal weights λ∗i in terms of σ 2

δ (π̄ | |πi ). Comput-

ing the divergence exactly requires access to the utility function

δ (x ,y) on the entire domain X × Y. However, δ (x ,y) is known

only at the samples collected as bandit feedback. We propose the

following strategy to estimate the weights in this situation.

Each divergence can be estimated by using the empirical variance

of the importance-weighted utility values available in the log data

Di
.

σ̂ 2

δ (π̄ | |πi ) = V̂arDi

[
δ ij · π̄ (y

i
j |x

i
j )

pij

]
Under mild conditions, this provides a consistent estimate since

x ij ∼ Pr(X) and yij ∼ πi (Y|x
i
j ). �e weights λi are then obtained

using the estimated divergences.

We tested this method by generating bandit data using the Su-

pervised 7→ Bandit conversion method described in Section 7.1 for

each logging policy, and then computing the weights as described

above. Figure 5 compares the variance of the weighted estimator

with the estimated weights against the variance with the optimal

weights. �e x-axis varies the size of the log data for both logging



Figure 3: Variance of the Weighted IPS Estimator relative to the variance of the Naive IPS Estimator for di�erent π1 as the
relative sample size changes. �eWeighted IPS Estimator canhave substantially smaller variance than theNaive IPS Estimator.

Figure 4: Variance of the Weighted IPS Estimator relative to the variance of the Balanced IPS Estimator for di�erent π1 as the
relative sample size changes. �e Weighted IPS Estimator does better than the Balanced IPS Estimator when the two logging
policies di�er signi�cantly. However, the Balanced IPS Estimator performs better when the two policies are similar.

Figure 5: Variance withweights estimated from empirical divergences relative to optimal weights for theWeighted IPS Estima-
tor. �e estimation works very well when there is su�cient amount of log data. We chosem1 =m2, i.e. r1 = 1 for convenience.
Similar trends were observed for other values of r1.

policies π1 and π2 which are kept equal (i.e. n1 = n2) for simplicity.

As shown, the variance of the estimator with the estimated weights

converges to that of the optimal weighted estimator within a few

hundred samples for all choices of logging policies and across the

three data-sets. Similar trends were observed for other values of

relative log data size r1 as well.

Note that in this method we take the empirical variance of the

importance-weighted utility values over each logDi
individually to

get reliable unbiased estimates of the true divergences. In contrast,

the Naive IPS Estimator takes the empirical mean of the same values

over the combined data D. �erefore, the former estimation does

not su�er from the suboptimality in variance that occurs due to

naively combining data from di�erent logging policies.

�erefore, we conclude that the above method of estimating the

weights performs quite well and seems well suited for practical

applications.



8 CONCLUSION
We investigated the problem of estimating the performance of a

new policy using data from multiple logging policies in a contex-

tual bandit se�ing. �is problem is highly relevant for practical

applications since it re�ects how logged contextual bandit feed-

back is available in online systems that are frequently updated (e.g.

search engines, ad placement systems, product recommenders).

We proposed two estimators for this problem which are provably

unbiased and have lower variance than the Naive IPS Estimator.

We empirically demonstrated that both can substantially reduce

variance across a range of evaluation scenarios.

�e �ndings raise interesting questions for future work. First,

it is plausible that similar estimators and advantages also exist for

other partial-information data se�ings [9] beyond contextual bandit

feedback. Second, while this paper only considered the problem

of evaluating a �xed new policy π̄ , it would be interesting to use

the new estimators also for learning. In particular, they could be

used to replace the Naive IPS Estimator when learning from bandit

feedback via Counterfactual Risk Minimization [21].
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