
Scalable Extensibility via Nested Inheritance

Nathaniel Nystrom Stephen Chong Andrew C. Myers
Computer Science Department

Cornell University

{nystrom,schong,andru}@cs.cornell.edu

ABSTRACT
Inheritance is a useful mechanism for factoring and reusing code.
However, it has limitations for building extensible systems. We
describenested inheritance, a mechanism that addresses some of
the limitations of ordinary inheritance and other code reuse mech-
anisms. Using our experience with an extensible compiler frame-
work, we show how nested inheritance can be used to construct
highly extensible software frameworks. The essential aspects of
nested inheritance are formalized in a simple object-oriented lan-
guage with an operational semantics and type system. The type
system of this language is sound, so no run-time type checking is
required to implement it and no run-time type errors can occur.
We describe our implementation of nested inheritance as an unob-
trusive extension of the Java language, called Jx. Our prototype
implementation translates Jx code to ordinary Java code, without
duplicating inherited code.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Object-oriented languages;
D.3.3 [Language Constructs and Features]: Classes and objects,
frameworks, inheritance, modules, packages

General Terms
Languages

Keywords
Object-oriented programming languages, inheritance, nested
classes, virtual classes

1. INTRODUCTION
Conventional language mechanisms do not adequately support

the reuse and extension of existing code. Libraries and module sys-
tems are perhaps the most widely used mechanisms for code reuse;
a given library can be used by any code that respects its interface.
Inheritance adds more power: it enablesframeworks, class libraries
that can be reused with some modifications or extensions. But these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

mechanisms do not adequately support our goal ofscalable exten-
sibility: the ability to extend a body of code while writing new code
proportional to the differences in functionality.

In our work on the Polyglot extensible compiler framework [27],
we found that ordinary object-oriented inheritance and method dis-
patch do not adequately support extensibility. Because inheritance
operates on one class at a time, some kinds of code reuse are dif-
ficult or impossible. For example, inheritance does not support
extension of an existing class library by adding a given field or
method to all subclasses of a given class. Inheritance is also in-
adequate for extending a set of classes whose objects interact ac-
cording to some protocol, a pattern that occurs in many domains
ranging from compilers to user interface toolkits. It can be difficult
to use inheritance to reuse and extend interdependent classes.

Nested inheritanceis a language mechanism designed to sup-
port scalable extensibility. Nested inheritance creates an inter-
action between containment and inheritance. When a container
(a namespace such as a class or package) is inherited, all of its
components—even nested containers—are inherited too. In ad-
dition, inheritance and subtyping relationships among these com-
ponents are preserved in the derived container. By deriving one
container from another, inheritance relationships may be concisely
constructed among many contained classes.

To avoid surprises when extending a base system, it is impor-
tant that inherited code remain type-safe in its new context; further,
type safety should be enforced statically. Nested inheritance sup-
ports sound compile-time type checking. This soundness is not eas-
ily obtained, because for extensibility, types mentioned in inherited
code need to be interpreted differently in the new, inheriting con-
text. Two new type constructs make sound reinterpretation of types
possible:dependent classesandprefix types.

We have designed a new language, Jx, which adds nested in-
heritance to Java. Jx demonstrates that nested inheritance inte-
grates smoothly into an existing object-oriented language: it is a
lightweight mechanism that supports scalable extensibility, yet it is
hardly noticeable to the novice programmer.

Many language extensions and design patterns have been pro-
posed or implemented to address the limitations of inheritance, in-
cluding virtual classes [21, 22, 35], mixins [2], mixin layers [33],
delegation layers [31], higher-order hierarchies [10], and open
classes [6]. A relationship between containment and inheritance is
also introduced by virtual classes and higher-order hierarchies [10],
but there are two key differences. First, unlike virtual classes,
nested inheritance is statically type-safe; no run-time type checking
is required to implement it. Second, nested inheritance associates
nested classes with their containing classes rather than with objects
of those classes.



The rest of this paper explores nested inheritance in more depth.
Section 2 discusses why existing language mechanisms do not
solve the problems that nested inheritance addresses. Section 3
presents nested inheritance. Section 4 describes the design of Jx
and discusses adding nested inheritance to Java. We have imple-
mented a prototype Jx compiler, described in Section 5. Because Jx
is complex, a simpler language that captures the essence of nested
inheritance is presented in Section 6, including its formal seman-
tics and static type safety results. Section 7 discusses more broadly
related work, and Section 8 concludes.

2. SCALABLE EXTENSIBILITY
Various programming language features support code reuse, in-

cluding inheritance, parametric polymorphism, and mixins. But
when code is reused, the programmer often finds that extension is
not scalable: the amount of new code needed to obtain the desired
changes in behavior is disproportionate to the perceived degree of
change. More expressive language mechanisms are needed to make
extension scalable.

2.1 Procedures vs. types
One reason why extension is often not scalable is the well-known

difficulty of extending both types and the procedures that manipu-
late them [32, 38]. Object-oriented languages make it easy to add
new types but not new procedures (methods) that operate on them;
functional programming style makes it easy to add new procedures
but not new types.

Extensions to an existing body of code are oftensparsein the
sense that new types that are added can be treated in a boilerplate
way by most procedures, and the new procedures that are added
have interesting behavior for only a few of the types on which
they operate. However, standard programming methods cannot ex-
ploit this sparsity. In an object-oriented style, it is easy to add new
classes, but to add new methods it is necessary to modify existing
code, often duplicating the boilerplate code. In typical functional
style, adding new functions that manipulate data is straightforward
(assuming that the data representation is not encapsulated behind a
module boundary), but modifying existing functions to handle new
data types again requires modifying existing code.

This conflict is particularly noticeable in the context of an ex-
tensible compiler, where new types are added in the form of new
abstract syntax nodes, and new procedures are added in the form
of new compiler passes. With the usual strategy for compiler im-
plementation, adding new abstract syntax requires changes to all
passes, even if the new node types are relevant to only a few passes.
Similarly, adding a new pass may require changes to all nodes, even
if the pass interacts in an interesting way with only a few node
types. Thus, the conflict between extending procedures and types
creates an incentive to structure a compiler as a few complex passes
rather than as a larger number of simple passes, resulting in a less
modular compiler that is harder to understand, maintain, and reuse.
Similar problems arise in other application domains, such as user
interface toolkits.

Inheritance is a useful mechanism for extensibility because
adding new types becomes more scalable: in general, a new type
can inherit default behavior from some existing, similar type. How-
ever, inheritance does not handle extensions that need to add new
fields or methods to an existing inheritance hierarchy in a uniform
way. Some existing language mechanisms do help [6, 33, 31] but
they do not solve the extensibility problems that we have encoun-
tered in developing Polyglot.

2.2 Hooks and extensibility
Making code extensible requires careful design so that the ex-

tension implementer has available the right hooks: interposition
points at which new behavior or state can be added. However,
there is often a price to pay: these hooks can often clutter or obfus-
cate the base code. One way to provide hooks is through language
mechanisms that provide some kind of parametric genericity, such
as parameterized types [20], parameterized mixins [2], and func-
tors [24]. Explicit parameterization over types, classes, or modules
precisely describes the ways in which extension is permitted. How-
ever, it is often an awkward way to achieve extensibility, especially
when a number of modules are designed in conjunction with one
another and have mutual dependencies. It is often difficult to de-
cide which explicit parameters to introduce for purposes of future
extension, and the overhead of declaring and using parameters can
be awkward.

Inheritance embodies a different approach to extensibility. By
giving names to methods, the programmer creates less obtrusive,
implicit parameters that can be overridden when the code is reused.
Nested inheritance builds on this insight by enabling nested classes
to be used as hooks too.

3. NESTED INHERITANCE
Nested inheritance is a statically safe inheritance mechanism

designed to be applicable to object-oriented languages that, like
Java [13] or C++ [34], support nested classes or other containment
mechanisms such as packages or namespaces. We have designed
a language, Jx, that extends Java with nested inheritance. In this
section, we concentrate on describing the nested inheritance mech-
anism, ignoring details of its interaction with Java and its imple-
mentation. These issues are discussed in Sections 4 and 5.

3.1 Overview
There are two key ideas behind nested inheritance. The first

idea is similar to Ernst’s higher-order hierarchies [10] and is re-
lated to virtual classes [21, 22]: a class inherits all members of
its superclass—not only methods, but also nested classes and any
subclass relationships among them.As with ordinary inheritance,
the meaning of code inherited from the superclass is as if it were
copied down from the superclass. A subclass mayoverrideany of
the members it inherits. Like virtual classes, when a nested class is
overridden, the overriding class does not replace the class it over-
rides, but insteadenhancesit. Thus, an overriding class is a sub-
class of the class it overrides, inheriting all its members. We extend
this notion in one important way: the overriding class is not only a
subclass but also a subtype of the class it overrides. This feature al-
lows more opportunities for code reuse than with virtual classes or
higher-order hierarchies. In addition, nested inheritance provides a
form of virtual superclasses[22, 8], permitting the subclass rela-
tionships among the nested classes to be preserved when inherited
into a new container class.1 This feature allows new class members
to bemixed into a nested class by overriding its base class.

The second key idea in nested inheritance is a rich language for
expressing types so that when code is inherited, types are reinter-
preted in the context of the inheriting class. The innovation is an
intuitive way to name types that gives the expressive power of vir-
tual classes while also permitting sound typing.

Nested inheritance largely eliminates the need for factory meth-
ods [12] and other design patterns that address the problem of scal-
able extensibility [27]. Thus, a container such as a class or package

1Note that the similar-sounding term “virtual base class” is used by
C++ but has a very different meaning.



class A {

class B { int x; }

class C extends B {...}

int m(B b) {

return b.x;

}

C n() {

return new C();

}

}

class A2 extends A {

class B { int y; }

int m(B b) {

return b.x + b.y;

}

}

Figure 1: Nested inheritance example

may contain several nested classes or nested packages that depend
on each other in complex ways. When the container is extended and
individual components overridden, interactions between the com-
ponents are preserved in the derived container.

The strength of nested inheritance as an extension mechanism is
that it requires less advance planning to reuse code. Every class and
method provides a hook for further extension, so less programmer
overhead is needed to identify the possible ways in which the code
can be extended than in the functor and mixin approaches.

In this paper, nested inheritance is presented in the context
of Java’s nested classes. However, the same mechanism applies
equally well to packages or other namespace abstractions. In the Jx
language, packages may have a declared inheritance relationship;
they act very much like classes whose components are all static.
Section 3.7 discusses packages in more detail.

In Java, nested classes can be either inner classes or static nested
classes. An instance of an inner class has a reference to anenclos-
ing instanceof its containing class; static nested classes do not have
this pointer. This distinction is discussed further in Section 4.5.
In the following discussion, we consider all nested classes to be
static nested classes. This choice allows the mechanism to be ap-
plicable to classes nested within packages, which have no run-time
instances.

3.2 A simple example
Consider the Java-like code in Figure 1. Because classA contains

nested classesB andC, its subclassA2 inherits nested classesB and
C where the nested classesA2.B andA2.C are subclasses ofA.B
andA.C, respectively. ClassA2 explicitly declares a nested class
B, overridingA.B; declarations withinA2.B (such as the instance
variabley) extendA.B as if A2.B were an explicitly declared sub-
class ofA.B. ClassC is inherited intoA2 as theimplicit classA2.C.
The programmer writes no code forA2.C; it is a subclass of both
A2.B andA.C.

Subclass and subtype relationships are preserved by inheritance.
For example, in Figure 1, the classA2.C is a subclass (and a sub-
type) of A2.B becauseA.C is a subclass ofA.B. In addition, the
constructor callnew C() constructs an object of the classA2.C
when the methodn is invoked on an object of classA2.

Types named in inherited code are reinterpreted in the inheriting
context. For example, the argument of the methodm in the class
A has typeB, meaningA.B in the context ofA. But when inher-
ited into the classA2, the argument type becomesA2.B because the
meaning of the nameB is reinterpreted in the inheriting context.
With this change,A2 might not seem to conform toA because an
argument method type has changed covariantly. However, subtyp-
ing betweenA2 andA is still sound because the type system ensures
them method can only be called when its argument is known to be
from the same implementation ofA as the method receiver.

class Java {

class Expr {

Type type;

void accept(Visitor v) {

v.visitExpr(this);

}

}

class Plus extends Expr {

Expr left, right;

void accept(Visitor v) {

left.accept(v);

right.accept(v);

v.visitPlus(this);

}

}

class Visitor {

void visitExpr(Expr e) { }

void visitPlus(Plus b) { }

}

class TypeChecker extends Visitor {

void visitPlus(Plus p) {

if (...) { p.type = Int; } else ...

}

}

}

Figure 2: Base compiler code

class Jif extends Java {

class Expr { Label lbl; }

class Label extends Expr { ... }

class Visitor {

void visitLabel(Label l) { }

}

class TypeChecker extends Visitor {

void visitPlus(Plus p) {

super.visitPlus(p);

p.lbl = p.left.lbl.join(p.right.lbl);

}

}

}

Figure 3: Jif extension

3.3 Compiler example
Figures 2 and 3 suggest how nested inheritance can be used to

build an extensible compiler. Figure 2 gives simplified code for an
ordinary Java compiler. Figure 3 uses nested inheritance to create
a compiler for a language like Jif [25] that extends Java with in-
formation flow labels. This code uses the visitor pattern [12], in
which compiler passes such as type checking are factored out into
separate visitor objects, and boilerplate tree traversal is found in
accept methods. TheExpr andPlus classes implement abstract
syntax tree (AST) nodes, andTypeChecker implements the type-
checking pass, inheriting common functionality from its superclass
Visitor.

Nested inheritance is effective for building this kind of ex-
tensible system. By adding a fieldlbl to the classExpr, ev-
ery kind of expression node, includingPlus, acquires this field.
Similarly, adding avisitLabel method toVisitor causes ev-
ery visitor, such asTypeChecker, to acquire this new method.
The methodTypeChecker.visitPlus can be then overridden



class A {

class B {...}

class C extends This.B {...}

int m(this.class.B b) {

return b.x;

}

this.class.C n() {

return new this.class.C();

}

}

Figure 4: Desugared version of classA from Figure 1

to perform additional static checking on labels in addition to the
ordinary type checking it performs by delegating to the super-
classJava.TypeChecker. Note that the overriddenvisitPlus
method expects aJif.Plus, which has albl field, rather than a
Java.Plus, which does not.

This example is suggestive of how nested inheritance could be
used to implement the actual Polyglot and Jif compilers. Note that
Jif.Expr andJava.Expr are different classes and both classes
can coexist within the same compiler, permitting Jif abstract syntax
trees to be translated to Java ASTs.

3.4 Naming types
The examples in Figures 1–3 look very much like Java; a Java

programmer could be excused for not noticing the discrepancies.
In fact, Jx is mostly backward compatible with Java: a Java pro-
gram is a valid Jx program as long as nested classes are declared
final or their containing classes are not subclassed. However, Jx
obtains additional expressive power from new syntax for naming
types (which is not shown in Figures 1–3). This syntax can be seen
in Figure 4, which shows the classA from Figure 1 in a desugared
form.

ClassA.C is declared to extendThis.B. WhenThis is used in a
declaration, it refers to the most specific class that inherits that dec-
laration. In the body ofA, This resolves toA andThis.B therefore
resolves toA.B. WhenC is inherited intoA2, This.B is reinter-
preted in the context ofA2 and resolves toA2.B. Thus,A.C is a
subclass ofA.B andA2.C is a subclass ofA2.B.

Returning to Figure 1, observe that the methodm takes a formal
parameter of typeB. SinceA2.B is a subclass ofA.B, one might try
to write unsafe code like the following, which passes anA.B to the
methodA2.m:

A a = new A2();

A.B b = new A.B();

a.m(b);

BecauseA.B does not have ay field, the behavior of the memory
accessb.y in the methodm would be undefined. For this reason
the above code does not type-check in Jx. Of course, this po-
tential unsoundness results because the formal argument type is
changed covariantly in the subclassA2. The virtual class mecha-
nism in Beta [21] is unsound for precisely this reason, and therefore
Beta requires a run-time check at method invocation. These checks
create run-time overhead, but more importantly, they can lead to
unexpected run-time errors. Our approach is instead to introduce
a dependent type mechanism that ensures programs are statically
safe and thus do not need run-time checks.

In Figure 1, the methodA.m is declared with a formal parameter
of typeB, which is syntactic sugar for the typethis.class.B, as
shown in Figure 4. Thedependent classthis.class denotes the
run-time class of the expressionthis, but not any subclass of the

run-time class ofthis. As with ordinary non-dependent classes,
a nested class can be selected fromthis.class. If the run-time
class ofthis is A2, thenthis.class.B is really the classA2.B.
If, at run time,this is an instance of classA, thenthis.class.B
is A.B, butnotA2.B.

Declaring the method parameter form asthis.class.B ensures
thatm in A2.B cannot be called with a superclass ofA2.B. Callers
of m must demonstrate that the method is invoked with aB selected
from the receiver’s class. In the following (safe) code, the variable
a contains a value with run-time classA2.

final A a = new A2();

final a.class.B b = new a.class.B();

a.m(b);

To call the methodm with receivera, the caller must pass an argu-
ment of typea.class.B. Even if the receiver has static typeA2, it
is illegal to invokemwith anA2.B, since the actual run-time class of
the receiver may be a subtype ofA2 that overridesA2.m. The argu-
ment must have the typea.class.B. Note thata must be declared
final to ensure its run-time class does not change.

In general, a dependent class is of the formp.class, wherep
is a final access path: either afinal local variable (including
formal parameters andthis) or a field accessp′.f, wherep′ is a
final access path andf is afinal field. The run-time class of an
object specified by afinal access path does not change.

The dependent typethis.class is similar to theMyType (self
type) construct of LOOM [3] and PolyTOIL [5]. The key dif-
ference is that withMyType, an instance of a subtype ofMyType
may be assigned to a variable of typeMyType. AlthoughMyType
is covariant with respect to the subclassing relationship, the type
MyType may be used as a method parameter type because subtyp-
ing and subclassing are decoupled. The dependent classp.class is
also closely related to the path dependent typep.type in theνObj
calculus [29] and in the Scala [28]; howeverp.type is a single-
ton type, meaning the only member of the type is the object ref-
erenced byp. p.class is not a singleton. In particular, one can
create new instances of the class through thenew operator (e.g.,
new p.class(...)).

While subclasses of the static type of a patha are not subtypes
of a.class, the same is not true of classes selected relative to
a.class. In particular, using the classes in Figure 1,a.class.C

is a subtype ofa.class.B, and therefore the calla.m(b) above is
permitted.

3.5 Prefix types
Now consider the code in Figure 2, in which the classesExpr and

Visitor are mutually recursive because of their respectiveaccept

andvisitExpr methods. The classJif extendsJava, overriding
both classes, soJif.Expr andJif.Visitor are mutually depen-
dent in the same way asJava.Expr andJava.Visitor.

For code reuse,Expr andVisitor need to be able refer to each
other without hard-coding the name of their enclosing classJava.
Our solution is a type system that gives the ability to name the
enclosing class of a given value.

For a non-dependent classP, and arbitrary classT, the prefix
type P[T] is the innermost enclosing class ofT that is a subclass of
P. Prefix types permit an unambiguous way of naming containers.
For example, assuming the variableb has the static typeA.B, then
A[b.class] is the container of the run-time class of the value in
b; if b contains a value of run-time classA2.B, thenA[b.class]
is the classA2.

In Figure 2 the methodExpr.accept has a parameter with
the (desugared) prefix typeJava[this.class].Visitor, and



Visitor.visitExpr has a parameter with the prefix type
Java[this.class].Expr. When accept is invoked on a
Java.Expr, it expects an argument of typeJava.Visitor, but
when invoked on aJif.Expr, it expectsJif.Visitor. Thus,
the relationship among the component classes is preserved. Ref-
erences toExpr within Visitor in Figure 2 are merely sugar
for Java[this.class].Expr, and conversely for references to
Visitor within Expr. No instance of the classJava need be in
scope to use the typeJava[this.class].Expr. This syntax thus
makes it possible to refer to other classes in the current package
even though packages do not have instances.

3.6 Overriding the superclass
When overriding a class in a containing class, the programmer

can change the superclass. This feature allows new functionality to
be mixed in to several classes in the new containing class without
code duplication.

The superclass of a nested classboundsthe type of the nested
class. Overriding the superclass permits this bound to be tightened,
enabling a virtual type-like pattern. In particular, ifD is a nested
class that extends some other classC, thenD is like a virtual type,
bounded byC; whenD’s container is subclassed, the superclass of
D can be modified to be a subclass of the original superclass ofD.
This has the effect of making the virtual typeD more precise in the
container’s subclass.

3.7 Package inheritance
The language mechanisms described for nested inheritance ap-

ply to packages as well as to classes. Indeed, we expect nested
inheritance of packages to be the most common use of nested in-
heritance.

In Jx, packages, like classes, may have a declared inheritance
relationship. If packageP2 extends packageP, thenP2 inherits
all members of packageP, including nested packages.2 The dec-
laration thatP2 extendsP is made in a special source file in the
packageP2, which facilitates separate compilation by allowing the
packageP to be ignorant of its descendants. The declaration isnot
made in each separate source file of the packageP2, since doing so
would duplicate package inheritance declarations, introducing pos-
sible inconsistencies and making modification of the inheritance
relationship more difficult.

Prefix types extend to accommodate packages: ifP is a package
name andT is an arbitrary class, thenP[T] is the innermost en-
closing package ofT that is derived fromP. Prefix types may also
appear inimport declarations. For example, consider a package
P with nested packagesQ and R, and a source file inQ that im-
ports classes fromR. To allow code reuse via nested inheritance,
these classes must be imported without hard-coding the names of
their enclosing packages. The source file inQ uses the declaration
import P[Package].R.* to import the appropriate classes. The
keywordPackage refers to the package of the most specific class
that inherits the import declaration, analogous to the use ofThis in
a declaration to denote the most specific class that inherits that dec-
laration. We use the namePackage since neitherThis nor this
are in scope at import declarations.

Dependent classes, on the other hand, do not need to be ex-
tended to handle packages because packages do not have run-time
instances.

2Nested packages are calledsubpackagesin Java [13]. We refrain
from using this term to avoid confusion between nested packages
and derived packages.

3.8 Genericity
Nested inheritance is intended to be a mechanism for extensi-

bility and not for genericity. Jx is an extension of Java and, as of
version 1.5, Java already has a genericity mechanism, parameter-
ized types.

Nested inheritance as presented above does not provide an ab-
stract type construct. To use virtual types for genericity, abstract
types are used to equate a virtual type with a class. For example,
the following code fragment implements a genericList class and
a List of Integers, IntList, in a hypothetical extension of Jx
with abstract types.

class List {

abstract class T extends Object { }

void add(this.class.T x) { ... }

}

class IntList extends List {

class T = Integer;

}

By declaringIntList.T to be an alias forInteger, the add

method may be called with an argument of typeInteger. Without
abstract types, the best that can be done using nested classes is to
declareIntList.T as

class T extends Integer { }

But in this case, only instances ofIntList.T can be added to an
IntList, not instances of theInteger class. However, a list of
Integer can be implemented more succinctly as the parameterized
typeList<Integer>.

3.9 Final binding
As in Java, classes in Jx may be declaredfinal to prevent the

class from being subclassed. This naturally extends to nested in-
heritance be requiring that afinal nested class can be neither sub-
classed explicitly with anextends declaration nor overridden in a
subclass of its enclosing class. Thisfinal bindingof nested classes
is useful for enabling optimizations and for modeling purposes. In
addition, virtual classes in Beta may be inherited from only if they
are final bound. Jx does not permit inheritance from dependent
classes and thus this restriction is not needed.

Final classes also enable backward compatibility with Java; if all
nested classes arefinal, a Jx program is a legal Java program.

4. INTERACTIONS WITH JAVA
Nested inheritance introduces several new features that are dis-

cussed in Section 3. It is worth discussing how these features in-
teract with some existing object-oriented programming features in
Java.

4.1 Conformance
In Jx, a class conforms to its superclass under the same rules

as in Java: a method’s parameter types and return type must be
identical in both classes. In principle this rule could be relaxed to
permit covariant refinement of method return types, but we have
not explored this relaxation.

4.2 Method dispatch
In Java, method calls are dispatched to the method body in the

most specific class of the receiver that implements the method. In
the code in Figure 5(a), bothA2.B andA.B2 overrideA.B’s imple-
mentation ofm. The implicit classA2.B2 inheritsm from bothA.B2
andA2.B. Which of the two implementations is the most specific?



class A {

class B {

int m() { return 0; }

}

class B2 extends B {

int m() { return 1; }

}

}

class A2 extends A {

class B {

int m() { return 2; }

}

}

class A2 extends A {

class Binh {

int m() { return 0; }

}

class B extends Binh {

int m() { return 2; }

}

class B2inh extends B {

int m() { return 1; }

}

}

(a) Original code (b)A2 with implicit classes
shown initalics

Figure 5: Method dispatch example

A2

A.B2

A.B

A

A.B2

A.B

A2.B2

A2.B

Figure 6: Dispatch order

The same issue arises in languages that support multiple inher-
itance. For example, in C++ this situation is considered an error.
However, because nested inheritance introduces implicit classes,
this rule would effectively prevent a class from overriding any
methods of a class it overrides, since its implicit subclasses would
inherit both implementations.

Instead, we exploit the structure of the inheritance mechanism.
WhenA is subclassed toA2, if B is not overridden, it is an implicit
class ofA2. We write this classA2.Binh. Now whenA2.B is de-
clared, overridingA.B, we can consider its immediate superclass to
benot A.B, but rather the implicit classA2.Binh inherited intoA2.
We can think of the code forA2 in Figure 5(a) as the code in Fig-
ure 5(b). Thus, in order from most to least specific, the classes in
A2 are:A2.B2inh, A2.B, andA2.Binh, or equivalently:A.B2, A2.B,
andA.B. This dispatch order is depicted in Figure 6.

This dispatch order is not chosen arbitrarily:A.B2 should be dis-
patched to beforeA2.B because theB2 classes are specializations
of theB classes, and thus allB2 classes should be regarded as being
more specific than anyB class. The same dispatch order is used in
delegation layers [31].

4.3 Naming conflicts
To support separate compilation of classes, Jx needs a mech-

anism for resolving naming conflicts. Naming conflicts arise
when there are two classes that have a common ancestor and no
subclassing relationship between them, and both classes declare a

class A {

class B { }

class B2 extends B {

int m() {...}

}

}

class A2 extends A {

class B {

Object m() {...}

}

class B2 extends B {

void n() {

m(); // A.B2.m() or

// A2.B.m()?!

}

}

}

Figure 7: Name conflict example

field or method with the same name.

For example, consider the code in Figure 7. The classesA.B2

andA2.B have a common ancestorA.B, and both declare a method
m(), but with incompatible return types. Both of these method
declarations are allowed, because in general, each class could be
compiled independently of the other—particularly, if the container
A were a package instead of a class. However, in the method body
of A2.B2.n(), it is not clear which methodm() is referred to. In
addition, if A2.B2 wished to override one or both of the methods
m(), then the method declarations need to indicate which method
they are overriding.

Jx resolves naming conflicts for method invocation and field ac-
cess by requiring the client to cast the receiver of the method invo-
cation or field access to a class in which there is no such conflict.
For example, inA2.B2.n(), the method call((A2.B)this).m()
would be permitted, as the namem() is not in conflict in the class
A2.B.

Naming conflicts for method overriding are resolved by ensur-
ing the overriding method declaration supplies the class name of
an ancestor class on which the overridden method is defined. For
example, if the classA2.B2 wished to override the methodm() de-
clared in classA.B2, the method declaration inA2.B2 would be
writtenint A.B2.m() {...}.

Note that we expect naming conflicts to be exceptional, rather
than the norm; the additional mechanisms required by Jx to resolve
naming conflicts should thus not be overly burdensome.

4.4 Constructors
Nested inheritance requires that constructors, like methods, are

inherited by subclasses, so that it is possible to call constructors
of dependent classes and prefix types. Suppose that the classA.B

contains a constructor that takes an integer as an argument. Then
the following code is permitted:

final A a = new A2();

final a.class.B b = new a.class.B(7);

The expressionnew a.class.B(7) is allowed because the stat-
ically known type of the variablea is the classA, and there is a suit-
able constructor for the classA.B. However, at runtime the variable
a contains a value of run-time classA2, and therefore an object of
classA2.B is constructed. In order to be sound, the classA2.B

must have a constructor with a suitable signature. SinceA2.B may
in general be an implicit class,A2.Bmust inherit the constructors of
A.B, and of any other superclasses, in the same way that it inherits
methods.

The primary use of constructors is for initializing fields; if a final
field does not have an initializer, then every constructor of the class
must ensure that the final field is initialized. Initializing final fields



instance 
class

class 
class

method 
interface

static 
interface

getClass

new

Figure 8: Target classes and interfaces

is particularly important for nested inheritance, because some final
fields may be used to define dependent classes. Failure to initialize
these fields would lead to unsoundness. Therefore, if a class de-
clares a final field, that field must either have an initializer, or else
all constructors inherited from superclasses must be overridden and
that field must be initialized in each constructor.

4.5 Inner classes
We have assumed that nested classes are static and are thus not

inner classes. An instance of a static nested class does not have a
reference to an enclosing instance of its container class. In Java,
these enclosing instances are writtenP.this, whereP is the name
of an enclosing class. Jx can accommodate inner classes by assign-
ing the typeP[this.class] to the enclosing instanceP.this.

Allowing inner classes raises the possibility of extending Jx to
allow dependent classes to appear in theextends clause of nested
classes. For example, if the classA had inner classB and a final
field f, thenB could be declared to extendthis.f.class. De-
pendent classes cannot currently appear in theextends clause of
a nested class, asthis is not in scope during the declaration of a
static nested class.

If the use of dependent classes inextends clauses is restricted to
this.class or prefixes ofthis.class, then the current type sys-
tem of Jx suffices, becausethis.class is equivalent toThiswhen
this is in scope. References to enclosing instances can be imple-
mented as fields of the nested instance, as is done byjavac and by
Igarashi and Pierce’s formalization of inner classes [17]. However,
if arbitrary dependent classes are allowed, such asthis.f.class,
then the type system of Jx would need to be modified, and the im-
plementation described later, in Section 5, would need significant
redesign.

5. IMPLEMENTATION
We have implemented a prototype translation from Jx to Java as a

3700-line extension in the Polyglot compiler framework [27]. The
prototype supports class inheritance but not package inheritance
as described in Section 3.7. However, a design for implementing
package inheritance is presented in Section 5.4. The translation is
efficient in that it does not duplicate code, although each Jx class,
including implicit member classes, is represented explicitly in the
target language.

5.1 Translating classes
As depicted in Figure 8, each source Jx class (including implicit

member classes) is represented in translation by two Java classes
and two Java interfaces: theinstance class, themethod interface,
theclass class, and thestatic interface.

The instance classfor a Jx classC contains the translation of
any methods and constructors declared inC. An object of the Jx
classC is represented at runtime by a collection of instance class
objects, one instance class object forC and each Jx class thatC
subclasses. The instance objects that representC point to each other

A2.B2

(A.B2) (A2.B2)

(A.B) (A2.B)

Figure 9: Representation of anA2.B2 object

via dispatch fields. For example, the classA2.B2 of Figure 5 is
represented by four objects as shown in Figure 9. The instance class
also provides methods for accessing fields and for dispatching to
methods, including thoseC inherits; these dispatch methods simply
forward the field access or method call to an appropriate instance
object of a superclass ofC, using the dispatch fields. Note that
Java’s normal method dispatch mechanism cannot be used, because
instance objects of superclasses ofC are not superclasses ofC’s
instance object. Hence, the translation must make dispatch explicit.

Each instance class has two constructors: amasterconstructor
and aslaveconstructor. If an object of classC is being created,
then the master constructor ofC’s instance class is invoked, creat-
ing the other instance objects needed to represent a JxC object by
invoking the necessary slave constructors. The slave constructor of
C’s instance class is invoked when the instance object is being used
to represent a subclass ofC.

The instance class also contains the translations of the Jx con-
structors ofC. Jx constructors are translated into methods in the in-
stance class, which are invoked by the class class (see below); the
translation of constructors into methods facilitates the inheritance
of constructors.

The instance class forC implements themethod interfacefor C,
which declares all methods thatC defines, as well as getter and
setter methods for all non-private fields declared inC. The method
interface extends all the method interfaces ofC’s superclasses.

The class classprovides means at runtime to both access type
information aboutC and create newC objects (that is, collections of
appropriate instance classes). For every Jx class, there is a single
class class object instantiated at runtime. Every instance class has a
method that returns the appropriate class class, analogous to Java’s
getClass() method on theObject class.

Information aboutC’s superclasses, enclosing class, and nested
classes is available at runtime in order to create instances of pre-
fix types. For example, ifv is a Jx object, and a new object
of type P[v.class] needs to be created via a constructor call
new P[v.class](...), thenv’s class class must be interrogated
to find the class class for the most specific enclosing class of
v.class that is a subclass ofP. The class class object found is then
used to create the new object: the class class forC has a method
newThis(...) for every constructor declared or inherited byC.
These methods create a new instance class object forC, with the
master constructor, and then invoke the appropriate translated con-
structor on the instance class object.

The class class also provides a method to test if a given object is
an instance of the Jx class, and acast(Object o) method, which
throws aClassCastException if the objecto is not an instance
of the Jx class, and returnso otherwise. These methods are needed
to support the translation of casts andinstanceof expressions in
the source language.



The class class implements thestatic interface, which declares
all constructors thatC declares or inherits. The static interface ex-
tends all static interfaces ofC’s superclasses.

All methods on class class objects are invoked via an appropriate
static interface. This permits the translation of constructor calls
on dependent classes. For example, supposeA2 is a subclass of
A. ThenA2’s class class implementsA’s static interface. Now, if
the variablea has static typeA, the Jx expressionnew a.class()

will be translated to a call tonewThis() on A’s static interface.
Supposing that the run-time class ofa is A2, then that method call
will actually invokenewThis() onA2’s class class, and thus create
a new instance ofA2.

5.2 Translating methods
A method declaration in a Jx classC is translated into a method

declaration inC’s instance class; any method thatC inherits has a
dispatch method created inC’s instance class.

Since a Jx object is represented at runtime by a collection of
instance objects, the source language expressionthis must be
translated into something other than the target language expression
this, in order to allow method invocations and field accesses on
the Jx object. To achieve this, the translation adds an additional
parameterself to every source language method and constructor.
Theself parameter is the translation of the special variablethis

and always refers to the master instance object, the instance object
that created the other instance objects that collectively represent a
Jx object.

5.3 Translating fields
A field declaration in a Jx classC is translated into a field dec-

laration inC’s instance class. Getter and setter methods are also
produced for any non-private fields, which allows the method dis-
patch mechanism to be used to access the fields. Field accesses in
Jx code are translated into calls to the getter and setter methods.

5.4 Translating packages
This section describes a design for translating package inheri-

tance in Jx. This design is not yet implemented.
Packages, like classes, require a means to access type informa-

tion about the package at runtime. For a given packageP, thepack-
age classfor P provides type information aboutP to resolve prefix
types, analogous to a class class. The package class is able to pro-
vide information about what packageP inherits from, the package
that containsP, packages nested insideP, and classes contained in
the packageP.

Since a package class needs to know about all classes in the pack-
age, care must be taken to ensure that the classes in a given pack-
age can be compiled separately while guaranteeing that the package
class contains correct information. Correctness can be achieved by
generating the package class every time a class within the pack-
age is compiled, under the assumption that all previously compiled
classes within the package are available at that time. Removal of
a class from a package requires the package class to be regener-
ated. The reflection mechanism of Java may provide a more flex-
ible mechanism to ensure the correctness of information provided
by package classes.

6. SIMPLE LANGUAGE MODEL
To explore the soundness of type checking with nested inheri-

tance, we developed a simple Java-like language that demonstrates
the core features of nested inheritance with dependent classes. For
simplicity, many features of the full Jx language are absent. In par-
ticular, the language presented here includes nested classes but not

packages. A package can be modeled as a class in which all classes
in the package are nested.

The language is based on Featherweight Java (FJ) [16], but
includes a number of additional features found in the full Java
language—notably, a heap andsuper calls—needed to model im-
portant features of nested inheritance. We include a heap in order
to model recursive data structures, which interact with dependent
classes in non-trivial ways. The language includes static nested
classes, dependent classes and prefix types.

6.1 Syntax
The syntax of the language is shown in Figure 10. We write~x to

mean the listx1, . . . ,xn andx to mean the set{x1, . . . ,xn} for some
n≥ 0. A term with list subterms (e.g.,~f =~e) should be interpreted
as a list of those terms (i.e.,f1 = e1, . . . , fn = en). We write #(~x)
for the length of~x. The empty list is written[ ]. The singleton list
containingx is denoted[x]. We writex,~x for the list with headx
and tail~x, and~x1 ,~x2 for the concatenation of~x1 and~x2.

A programPr is a pair〈L,e〉 of a set of top-level class decla-
rationsL and an expressione, which models the program’smain
method. To simplify presentation, we assume a single globaltop-
level class table TCT, which maps top-level class namesC to their
corresponding class declarationsclassC extends S{L ~F M}.

A class declarationL may include a set of nested class declara-
tionsL, a list of fields~F , and a set of methodsM. Fields are in a
list since the order of the fields is important for field initialization.
There are two forms of class declarationL. In theTCT, a class dec-
laration’sextends clause cannot mention a dependent class, but it
may refer to thetype schemaThis, which is used to name the en-
closing class into which the class declaration is inherited. During
class lookup,This is replaced with the name of the enclosing class,
producing a class declaration with anextends clause of the form
extends T.

TypesT are either top-level classesC, qualified typesT.C, de-
pendent classesp.class, or prefix typesP[T : P.C], whereP de-
notes a non-dependent class name. A type may depend on an ac-
cess path expressionp; the dependent classp.class is the run-time
class of the object referred to by access pathp. To be a well-formed
type, p must be afinal access path; ifp were mutable, the class
of the object it refers to could change at run time, leading to an
unsoundness. A prefix typeP[T :P.C] is the innermost enclosing
classT ′ of T such thatT ′ is a subtype ofP andT is a subtype of
T ′.C (and thus ofP.C). For the prefix type to be well-formedP.C
must exist andT must be a dependent class or another prefix type.
This definition of prefix type differs from the description given in
Section 3; the change simplifies the semantics. Although the prefix
type syntax can name only the immediately enclosing class ofT,
further enclosing classes can be named by prefixing the prefix type
(e.g.,A[A.B[x.class :A.B.C] :A.B]).

FieldsF may declaredfinal or non-final. All field declara-
tions include an initializer expression. The syntax for methodsM
is similar to that of Java.

Expressionse are similar to Java expressions of the same form.
Access pathsp are either field accessesp. f or valuesv, which
include base valuesb and variablesx. Base valuesb are either
memory locations̀ P of type P or null. Locations are not valid
surface syntax, although they appear during evaluation. All vari-
ablesx, including formal parameters and the special variablethis,
arefinal and are initialized at their declaration. The declaration
final T x= e1; e2 initializesx to e1, then evaluatese2.

Fields and methods are accessed only through final access paths
p. Field assignments may optionally be annotated with the keyword
final, permitting assignment tofinal fields when initializing an



Syntax:

programs Pr ::= 〈L,e〉
class declarations L ::= classC extends S{L ~F M}

| classC extends T {L ~F M}
type schemas S ::= C | S.C | This | P[S:P.C]
types T ::= C | T.C | p.class

| P[T :P.C]
simple nested classesP,Q ::= C | P.C
field declarations F ::= [final] T f = e
method declarations M ::= T m(~T ~x) {e}
access paths p ::= v | p. f
base values b ::= `P | null
values v ::= b | x
expressions e ::= p

| final T x= e1; e2
| p. f =[final] e1; e2
| p.m(~v)
| v.superP.m(~v)
| new T as x {~f =~e}

objects o ::= P { f = `P}

typing environments Γ ::= /0 | Γ,x : T

Evaluation contexts:

evaluation contexts E ::= [·]
| final TE x= e1; e2
| final T x= E; e
| E. f
| E. f = e1; e2
| b. f = E; e2

| E.m(~b)
| new TE as x {~f =~e}

type eval contexts TE ::= TE.C
| P[TE:P.C]
| E.class

null eval contexts N ::= null. f
| final TE[null] x = e1; e2
| null. f = b; e
| null.m(~b)
| null.superP.m(~b)
| new TE[null] as x {~f =~e}

Type interpretation:

exact-class(`P.class) = P

exact-class(P[T :P.C]) = prefix(P,exact-class(T),
exact-class(T),P.C)

runtime-class(C) = C

runtime-class(T.C) = runtime-class(T).C
runtime-class(`P.class) = P

runtime-class(P[T :P.C]) = prefix(P, runtime-class(T),
runtime-class(T),P.C)

prefix(P,P0,P
′.C,P.C) = P′

prefix(P,P0,T,P.C) = prefix(P,P0,( /0,P0,T),P.C)
(T 6= P′.C for anyP′)

Class lookup:

classes(Γ,T0,P) = Ls

TCT(C) = C ext P {L ~F M}
CT(Γ,T0,C) = C ext P {Ls•L{T0/This} ~F M}

(CT-OUTER)

C ext Ts {L ~F M} ∈ classes(Γ,T,T)
classes(Γ,T0,Ts) = Ls

CT(Γ,T0,T.C) = C ext Ts {Ls•L{T0/This} ~F M}
(CT-NEST)

exact-class(T) = P
classes(Γ,T0,P) = L

CT(Γ,T0,T) = ext P {L• /0}
(CT-RUNTIME)

P[T :P.C] 6∈ dom(exact-class) classes(Γ,T0,P) = L

CT(Γ,T0,P[T :P.C]) = ext P {L• /0}
(CT-PRE)

p.class 6∈ dom(exact-class)
Γ ` p final P

classes(Γ,T0,P) = L

CT(Γ,T0, p.class) = ext P {L• /0}
(CT-DEP)

Member class inheritance:

L1 •L2 =
⋃

C∈dom(L1∪L2)

L1(C)•L2(C)

L(Ci) =

{
Li if Li = Ci ext Ti {Li ~Fi Mi}
absent otherwise

C ext T1 {L1 ~F1 M1}•C ext T2 {L2 ~F2 M2}=
C ext T2 {L1 •L2 ~F2 M2}

C ext T1 {L1 ~F1 M1}•absent= C ext T1 {L1 • /0}

absent•C ext T2 {L2 ~F2 M2}= C ext T2 {L2 ~F2 M2}

Final access paths:

` P wf

` `P final P
(F-LOC)

Γ ` T wf

Γ ` null final T
(F-NULL )

x : T ∈ Γ
Γ ` x final T

(F-VAR)

Γ ` p final T ftype(Γ,T, fi) = final Ti

Γ ` p. fi final Ti{p/this}
(F-GET)

Γ ` p final T exact-class(T) = P exact-class(T ′) = P

Γ ` p final T ′

(F-RUNTIME)

Figure 10: Syntax and class lookup functions



Superclasses:

CT(Γ,T,T) = C ext Ts {L ~F M}
super(Γ,T) = Ts

Nested classes:

classes(Γ,T0,Object) = /0

CT(Γ,T0,T) = C ext T ′ {L ~F M}
classes(Γ,T0,T) = L

Fields:

fields(Γ,T0,Object) = [ ]

CT(Γ,T0,T) = C ext Ts {L ~F M}
(Γ,T0,T) = T ′

fields(Γ,T0,T ′) = ~F ′

fields(Γ,T0,T) = ~F ′ , ~F

fields(Γ,T,T) = [final] ~T ~f =~e

ftype(Γ,T, fi) = [final] Ti

fields(Γ,T,T) = [final] ~T ~f =~e

finit(Γ,T, fi) = ei

fields(Γ,T,T) = [final] ~T ~f =~e

fnames(Γ,T) = f

Methods:
CT(Γ,T0,T) = C ext Ts {L ~F M}

Tr m(~T ~x) {e} ∈ M

method(Γ,T0,T,m) = Tr m(~T ~x) {e}

CT(Γ,T0,T) = C ext Ts {~L ~F M}
Tr m(~T ~x) {e} 6∈ M

(Γ,T0,T) = T ′

method(Γ,T0,T ′,m) = M

method(Γ,T0,T,m) = M

method( /0,T0,T,m) = Tr m(~T ~x) {e}
mbody(T0,T,m) = (~x,e)

method(Γ,T0,T,m) = Tr m(~T ~x) {e}
mtype(Γ,T0,T,m) = (~x : ~T)→ Tr

Operational semantics:

runtime-class(T) = P

〈H,final T x= b; e〉 −→ 〈H,e{b/x}〉
(R-LET)

H(`P) = P { f = b}
〈H, `P. fi〉 −→ 〈H,bi〉

(R-GET)

H(`P) = P { f = b}
H ′ = H[`P := P { f1 = b1, . . . , fi = b′i , . . . , fn = bn}]

〈H, `P. fi =[final] b′i ; e〉 −→ 〈H ′,e〉
(R-SET)

mbody(P,P,m) = (~x,e)

〈H, `P.m(~b)〉 −→ 〈H,e{`P/this,~b/~x}〉
(R-CALL )

( /0,P,Q) = Q′ mbody(P,Q′,m) = (~x,e)

〈H, `P.superQ.m(~b)〉 −→ 〈H,e{`P/this,~b/~x}〉
(R-SUPER)

runtime-class(T) = P
fnames( /0,P) = ~f ′

f ⊆ f ′

`P 6∈ dom(H)
H ′ = H[`P = P { f ′ = null}]

e′i = ei{`P/x} if fi ∈ f
e′i = finit( /0,P, fi){`P/this} if fi ∈ f ′− f

e′′ = `P.~f ′ =final
~e′; `P

〈H,new T as x {~f =~e}〉 −→ 〈H ′,e′′〉
(R-NEW)

〈H,e〉 −→ 〈H ′,e′〉
〈H,E[e]〉 −→ 〈H ′,E[e′]〉

(R-CONG)

〈H,E[N]〉 −→ 〈H,null〉 (R-NULL )

Dispatch ordering:

ord(Γ,T) = ~T

(Γ,T,Ti) = Ti+1

ord(Γ,Object) = [Object]
ord(Γ,T.C) = ord(Γ,T).C, ord(Γ,super(Γ,T.C))

ord(Γ,T) = T,ord(Γ,super(Γ,T))
whereT 6= Object and
T 6= T ′.C for anyT ′

ord(Γ,T).C is the list ofT ′.C such thatT ′ ∈ ord(Γ,T) and
Γ ` T ′.C wf

Figure 11: Member lookup functions and operational semantics



object. Thesefinal assignments are not allowed in the surface
syntax. Methods dispatch to the method body in the most specific
superclass of the receiver, as described in Section 4.2. A method
implemented by a superclass ofP may be invoked with the expres-
sionv.superP.m(~v). In the surface syntax,v must bethis, but v
can take on arbitrary values during evaluation as substitutions oc-
cur. To simplify dispatch, asuper call is marked with the name of
the class lexicallyP containing the call.

Allocation is performed with thenew operator. The calculus does
not include constructors. Instead, thenew operator has aninline
constructor bodythat may initialize zero or more fields of the new
object. The field initializers may refer to the new object through
the variablex. Fields not assigned in the inline constructor body are
initialized with their default initializers. Field initialization order is
left undefined; fields are initialized tonull by default. Access to
an uninitialized field is treated as anull dereference. A heapH
maps locations̀P to objectso, which are simple records annotated
with their class type.

For any termt, valuev, and variablex we write t{v/x} for the
capture-free substitution ofv for x in t. As is standard practice,α-
equivalent terms are identified. We writeFV(t) for the set of free
variables int.

6.2 Class lookup
Classes are defined in a fixed top-level class tableTCT that maps

all top-level class namesC to class declarationsL. We extend the
top-level class tableTCT to a functionCT, shown in Figure 10.
CT returns class declarations not only for top-level class names,
but for arbitrary types. Member lookup and subtyping are defined
usingCT.

In addition to the type to lookup,CT has two more parameters.
Because the language has dependent classes, theCT function takes
an environmentΓ that maps variables to types.Γ is a finiteordered
list of x:T pairs in the order in which they came into scope. To be
well-formed, an environmentΓ may contain at most one pairx:T
for a givenx.

In addition to returning a class declaration for a type,CT also
interprets theextends clause of the class declaration, replacing
any occurrences ofThis with the actual enclosing class. This type
is passed as the second argument toCT. Thus,CT(Γ,T0,T) returns
the interpreted class declaration forT in an environmentΓ where
T0 is substituted into theextends clause of member classes of the
class declaration. To save space, we writeC ext T {L ~F M} to
representclassC extends T {L ~F M}.

Classes inherit member classes of the base class into the body
of the derived class. The setL1 •L2, defined in Figure 10, merges
the class bodies of identically named classes inL1 andL2, creat-
ing class declarations for implicit classes when needed. Classes
in L1—classes inherited from the base class—are overridden by
classes inL2—nested classes of the derived class. Fields and meth-
ods of classes defined in a base class arenotcopied when the nested
class is inherited into the subclass; they can be found by the mem-
ber lookup functions defined in Figure 11.

The functionclasses(Γ,T0,T) defined in Figure 11 returns the set
of member classes ofT with T0 substituted forThis in theextends
clause of the member classes.

The rules CT-OUTER and CT-NEST define theCT function for
top-level classesC and nested classesT.C, respectively, using the
top-level class tableTCT. The three rules CT-RUNTIME, CT-PRE,
and CT-DEP return class declarations for dependent classes and
prefix types. In these rules, theCT function returns for typeT
ananonymous class declarationwhose superclass is a simple class

type P boundingT.3 Member classes are copied down into the
anonymous class declaration as with top-level and nested classes.

In each rule, the typeT0 is substituted forThis in theextends
clauses of nested classes. ForL = C ext S {L ~F M}, we de-
fine L{T0/This} asC ext S{T0/This} {L ~F M}, and we define
S{T0/This} as:

C{T0/This}= C

S.C{T0/This}= S{T0/This}.C
This{T0/This}= T0

P[S:P.C]{T0/This}= prefix(P,P′,P′,P.C)
whereS{T0/This}= P′

P[S:P.C]{T0/This}= P[T :P.C]

whereS{T0/This}= T 6= P′

for anyP′

The functionprefixis defined in Figure 10 and is used to ensure the
type produced by the substitution is well-formed.

The rule CT-RUNTIME defines class lookup for types whose ex-
act run-time class can be determined statically. The partial function
exact-class, defined in Figure 10, returns a simple class typeP for
these types.exact-classis only defined only for dependent classes
and prefix types containing access paths of the form`P.class.
Since these types are not valid surface syntax CT-RUNTIME is not
used when type-checking the program, but is needed to prove the
type system sound.

The rule CT-PREdefines class lookup for prefix typesP[T :P.C]
whose run-time class isnot statically known. An anonymous class
declaration whose superclass isP is returned.

Similarly, the rule CT-DEP defines class lookup for dependent
classesp.class whose run-time class isnot statically known by
returning an anonymous class declaration whose superclass is the
declared type ofp.

The judgmentΓ ` p final T, defined in Figure 10, is used to
check that an access path has typeT and is immutable. The rules
for Γ ` p final T and forCT(Γ,T0,T) are mutually recursive (via
the definitionftype, defined in Figure 11). For a dependent class
p.class to be well-formed, the static type ofp must be a sim-
ple typeP; this restriction is sufficient to ensure the definition of
CT for dependent classes is well-founded. As in [29], we wish to
ensure that no type information is lost when typing a final access
path so that we can tightly boundp.class. Consequently, there
is no subsumption rule that can be used to proveΓ ` p final T.
Rules F-LOC and F-VAR bound the types of locations and local
variables, respectively. F-LOC requires that the type of the loca-
tion `P be well-formed according to the rules in Figure 13. Rule
F-NULL states that thenull value may have any type. Rule F-GET

uses theftypefunction to retrieve the type of the field. The target
of a field access in a final access path must befinal. Finally, the
rule F-RUNTIME permits two types with the same run-time class (if
statically known) to be considered to have the same type.

6.3 Method and field lookup
Method and field lookup functions are defined in Figure 11. The

functions are defined using the linearization of superclasses de-
scribed informally in Section 3. The ordering,ord(Γ,T), is de-
fined so that classes thatT overrides occur beforeT ’s declared su-
perclass,super(Γ,T). The function is used to iterate through the
superclasses to locate the most-specific method definition.

3Anonymous class declarations should not be confused with Java
anonymous classes.



super(Γ,T) = T ′

Γ ` T≤T ′ (≤-EXTENDS)

Γ ` T≤T ′

Γ ` T.C≤T ′.C
(≤-NEST)

exact-class(T) = P exact-class(T ′) = P

Γ ` T≤T ′ (≤-RUNTIME)

Figure 12: Subtyping

In Figure 11, the functionfields(Γ,T0,T) returns all fields de-
clared in classT0 or superclasses ofT0, iterating through super-
classes ofT0 beginning withT. Auxiliary functionsftype, finit, and
fnamesare defined fromfields. The functionmethod(Γ,T0,T,m)
returns the most-specific method declaration for methodm, iterat-
ing through the superclasses ofT0, beginning withT. Functions
mbodyandmtypereturn the method body and method type, respec-
tively, for a method.

6.4 Operational semantics
The operational semantics of the language are given in Figure 11.

The semantics are defined using a reduction relation−→ that maps
a configuration of a heapH and expressioneto a new configuration.
A heapH is a function from memory locations̀P to objectsP { f =
`P′}. The notation〈H,e〉 −→ 〈H ′,e′〉 means that expressione and
heapH step to expressione′ and heapH ′. The initial configuration
for program〈TCT,e〉 is 〈 /0,e〉. Final configurations are of the form
〈H, `P〉 or 〈H,null〉.

The reduction rules are mostly straightforward. R-CALL and
R-SUPER use thembodyfunction defined in Figure 10 to locate
the most specific implementation ofm. Recall thatsuper calls are
annotated with the name of lexically enclosing class containing the
call. R-SUPERuses the function, defined in Figure 11 to start the
search for the method body at the next-most specific method after
the lexically enclosing classQ.

For anew T as x expression, R-NEW allocates an object of the
run-time classP of typeT. The rule initializes all fields of the new
object tonull and then steps to a sequence of field assignments
to initialize the expression, and finally evaluates to the location of
the newly allocated object. The field assignments are annotated
with the keywordfinal to indicate that it is permitted to assign
to final fields. Since final assignments are not permitted in the
surface syntax,final fields may only be assigned once. The field
initializers~e appearing explicitly in thenew expression are evalu-
ated with the new location substituted forx. The other fields of the
object are initialized using the default initializers~e′ with the new
location substituted forthis.

The run-time class ofT is computed using the function
runtime-class, defined in Figure 10. For prefix typesP[T ′ : P.C],
runtime-classuses theprefixfunction to compute the run-time class
of the prefix type by iterating through the superclasses ofT ′ until
a class overridingP.C is found; the container of this class is the
run-time class of the prefix type.

Order of evaluation is captured by an evaluation contextE
(an expression with a hole[·]) and the congruence rule R-CONG.
The rule R-NULL propagates a dereference of anull pointer out
through the evaluation contexts, simulating a JavaNullPointer-

Exception.

6.5 Static semantics
The static semantics of the language are defined by rules for sub-

typing, type well-formedness, typing, and conformance.

C∈ dom(TCT)
Γ `C wf

(WF-OUTER)

Γ ` T wf
classes(Γ,T,T) = Ls

C ext Ts {L ~F M} ∈ Ls

Γ ` T.C wf
(WF-NEST)

Γ ` p final P

Γ ` p.class wf
(WF-DEP)

Γ ` P.C wf Γ ` T wf is-exact(T) Γ ` T≤P.C

Γ ` P[T :P.C] wf
(WF-PRE)

is-exact(T) =

{
false if T = C∨T = T ′.C

true otherwise

Figure 13: Type well-formedness

Subtyping

The subtyping relation is the smallest reflexive, transitive relation
consistent with the rules in Figure 12. Rule≤-EXTENDS says that
a class is a subtype of its declared superclass. The subtyping re-
lationships for dependent classes and prefix types are covered by
≤-EXTENDS. Rule≤-NESTsays that a nested classC in T is a sub-
class of the classC in T ′ that it overrides. Finally, rule≤-RUNTIME

states that two types are subtypes of each other if their run-time
classes are equal.

Type well-formedness

Since types may depend on variables, we define type well-
formedness in Figure 13 with respect to an environmentΓ, writ-
ten Γ ` T wf. A non-dependent type is well-formed if a class
declaration for it can be located through theTCT. A dependent
classp.class is well-formed if p is final and has a simple non-
dependent class typeP. A prefix typeP[T :P.C] is well-formed if
its subterms are well-formed and ifT is anexact typeand is also a
subtype ofP.C. The last requirement ensures the run-time class of
the type can be determined.

A type is exactif it is a dependent class or a prefix type. The
subtyping rules ensure that no type can be proved a subtype of an
exact type. This restriction ensures that a variable of typep.class
can be assigned only values with the same run-time class as the ob-
ject referred to byp. The restriction does not limit expressiveness
since non-exact prefix types can be desugared to either exact prefix
types or to non-prefix types.

Typing

The typing rules are shown in Figure 14. The typing context con-
sists of an environmentΓ. The typing judgmentΓ ` e : T is used to
type-check expressions.

Rules T-NULL and T-VAR are standard. The rule T-LOC allows
a location of typeP to be used as a member of any typeT where
runtime-class(T) = P. This rule helps to ensure types are preserved
across the evaluation of anew expression.

The rule T-LET type-checks a local variable initialization expres-
sion. The declared typeT must be well-formed in the environment
Γ. The expressione′ following the declaration is type-checked with
the new variable in scope. The type ofe′ must be well-formed in



runtime-class(T) = P ` T wf ` P wf

` `P : T
(T-LOC)

Γ ` T wf

Γ ` null : T
(T-NULL )

x : T ∈ Γ
Γ ` x : T

(T-VAR)

Γ ` e : T Γ,x : T ` e′ : T ′ Γ ` T wf Γ ` T ′ wf x 6∈ dom(Γ)
Γ ` final T x= e; e′ : T ′

(T-LET)

Γ ` p final T ftype(Γ,T, fi) = [final] Ti

Γ ` p. fi : Ti{p/this}
(T-GET)

Γ ` p final T
Γ ` e : Ti{p/this}

ftype(Γ,T, fi) = [final] Ti
Γ ` e′ : T ′

Γ ` p. fi =[final] e; e′ : T ′ (T-SET)

Γ ` p final T
mtype(Γ,T,T,m) = (~x : ~T)→ T ′

Γ `~v : ~T{p/this,~v/~x}
Γ ` p.m(~v) : T ′{p/this,~v/~x}

(T-CALL )

Γ ` P wf
Γ ` v0 : P

mtype(Γ,P,super(P),m) = (~x : ~T)→ T ′

Γ `~v : ~T{v0/this,~v/~x}
Γ ` v0.superP.m(~v) : T ′{v0/this,~v/~x}

(T-SUPER)

ftype(Γ,T, f ) = T
Γ,x : T ` e : T{x/this}

Γ ` new T as x {~f =~e} : T
(T-NEW)

Γ ` p final P

Γ ` p : p.class
(T-DEP)

Γ ` e : T Γ ` T≤T ′

Γ ` e : T ′ (T-≤)

Figure 14: Static semantics

theoriginal environment to ensure that its type does not depend on
the new variable, which is not in scope outside ofe′.

Rules T-GET and T-SET use theftype function to retrieve the
type of the field. The target of a field access or assignment must be
a final path, permitting substitution to be performed on the field
type: occurrences ofthis in the field type are replaced with the
actual targetp. Rule T-SETpermits assignment tofinal fields, but
only for assignments annotated withfinal. This enablesfinal
fields to be initialized, but not assigned to arbitrarily.

Rules T-CALL and T-SUPERare used to check calls. The func-
tion mtypereturns the method’s type. The method type may depend
on this or on its parameters~x, which are considered part of the
method type. The receiver must befinal to permit substitution
for argument and return types dependent onthis. The arguments
are also substituted into the type.

Rule T-NEW is used to check anew expression. The fields used
in the inline constructor body must be declared in the class being
allocated and the initializers must have the appropriate types. Since
the initializers usex to refer to the newly allocated object,x is sub-
stituted forthis in the field types.

Rule T-DEP allows any final access path with a simple nested
class type to take on a dependent type. Finally, rule T-≤ is the
usual subsumption rule for subtyping.

Declarations

To initiate type-checking, declarations are checked as shown in Fig-
ure 15. The program is checked with rule OK-PROGRAM, which
checks every class in theTCT and type-checks the “main” expres-
sione in an empty environment.

Rule OK-CLASS type-checks a class declaration of the form
C ext S {L ~F M}, nested within a classP, whereP is possibly
ε (i.e.,C is top-level). Type-checking recurses on all member dec-
larations including nested classes. The rule also checks member
classes and methods for conformance with the corresponding dec-
larations in their superclass. To ensure no other type can be proved
a subtype of a dependent class or of a prefix type, it is required
that a class cannot be declared to extend the type schemaThis or
any prefix ofThis. This requirement is enforced by substituting

` L ok in ε ` e:T

` 〈L,e〉 ok
(OK-PROGRAM)

` L ok in P.C
` ~F ok in P.C
` M ok in P.C

classes( /0,S{P/This},S{P/This}) = Ls(
C∈ dom(L)∧C∈ dom(Ls)
⇒` L(C) in P.C overrides class ofS{P/This}

)
` M in P.C overrides method ofS{P/This}

this :P` S{this.class/This} wf
¬is-exact(S{this.class/This})

`C ext S{L ~F M} ok in P
(OK-CLASS)

super({this : Ps},this.class.C) = Ts
classes( /0,S{P/This},S{P/This}) = Ls(

C∈ dom(L)∧C∈ dom(Ls)
⇒` L(C) in P.C overrides class ofS{P/This}

)
` M in P.C overrides method ofPs.C
this :P` S{this.class/This}≤Ts

`C ext S{L ~F M} in P overrides class ofPs
(OV-CLASS)

this :P` T wf this :P` e : T

` [final] T f = eok in P
(OK-FIELD)

this :P,x1 :T1, . . . ,xi−1 :Ti−1 ` Ti wf
this :P,~x:~T ` T0 wf
this :P,~x:~T ` e : T0

` T0 m(~T ~x) {e} ok in P
(OK-METHOD)

mtype( /0,P,Ps,m) = (~x′ : ~T ′)→ T ′
0

⇒ ~T ′ = ~T{~x′/~x}∧T ′
0 = T0{~x′/~x}

P` T0 m(~T ~x) {e} overrides method ofPs
(OV-METHOD)

Figure 15: Checking declarations



this.class for the schemaThis in the superclassS; and check-
ing that this type is well-formed and not an exact type.

Rule OV-CLASS checks that a class declaration conforms
to any class declarations it overrides. When overriding a
class with superclassTs, it is required that the new superclass
S{this.class/This} be a subtype ofTs in the typing environment
this:P. This restriction differentiates nested class overriding from
arbitrary multiple inheritance.

Rule OK-FIELD states that in the body of classP, a field dec-
laration of the form[final] T f = e type-checks if the typeT
is well-formed and the initializere type-checks in an environment
wherethis has typeP. For simplicity, we assume a field namedf
is declared at most once in the program, and we assume all methods
and nested classes are uniquely named up to overriding.

Rule OK-METHOD checks that each parameter typeTi is well-
formed in an environment that includes onlythis and the param-
eters to the left ofTi . The method body must have the same type
as the declared return type. As in Java, method types are invariant;
OV-METHOD enforces this requirement.

6.6 Soundness
Our soundness proof is structurally similar to the proof of sound-

ness for Featherweight Java (FJ) [16]. The proof uses the standard
technique of proving subject reduction and progress lemmas [37].
The key lemmas are stated here. The complete proof is available in
a technical report [26].

Subject reduction

Because expressions in our language are evaluated in a heap, to
state the subject reduction lemma, we first define a well-typedness
condition for heaps and for configurations〈H,e〉.

Definition 6.1 (Well-typed heaps) A heapH is well-typedif for
any memory locatioǹP ∈ dom(H),

• H(`P) = P { f = `P′},

• ` ftype( /0,P, f ) = T,

• ` `P′ :T{`P/this}, and

• `P′ ⊆ dom(H)

Definition 6.2 (Well-formed configurations) A configuration
〈H,e〉 is well-formedif H is well-typed and for any locatioǹP
free ine, `P ∈ dom(H).

The subject reduction lemma states that a step taken in the eval-
uation of a well-formed configuration results in a well-formed con-
figuration.

Lemma 6.3 (Subject reduction) Supposèe: T, 〈H,e〉 is well-
formed, and〈H,e〉 −→ 〈H ′,e′〉. Then` e′ :T and〈H ′,e′〉 is well-
formed.

Progress

The progress lemma states that for any well-formed configuration
〈H,e〉, eithere is a base valuèP or null, or 〈H,e〉 can make a step
according to the operational semantics.

Lemma 6.4 (Progress) If̀ e: T, ` T wf, 〈H,e〉 is well-formed,
then eithere = b or there is a configuration〈H ′,e′〉 such that
〈H,e〉 −→ 〈H ′,e′〉.

Soundness

Finally, we define the normal form of a configuration, define well-
formedness for programs, and state the soundness theorem.

Definition 6.5 (Normal forms) A configuration〈H,e〉 is in normal
form if there is no〈H ′,e′〉 such that〈H,e〉 −→ 〈H ′,e′〉.

Definition 6.6 A program Pr = 〈TCT,e〉 is well-formed if `
TCT ok and/0 ` e:T for someT such that/0 ` T wf.

Theorem 6.7 (Soundness) Given a well-formed programPr =
〈TCT,e〉, if the configuration〈 /0,e〉 is well-formed and̀ e : T, and
if 〈H ′,e′〉 is a normal form such that〈 /0,e〉 −→∗ 〈H ′,e′〉, thene′ is
either a locatioǹP ∈ dom(H ′) or null and` e′ : T.

7. RELATED WORK
Over the past decade a number of mechanisms have been pro-

posed to provide object-oriented languages with additional exten-
sibility. Nested inheritance uses ideas from many of these other
mechanisms to create a flexible and largely transparent mechanism
for code reuse.

Virtual classes

Nested inheritance is related to virtual types and virtual classes.
Virtual types were originally developed for the language Beta [21,
22], primarily as a mechanism for generic programming rather than
for extensibility. Later work proposed virtual types as a means of
providing genericity in Java [35].

Nested classes in Jx are similar, but not identical, to virtual
classes. Unlike virtual classes, nested classes in Jx are attributes
of their enclosing class, not attributes ofinstancesof their enclos-
ing class. Suppose classA has a nested classB and thata1 anda2
are references to instances of possibly distinct subclasses ofA. The
virtual classesa1.B anda2.B are distinct classes. In contrast, the
Jx typesa1.class.B anda2.class.B may be considered equiv-
alent if it can be proved, either statically or at run-time, thata1 and
a2 refer to instances of the same class.

Virtual types are not statically safe because they permit method
parameter types to change covariantly with subtyping, rather than
contravariantly. Beta and other languages with virtual types in-
sert run-time checks when a method invocation cannot be stati-
cally proved sound. Dependent classes in Jx provide the expressive
power of covariant method parameter types without introducing un-
soundness. Recent work on type-safe variants of virtual types has
limited method parameter types to be invariant [36] and usedself
types[4] as discussed below.

Nested inheritance supports a form of virtual superclasses;
nested classes may extend other nested classes referred to byThis,
providing mixin-like functionality. The language Beta does not
support virtual superclasses, but gbeta [8] does.

As discussed in Section 3, nested inheritance does not support
generic types. A nested class may only be declared a subtype of
another type (via the class’sextends clause), notequalto another
type. Generic types may be used to provide genericity, which is
already supported in Java through parameterized types. To ensure
inheritance relationships can be determined statically, a virtual type
in Beta may be inherited from only if it isfinal bound. Since nested
classes in Jx arestatic, Jx does not permit inheritance from de-
pendent classes, ensuring a static inheritance hierarchy.

Igarashi and Pierce [15] model the semantics of virtual types and
several variants in a typed lambda-calculus with subtyping and de-
pendent types.



The work most closely related to nested inheritance is Oder-
sky et al.’s language Scala [28, 39], which supports scalable ex-
tensibility through a statically safe virtual type mechanism and
path-dependent types similar to Jx’s dependent classes. However,
Scala’s path dependent typep.type is a singleton type containing
only the value named by access pathp; our p.class is not a sin-
gleton:new x.class(...), for instance, creates a new object of type
x.class distinct from the object referred to byp. This difference
gives Jx more flexibility, while preserving type soundness. Scala
has no analogue to prefix types.

Scala permits extensions to be composed through mixins. Jx sup-
ports mixin-like functionality via virtual superclasses. With nested
inheritance, several mixins can be applied at once to a collection
of nested classes by overriding the base class (or base package)
of their container. In contrast, Scala requires the programmer to
explicitly name the superclass of each individual mixin when it is
applied.

Family polymorphism

Ernst [9] introduces the termfamily polymorphismto describe
polymorphism that allows reuse of groups of mutually dependent
classes, that is afamily of classes. The basic idea is to use an ob-
ject as a repository for a family of classes. Virtual classes of the
same object are considered part of the same family. The language
gbeta [8], as well as Scala [28], described above, provides fam-
ily polymorphism using a dependent type system that prevents the
confusion of classes from different families. Nested inheritance is a
limited form of family polymorphism. In the original formulation,
eachobjectdefines a distinct family consisting of its nested classes.
With nested inheritance, since nested classes are associated with an
enclosing class rather than with an instance of the enclosing class,
eachclassdefines a distinct family. Thus, nested inheritance per-
mits only a finite number of families. However, consider the case
of a classA with nested classB and referencesa1 anda2 of typeA.
If a1.class anda2.class cannot be shown statically to have the
same type, thena1.class.B anda2.class.B may be considered
to be of distinct families, although at run-time they may be of the
same family. Jx allows objects to be passed between the two fam-
ilies by castinga1.class to a2.class or vice versa. This added
flexibility enables greater reuse. Moreover, using prefix types, a
family need not be identified solely be a single object. In gbeta, an
explicit representative of the family must be passed around. It lacks
an analogy to prefix types, which enable a member of a family to
unambiguously identify that family.

Delegation layers [31] use virtual classes and delegation to pro-
vide family polymorphism, solving many of the problems of mixin
layers. With normal inheritance and virtual classes, when a method
is not implemented by a class, the call is dispatched to the super-
class. With delegation, the superclass view of an object may be
implemented by anotherobject. Methods are dispatched through
a chain of delegate objects rather than through the class hierarchy.
Delegation layers provide much of the same power as nested in-
heritance. Since delegates are associated with objects at run-time
rather than at compile-time, delegation allows objects to be com-
posed more flexibly than with mixins or with nested inheritance.
However, no formal semantics has been given for delegation lay-
ers, and because delegation layers rely on virtual classes, they are
not statically type-safe.

Higher-order hierarchies

Nested inheritance is similar to Ernst’s higher-order hierar-
chies [10]. Like nested inheritance, higher-order hierarchies sup-
port family polymorphism. Additionally, when a subclassA2 over-

rides a nested classB of A2’s base classA, the overriding classA2.B
inherits fromA.B. However, unlike nested inheritance, there is no
subtyping relationship betweenA.B andA2.B. By ensuringA2.B
is a subtype ofA.B, nested inheritance permits more code reuse.
Like nested inheritance, the inheritance hierarchy can be modified
by overriding the superclass of a nested class.

Other nested types

Nested classes originated with Simula [7].
Igarashi and Pierce [17] present a formalization of Java’s inner

classes, using Featherweight Java [16]. An instance of a Java inner
class holds a reference to its enclosing instance. If inner classes
are permitted in Jx, a translation similar to Igarashi and Pierce’s
can be applied, where if inner classC has an immediately enclosing
instance of classP, then the translation ofC has a final field of type
P[this.class].

Odersky and Zenger [30] propose nested types, which com-
bine the abstraction properties of ML-style modules with support,
through encoding, for object-oriented constructs like virtual types,
self types, and covariant families of classes.

Self types and matching

Bruce et al. [5, 3] introducematchingas an alternative to subtyp-
ing in an object oriented language. With matching, theself type,
or MyType, can be used in a method signature to represent the
run-time class of the method’s receiver. To permitMyType to be
used for method parameters, type systems withMyType decouple
subtyping and subclassing. In PolyTOIL and LOOM, a subclass
matchesits base class but is not a subtype. Although there is no
explicit notion of matching in our type system, the rules for sub-
typing and type equivalence given here have a similar effect. The
p.class construct provides similar functionality toMyType, but is
more flexible since it permitsthis.class to escape the body of its
class by assigningthis.class into another variable or returning
a value of that type from a method.

Mixins

A mixin [2, 11], also known as anabstract subclass, is a class pa-
rameterized on its superclass. Mixins are able to provide uniform
extensions, such as adding new fields or methods, to a large num-
ber classes. Recent work has extended Java with mixin function-
ality [23, 1]. Because nested inheritance as described here has no
type parametricity, it cannot provide a mixin that can be applied
to many different, unrelated classes, Nested inheritance does, how-
ever, provides mixin-like functionality by allowing the superclass
of an existing base class to be changed or fields and methods to be
added by overriding the class’s superclass through extension of the
superclass’s container. Additionally, nested inheritance allows the
implicit subclasses of the new base class to be instantiated without
writing any additional code. Mixins have no analogous mechanism.

Mixin layers [33] are a generalization of mixins to multiple
classes. A mixin layer is a design pattern for implementing a group
of interrelated mixin classes and extending them while preserving
their dependencies. Mixin layers do not provide family polymor-
phism. Delegation layers [31], described above, were designed to
overcome this limitation through a new language mechanism.

Open classes

An open class[6] is a class to which new methods can be added
without needing to edit the class directly, or recompile code that
depends on the class. Nested inheritance is also able to add new
methods to a class without the need for recompilation of clients of
the class, provided that the class is nested in a container that can



be extended, and that clients of the class refer to it using depen-
dent types. Nested inheritance provides additional extensibility that
open classes do not, such as the “virtual” behavior of constructors.
An important difference is that open classesmodifyexisting class
hierarchies. The original hierarchy and the modified hierarchy can-
not coexist within the same program. Nested inheritance creates a
new class hierarchy by extending the container of the classes in the
hierarchy, permitting use of the original hierarchy in conjunction
with the new one.

Aspect-oriented programming

Aspect-oriented programming (AOP) [19, 18] is concerned with the
management ofaspects, functionality that crosscuts standard mod-
ular boundaries. Nested inheritance provides aspect-like extensibil-
ity, in that an extension to a container may implement functionality
that cuts across the class boundaries of the nested classes. Like
open classes, aspects modify existing class hierarchies, preventing
the new hierarchy from being used alongside the old.

8. CONCLUSIONS
Nested inheritance is an expressive yet unobtrusive mechanism

for writing highly extensible frameworks. It provides the ability to
inherit a collection of related classes while preserving the relation-
ships among those classes, and it does so without sacrificing type
safety or imposing new run-time checks. The use of dependent
classes and prefix types enables reusable code to unambiguously
yet flexibly refer to components on which it depends. Nested in-
heritance is fundamentally an inheritance mechanism rather than a
parameterization mechanism, which means that every name intro-
duced by a component becomes a possible implicit hook for future
extension. Therefore extensible code does not need to be burdened
by explicit parameters that attempt to capture all the ways in which
it might be extended later.

We formalized the essential aspects of nested inheritance in an
object calculus with an operational semantics and type system, and
were able to show that this type system is sound. Thus extensibility
is obtained without sacrificing compile-time type safety.

Our experience with implementing extensible frameworks gives
us confidence that nested inheritance will prove useful. We defined
a language Jx that incorporates the nested inheritance mechanism
and implemented a prototype compiler for the core mechanisms of
this language. The translation implemented by this compiler does
not duplicate inherited code. The next step is clearly to complete
the Jx implementation; we look forward to using it to build the next
version of Polyglot.

Acknowledgments
Michael Clarkson and Jed Liu participated in early design discus-
sions. Matthew Fluet, Michael Clarkson, Jens Palsberg, and the
anonymous reviewers provided thorough and insightful comments.

This research was supported in part by ONR Grant N00014-01-
1-0968, NSF Grants 0208642 and 0133302, and an Alfred P. Sloan
Research Fellowship. Nathaniel Nystrom was supported by an In-
tel Foundation Ph.D. Fellowship. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright annotation thereon. The views and
conclusions here are those of the authors and do not necessarily
reflect those of ONR, the Navy, or the NSF.

9. REFERENCES
[1] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam: A

smooth extension of Java with mixins. InProc. ECOOP ’00,
LNCS 1850, pages 154–178, Cannes, France, 2000.

[2] Gilad Bracha and William Cook. Mixin-based inheritance. In
Norman Meyrowitz, editor,Proc. OOPSLA ’90, pages
303–311, Ottawa, Canada, 1990. ACM Press.

[3] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is
not a good “match” for object-oriented languages. In
Proceedings of 11th European Conference on
Object-Oriented Programming (ECOOP’97), number 1241
in Lecture Notes in Computer Science, pages 104–127,
Jyväskyl̈a, Finland, June 1997. Springer-Verlag.

[4] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
statically safe alternative to virtual types. InEuropean
Conference on Object-Oriented Programming (ECOOP),
number 1445 in Lecture Notes in Computer Science, pages
523–549, Brussels, Belgium, July 1998. Springer-Verlag.

[5] Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented
language. InEuropean Conference on Object-Oriented
Programming (ECOOP), number 952 in Lecture Notes in
Computer Science, pages 27–51. Springer-Verlag, 1995.

[6] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. MultiJava: Modular open classes and symmetric
multiple dispatch for Java. InOOPSLA 2000 Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, volume 35(10), pages
130–145, 2000.

[7] O.-J. Dahl et al. The Simula 67 common base language.
Publication No. S-22, Norwegian Computing Center, Oslo,
1970.

[8] Erik Ernst.gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD
thesis, Department of Computer Science, University of
Aarhus,Århus, Denmark, 1999.

[9] Erik Ernst. Family polymorphism. InProceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP), LNCS 2072, pages 303–326, Heidelberg,
Germany, 2001. Springer-Verlag.

[10] Erik Ernst. Higher-order hierarchies. InProceedings of the
17th European Conference on Object-Oriented
Programming (ECOOP), volume 2743 ofLecture Notes in
Computer Science, pages 303–329, Heidelberg, Germany,
July 2003. Springer-Verlag.

[11] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. InProc. 25th ACM Symp. on
Principles of Programming Languages (POPL), pages
171–183, San Diego, California, 1998.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, MA,
1994.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The
Java Language Specification. Addison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

[14] Carl Gunter and John C. Mitchell, editors.Theoretical
aspects of object-oriented programming. MIT Press, 1994.

[15] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Foundations for virtual types. InProceedings of the
Thirteenth European Conference on Object-Oriented
Programming (ECOOP’99), number 1628 in Lecture Notes



in Computer Science, pages 161–185. Springer-Verlag, June
1999.

[16] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ.ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

[17] Atsushi Igarashi and Benjamin C. Pierce. On inner classes.
Information and Computation, 177(1):56–89, August 2002.

[18] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. InProceedings of European Conference on
Object-Oriented Programming (ECOOP’01), volume 2072
of Lecture Notes in Computer Science, pages 327–353,
Berlin, Heidelberg, and New York, 2001. Springer-Verlag.

[19] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. InProceedings of
11th European Conference on Object-Oriented
Programming (ECOOP’97), number 1241 in Lecture Notes
in Computer Science, pages 220–242, Jyväskyl̈a, Finland,
June 1997. Springer-Verlag.

[20] B. Liskov et al. CLU reference manual. In Goos and
Hartmanis, editors,Lecture Notes in Computer Science,
volume 114. Springer-Verlag, Berlin, 1981.

[21] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard.
Object Oriented Programming in the BETA Programming
Language. Addison-Wesley, June 1993.

[22] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual
classes: A poweful mechanism for object-oriented
programming. InProc. OOPSLA ’89, pages 397–406,
October 1989.

[23] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi:
New-age components for old-fashioned Java. InProc.
OOPSLA ’01, October 2001.

[24] Robin Milner, Mads Tofte, and Robert Harper.The Definition
of Standard ML. MIT Press, Cambridge, MA, 1990.

[25] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen
Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2003.

[26] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers.
Scalable extensibility via nested inheritance. Technical
Report 2004–1940, Computer Science Dept., Cornell
University, June 2004.

[27] Nathaniel Nystrom, Michael Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for
Java. In G̈orel Hedin, editor,Compiler Construction, 12th
International Conference, CC 2003, number 2622 in Lecture
Notes in Computer Science, pages 138–152, Warsaw,
Poland, April 2003. Springer-Verlag.

[28] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak
Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay
Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An overview of the Scala programming language,
June 2004.http://scala.epfl.ch/docu/files/-
ScalaOverview.pdf.

[29] Martin Odersky, Vincent Cremet, Christine Röckl, and
Matthias Zenger. A nominal theory of objects with
dependent types. InProceedings of 17th European
Conference on Object-Oriented Programming (ECOOP
2003), number 2743 in Lecture Notes in Computer Science,
pages 201–224. Springer-Verlag, July 2003.

[30] Martin Odersky and Christoph Zenger. Nested types. In8th
Workshop on Foundations of Object-Oriented Languages
(FOOL), 2001.

[31] Klaus Ostermann. Dynamically composable collaborations
with delegation layers. InProceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP),
volume 2374 ofLecture Notes in Computer Science, pages
89–110, Ḿalaga, Spain, 2002. Springer-Verlag.

[32] John C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction.
In Stephen A. Schuman, editor,New Directions in
Algorithmic Languages, pages 157–168. Institut de
Recherche d’Informatique et d’Automatique, Le Chesnay,
France, 1975. Reprinted in [14], pages 13–23.

[33] Yannis Smaragdakis and Don Batory. Implementing layered
design with mixin layers. In Eric Jul, editor,Proceedings
ECOOP’98, pages 550–570, Brussels, Belgium, 1998.

[34] B. Stroustrup.The C++ Programming Language.
Addison-Wesley, 1987.

[35] Kresten Krab Thorup. Genericity in Java with virtual types.
In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), number 1241 in
Lecture Notes in Computer Science, pages 444–471.
Springer-Verlag, 1997.

[36] Mads Torgerson. Virtual types are statically safe. In5th
Workshop on Foundations of Object-Oriented Languages
(FOOL), January 1998.

[37] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness.Information and Computation,
115(1):38–94, 1994.

[38] Matthias Zenger and Martin Odersky. Extensible algebraic
datatypes with defaults. InProc. 6th ACM SIGPLAN
International Conference on Functional Programming
(ICFP), Firenze, Italy, September 2001.

[39] Matthias Zenger and Martin Odersky. Independently
extensible solutions to the expression problem. Technical
Report IC/2004/33,́Ecole Polytechnique F́ed́erale de
Lausanne, March 2004.


