Education in Programming

David Gries, Dr. Rer. Nat., Munich Institute of Technology, June 1966

Computer Science, Cornell University

Introduction

What a pleasure it is to be here, celebrating the fortieth anniversary of this great Informatics Department! As one of its first PhDs —actually, I graduated in June 1966 from the Technische Hochschule Muenchen just before the department stated— I owe my computer science life to my education right here, from September 1963 to June 1966. So I don’t have a real Ph.D., it’s a Dr. rerum natura, which, I tell Americans, is said as Dr Rare Nut. I am proud to be a graduate of MIT, and I don’t mind telling people that.

[Slide 2] For example, in 1995, I gave the banquet speech in Limerick, Ireland, at a Zed conference. Naturally, I could not help but make my speech be a series of about 35 limericks, spoken by memory, and, I talked about formal methods. Titled “ Glimerick of hope”, it had this abstract:

The World is turning to C,

Though at best it is taught awkwardly.

But we don't have to mope,

There's a glimmer of hope,

In the methods of formality.
The president of Ireland had been invited to speak at the banquet, and she actually accepted, but soon thereafter she canceled the acceptance, and I was the next best person to give the banquet speech! Here is how my speech started.

President Mary of Eire

Was supposed to come to regale ya.

But matters of State

Made her cancel that date

So you’re stuck with this guy from Bavaria

Bavaria, did he say Bavaria?

Well I got my degree at that place

And my ancestors came from that race

Though Great New York C

Is the Birthplace of me

And CS at Cornell is my base.

So I don't have a real PhD.

It's the Dr. Rer. Nat. that's for me.

And it's from MIT

 --On your side of the sea—

Munich Inst. of Technolology!
[Slide 3] In 1962, I was fortunate to be working on a PhD in math at the Univ. of Illinois, and my research assistantship was to help Drs. Manfred Paul and Ruediger Wiehle to write the ALCOR-ILLINOIS IBM 7090 Algol Compiler. After a year, they said, come back to Munich and get your degree there —under their breath, they said, “where we can watch you finish the compiler”. So my wife and I came to Munich, and I finished the compiler and got my doctoral degree. Nothing could have been better for me.

[Slide 4] This department, under the leadership of Professors F.L. Bauer and Klaus Samelson, was doing great things. Bauer, of course, was responsible for the Kel​ler Princip, developed and implemented electronically in 1952. They were responsible for interesting and important research in programming languages and their implementation, including formal languages and parsing. They also realized the need for international cooperation in this new field. They had been instrumental in getting Algol 60 developed. They organized the NATO conferences on software engineering in Garmish and Rome, where, for the first time, academicians and industrialists talked openly about the problem of software development. These conferences were a catalyst for important research around the world in programming languages, semantics, software engineering, theories of program correctness, and formal programming methodology.

[Slides 5, 6 show pictures of the 1968 Garmisch conference.]

[Slide 7] Moreover, Bauer and Samelson also gave us the NATO Marktoberforff Summer Schools, which have enriched the intellectual lives of thousands of students and have also been the inspiration of much research. I remember talking for the first time about Susan Owicki’s work on interference freedom in a Summer School, watching Tony Hoare’s programming language CSP emerge, and hearing inspirational talks by Edsger W. Dijkstra on programming methodology and calculational logic. Dijkstra and Hoare have been so involved with the Marktoberdorf that, in some sense, they appear to be part of this Informatics Department,

The Summer School lives on, now, with a much wider crowd of people involved in it, led mainly by the able Professor Manfred Broy.

So, to Uncle Fritz and this Department, I say thanks for inspiring and enriching not only my own life but the lives of thousands of computer scientists.

Teaching Programming

These days, my intellectual life centers on the duties of an associate dean and teaching a large introductory programming course, and it is this latter issue that I would like to discuss very briefly with you. 

As I mentioned before, the NATO Conferences were a great inspiration for me. Along with this Department, the work of two people influenced me greatly: Sir Tony Hoare and Edsger W. Dijkstra. Tony is here today, receiving the Bauer Prize. I am sure Edsger would have also been here if he had been alive, to celebrate this 40th anniversary, but Edsger left us several years ago.

These two have been associated with the Marktoberdorf conferences for a long time now, over 30 years. Both have been Directors, and I feel honored to have been Directors with them, too. 

From Dijktra, we got not only structured programming, weakest preconditions, and calculational logic but a sense of the importance of method. From Hoare, we received an axiomatic basis for programming, the language CSP, a theory of correctness of parallel programs.

What impresses me most about these two was not their great innovative and technical ability but their adherence to principals and values, like

Simplicity,

Beauty,

Perfection,

Intellectual honesty

Perhaps it is the adherence to such principals that made them so innovative and influential. Both of them had a way with words, and thus we have many quotes from them that hit home, that make us think deeply about what we are doing and why —at least they have made me think deeply.

This intellectual honesty led them to believe in things like correctness concerns —the need to prove a program correct, or, better yet, to develop a program and proof hand in hand, with the later leading the way. I am sure you will hear a lot more about correctness concerns from Tony later.

[Slide 9] I have been teaching the first programming course, using the object-oriented language Java, for many years now, and I want to tell you just a bit how I have been influenced by the need for simplicity, beauty, elegance, and intellectual honesty, for sticking to principles. Intellectual honesty has, for example, kept me from teaching C and C++ to beginners. They may be great languages for professionals, but they are the antithesis of simplicity and elegance. Instead of helping, these languages get in the way. Language shapes the thought and mind, said Benjamin Whorf.

Java, on the other hand, while not perfect, is fairly straightforward and consistent, as languages go.

Now, OO languages have two significant aspects to them: the structural/organizational one and the algorithmic one. In Algol, Fortran, and Pascal, the basic structuring mechanism was the subroutine; in OO, we have classes and inheritance and all the baggage they bring. So which aspect do you teach first? There have been debates about this in the education community, and some have even said that you can’t teach OO first.

A simple principle, which I learned in discussions with Tony Hoare many years ago, is to define everything before you use it. Since almost every line of a Java program deals with a class or an object of a class, we are forced to teach OO concepts first. It is as simple as that.

This simple principle also tells us to teach in a way that does not require a complete Java application, which needs (1) a class definition, (2) a static procedure with a parameter that is a String array. As much as possible, show students only things that have already been defined or are being introduced.

[Slide 10] The order of topics, then, is (1) expressions, types and variables, (2) objects, where students are introduced to function and procedure calls, (3) class and subclass definitions, with extremely simple function/procedure definitions, and (3) fields and the necessary getter/setter methods and constructors.

And all this is done with only the assignment statement, method calls, and returns. Even if-statements are not yet introduced. The OO flavor of structure//organization is the main concern.

Moreover, throughout, the groundwork is laid for dealing with correctness concerns –by always having precise and complete (but informal) method specifications, by requiring a class invariant (which defines fields of an object), and so on.

[Slide 11] Now, understanding classes and objects requires a suitable model for them. I have found it useful to view a class as a file drawer filled with ma[image: image1.png]al
toString()

equals(Object)

toString()lShai‘

getX() getY()

«[20] y[30]

radius I%l

Circle(int, int, int)
getRadius()
toString()



nila folders. These manila folders are the objects of the class. They all have the same shape, as given by the class definition. And I force students to be able to draw objects like this, with a partition at the top for class Object and a partition for the class itself. Each partition contains the fields and methods of the class. 
This model provides a concrete analogy, making it easy for students to grasp OO.

There is one more extremely important point. Most introductory texts talk about pointers and references, which students have difficulty grasping, partly because they are too abstract. First, they ignore this principle: Introduce and discuss concepts at the appropriate level of abstraction. Instead of following this principle, they discuss the assignment statement and objects and everything else in terms of the computer. Some programming language definitions make the same mistake. The definition of Algol 60, on the other hand, which Fritz Bauer was partly responsible for, makes no mention of the computer.

Another principle I have learned over the years is to introduce names for items to be discussed. Therefore, on the tab of each object we put a unique name that identifies the object (“a1”, in the object to the left). This name is generated by whoever creates the object —a computer, a person— and it is this name that is assigned to a variable of the class.

It is the name of the object that is placed in a variable v by execution of a statement like

v= new Circle(5);

Students appear to have little difficulty in understanding the concept of a type whose values are the names that can be used as the names of objects —nothing like the problems they had with pointers.
This simple introduction of the name of the object is, to me, one of the important and necessary innovations in teaching OO.

[Slide 12] Once OO concepts are understood, it is time to turn to algorithmic issues. Here, some of the principles I use are:

1. Emphasize correctness concerns

2. Give a good model of execution.

3. Teach programming, not programs.

Well, this is not the place to go into a deep discussion of these principles. Suffice it to say this:

(1) Correctness concerns revolve around specifications, assertions, and loop invariants.

(2) Our model of execution requires a frame for a method call, which will contain at the least the method name, an instruction counter, and the parameters and local variables of the method. We force the students to learn how to execute a method call by (1) drawing the frame for the call, (2) assigning argument values to parameters, (3) executing the method body, and (4) erasing the frame. Later, when we get to recursion, the student can understand that it works because they already know this model of execution.

(3) To teach programming instead of simply programs, one has to give students ideas on how to develop algorithms or programs. This is made explicit when one introduces loops. But almost every lecture, the students will see the development of a program segment.

[Slide 13] In my years of teaching, I have stumbled into two other important teaching ideas. First, on the first and second programming assignment, if the student makes a mistake, be it with a method specification, or the lack of a class invariant, or inadequate test cases, or a bug in the program, ask them to fix it a resubmit.

This changes immediately the tone of the class. They view it as an apprenticeship instead of a competition. Beginning students, who may not understand and thus submit something wrong, are given the understanding and allowed to learn without penalty. And it also helps the “experienced” students who think they know what they are doing to overcome their bad habits.

The second innovation is to give each students at least one one-on-one session with the instructor, TA, or senior consultant. In this session, the students develops a program with the instructor there to help, to give confidence, to point out ways to be more effective, etc.

[Slide 14]What a celebration!

Well, this has been a wonderful celebration, and I feel honored to be part of it. I have already mentioned a number of people who have been close to me in my time here and in my professional life. Others deserve mention.

Josef Stoer was my DoktorOnkel. He gave me my thesis topic and worked with me. Rudolf Bayer worked on the Alcor-Illinois Algol 60 compiler with us, but when he was in Munich I was in Illinois, and vice versa. Consequently, we didn’t meet until it was all over! Wolfgang Niegel spent a year at Cornell, giving us a chance to learn from him. And Manfred Broy has been a friend and valuable colleague for many years now.

To everyone, it’s been a wonderful celebration.

