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Interaction Logs: Online Retalil

Context x:
— Category

What do brands and bloggers love on Et¢

Action y:
— Tile Layout

Reward/Loss A(y|x):

— Search cost
— Product utility
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Interaction Logs: Streaming Media

Context x:
— User

Action y:

— Carousel layout

Reward/Loss A(y|x):

— Search cost
— Enjoyment
Feedback:

— Plays

Get Playlists

+ Create Playlist

Amazon Music Store
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Learning-to-Rank from Clicks

Learning




Eye tracking device
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Eye-Tracking

Detect and record where
and what people look at

— Fixations: ~200-300ms;
information is acquired

— Saccades: extremely rapid
movements between
fixations

— Pupil dilation: size of pupil
indicates interest, arousal

throughout screen. Black markers represent fixations.



How Many Links do Users View?

Total number of abstracts viewed per page

(o]
o

>
(&)
c
S
2 60
o
-
(-

N
o

N
o

5 6 7
Total number of abstracts viewed




In Which Order are Results Viewed?

Instance of arrival to each result
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=> Users tend to read the results in order



Examination Curve from Eyetracking

B # times result selected

O time spent in abstract

# times rank selected
mean time (s)

Rank of result

Position > Exposure > Feedback

[Granka et al., 2007]



Outline

* Learning-to-Rank from User Interactions
— Find new ranking policy  that selects y with better 6

* Batch Learning-to-Rank from Partial Labels
— Learning from partial and biased feedback
— Learning Principle: Unbiased Partial-Information ERM
— Learning Algorithm: Propensity SVM-Rank

* Propensity Estimation for Ranking
— Break confounding through position randomization

— Intervention Harvesting
— Contextual propensity models



Evaluating Rankings

o O ™~

pajage] Ajjenuelp



Evaluation with Missing Judgments

* Loss: A(y|r)
— Relevance labels ; € {0,1}
— This talk: rank of relevant documents

AGIr) = ) rank(ly) -

I

* Assume:
— Click implies observed and relevant: *

ci=1De(=DA@r=1)

e Problem:
— No click can mean not relevant OR not observed

(ci=0)e(0; =0)V(r; =0)

— Understand observation mechanism

[Joachims et al., 2017]



Inverse Propensity Score Estimator

I
* Observation Propensities Q(0; = 1|x,y,7)

— Random variable o; € {0,1} indicates whether
relevance label 7; for is observed

e Inverse Propensity Score (IPS) Estimator:

rank(i|y)
Q(Oi — 1|3—,' T')

A(ylr,0) =

CNewharkng

» Unbiasedness: E,|A(y

r,0)| = A(y|r)

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Joachims et al., 2017]



ERM for Partial-Information LTR

* Unbiased Empirical Risk:

i 1 rank(i|m(x))
Rips(m) = N z z Q(o; = 1|y, 1)

(x,y,0)€S i:ci=1
 ERM Learning:

2 = argmin[Rope() 1
S
e Questions:

— How do we optimize this empirical risk in a practical
learning algorithm?

— How do we define and estimate the propensity model
Q(Oi = 1|y,7")?

[Joachims et al., 2017]



Propensity-Weighted SVM Rank

* Data: S = (xj»dj'Dj' qf)n

LRIV —

* Training QP:

* Loss Bound:
Vw:rank(d,sort(w - ¢p(x,d)) < z E 41
i

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]



Position-Based Propensity Model

* Model:
P(ci = 1|ri,‘rank(i|37)) =
qrank(ib_/) [ = 1]

* Assumptions

— Examination only depends on
rank

— Click reveals relevance if rank is
examined

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016]



Experiments

* Yahoo Web Search Dataset

— Full-information dataset
— Binarized relevance labels

* Generate synthetic click data
based on

— Position—baseq?propensity model
with g, = (1)

r
— Baseline “deployed” ranker to

generate y
— 33% noisy clicks on irrelevant docs

e




Scaling with Training Set Size
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Scaling with Training Set Size

Production Ranker ~-----
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Severity of Presentation Bias
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Increasing Click Noise
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Misspecified Propensities
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Outline

* Learning-to-Rank from User Interactions
— Find new ranking policy  that selects y with better 6

* Batch Learning-to-Rank from Partial Labels
— Learning from partial and biased feedback
— Learning Principle: Unbiased Partial-Information ERM
— Learning Algorithm: Propensity SVM-Rank
* Propensity Estimation for Ranking
— Control for relevance through position randomization



Position-Based Propensity Model

* Model:
P(ci = 1|ri,‘rank(i|37)) =
qrank(ib_/) [ = 1]

* Assumptions

— Examination only depends on
rank

— Click reveals relevance if rank is
examined

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016] [Joachims et al., 2017]



Examination Curve from Eyetracking

B # times result selected

O time spent in abstract

mean time (s)

# times rank selected

Rank of result

[Granka et al., 2007]



Estimating the Propensities

 |dea: Randomization to control for relevance
- Swap Interventions

O E(c1|T1) = q, - E(ry = 1|rank(d|y) = 1)

D) E(3IT2) = g5 - E(ry = 1[rank(d|y) = 1)

a1 _ E(alty
> ar  E(cklT2)

0.5
[Wang et al., 2016; Joachims et al., 2017]



Real-World Experiment

* Arxiv Full-Text Search
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Conclusions and Discussion

* Learning to Rank from User Interactions

* Batch Learning-to-Rank from Partial Labels
— Find new ranker it that selects y with improved rank metric
— Positive-only feedback on subset of items
— Correct for biased feedback due to bias in user exposure

— Estimate propensities by controling for relevance through
swap interventions

 What is still missing?
— Improve on simplistic propensity model
— How to deal with zero propensities
— Biases that do not work through exposure (e.g. Trust Bias)
— Other learning algorithms and ranking metrics
— Etc.



