Primer on Causal Inference for Intelligent Systems

CS7792 – Bias and Fairness in Learning Systems Spring 2020

> Thorsten Joachims Cornell University

> > **Reading:**

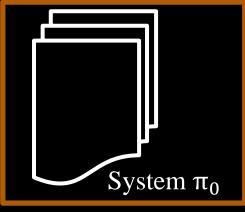
G. Imbens, D. Rubin, Causal Inference for Statistics ..., 2015. Chapter 1.

Interactive System Schematic

Feedback SA.J

Context X

Action y for x



Music Voice Assistant

- Context *x*:
 - User and speech
- Action *y*:
 - Track that is played
- Feedback $\delta(x, y)$:
 - Listened to the end

News Recommender

- Context *x*:
 - User
- Action *y*:
 - Portfolio of newsarticles
- Feedback $\delta(x, y)$:
 - Reading time in minutes

Hiring

- Context *x*:
 - Set of candidates
 - Job description
- Action *y*:
 - Person that is hired
- Feedback δ(x, y):
 Job performance of y

Log Data from Intelligent SystemsData x_0 action x_0 action $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

Goal

Use interaction log data $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ - for evaluation of system π

- Online performance estimates of some system π .
- Offline performance estimates, where system π can be different from π_0 that generated log.
- for learning new system π

Evaluation: Outline

- Online Evaluation
 - A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Offline Approach 1: "Model the world" – Imputation via reward prediction
- Offline Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Online Performance Metrics

Example metrics

- CTR
- Revenue
- Reading time
- Job performance
- Etc.
- \rightarrow Correct choice depends on application and is not the focus of this lecture.

This lecture:

Metric encoded as $\delta(x, y)$ [click/payoff/time for (x,y) pair]

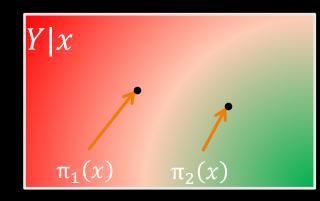
• Definition [Deterministic Policy]: Function

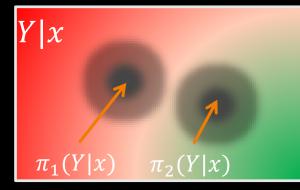
 $y = \pi(x)$ that picks action y for context x.

• Definition [Stochastic Policy]: Distribution $\pi(y|x)$

that samples action y given context x

System





System Performance

Definition [Utility of Policy]:

The expected reward / utility $U(\pi)$ of policy π is

$$U(\pi) = \int \delta(x, y) \pi(y|x) P(x) \, dx \, dy$$

Online Evaluation: A/B Testing

Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0 , $\widehat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^n \delta_i$

→ A/B Testing Deploy π_1 : Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x, y)$ Deploy π_2 : Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x, y)$: Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x, y)$

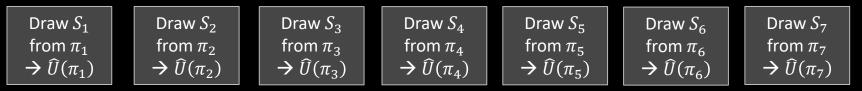
Pros and Cons of A/B Testing

• Pro

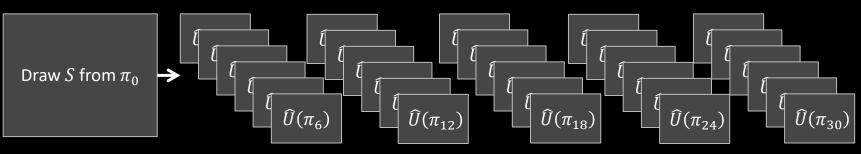
- User centric measure
- No need for manual ratings
- No user/expert mismatch
- Cons
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy π_i
 - Number of A/B Tests limited
 - Long turnaround time

Evaluating Online Metrics Offline

• Online: On-policy A/B Test



• Offline: Off-policy Counterfactual Estimates

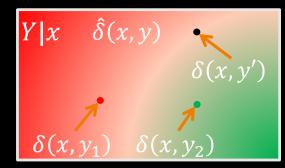


Evaluation: Outline

- Online Evaluation
 - A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Offline Approach 1: "Model the world"
 - Imputation via reward prediction
 - Offline Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach 1: Reward Predictor

- Idea:
 - Use $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ from π_0 to estimate reward predictor $\hat{\delta}(x, y)$

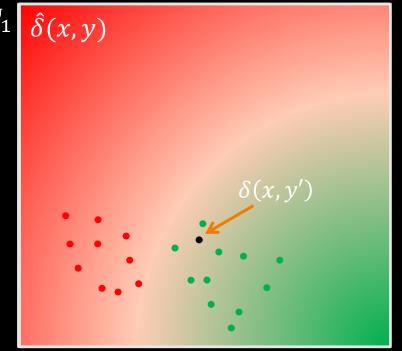


- Deterministic π : Simulated A/B Testing with predicted $\hat{\delta}(x, y)$ - For actions $y'_i = \pi(x_i)$ from new policy π , generate predicted log $S' = \left(\left(x_1, y'_1, \hat{\delta}(x_1, y'_1) \right), \dots, \left(x_n, y'_n, \hat{\delta}(x_n, y'_n) \right) \right)$ - Estimate performace of π via $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^n \hat{\delta}(x_i, y'_i)$
- Stochastic π : $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y} \widehat{\delta}(x_i, y) \pi(y|x_i)$

Regression for Reward Prediction

Learn $\hat{\delta}: x \times y \to \Re$

 Represent via features Ψ(x, y)
 Learn regression based on Ψ(x, y) from S collected under π₀
 Predict δ̂(x, y') for y' = π(x) of new policy <u>π</u>

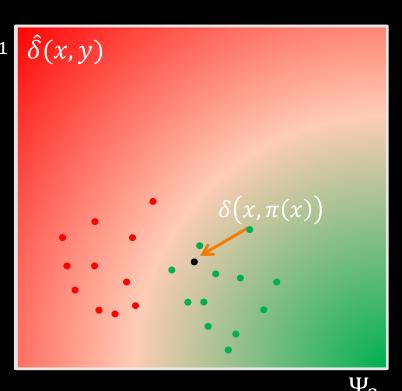


Problems of Reward Predictor

- Modeling bias Ψ_1 — choice of features and model
- Selection bias
 - $-\pi_0$'s actions are overrepresented

$$\Rightarrow \widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i} \widehat{\delta}(x_i, \pi(x_i))$$

Can be unreliable and biased



Evaluation: Outline

- Online Evaluation
 - A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Offline Approach 1: "Model the world"
 - Imputation via reward prediction
- Offline Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach "Model the Bias"

• Idea:

Fix the mismatch between the distribution $\pi_0(Y|x)$ that generated the data and the distribution $\pi(Y|x)$ we aim to evaluate.

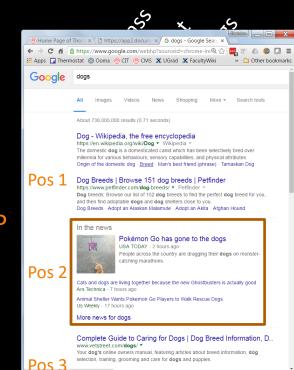
$$\pi = \int \int \delta(x, y) \pi_{\theta}(y|x) P(x) dx dy$$

Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?

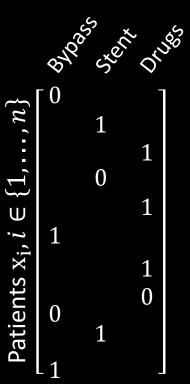
Counterfactual Model

- Placing Vertical
 Example: Treating Heart Attacks
 - Treatments: *Y*
 - Bypass / Stent / Drugs Pos 1 / Pos 2 / Pos 3
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - <u>5-year survival: 0 / 1</u> Click / no Click on SERP
 - Which treatment is best?



Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - Everybody Drugs
 - Everybody Stent
 - Everybody Bypass
 - → Drugs 3/4, Stent 2/3, Bypass 2/4 really?



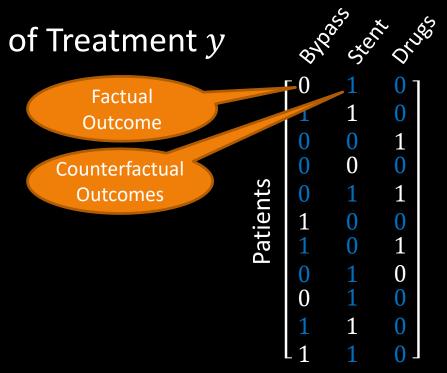
Treatment Effects

• Average Treatment Effect of Treatment y

$$- U(y) = \frac{1}{n} \sum_{i} \delta(x_i, y)$$

• Example

$$- U(bypass) = \frac{5}{11}$$
$$- U(stent) = \frac{7}{11}$$
$$- U(drugs) = \frac{3}{11}$$



Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i: $\pi_0(Y_i = y | x_i)$
 - Selection Bias
- Inverse Propensity Score Estimator

$$- \widehat{U}_{ips}(y) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = y\}}{p_i} \delta(x_i, y_i)$$

- Propensity:
$$p_i = \pi_0(Y_i = y_i | x_i)$$

- Unbiased: $E[\widehat{U}(y)]=U(y)$, if $\pi_0(Y_i = y|x_i) > 0$ for all i
- Example

$$- \widehat{U}(drugs) = \frac{1}{11} \left(\frac{1}{0.8} + \frac{1}{0.7} + \frac{1}{0.8} + \frac{0}{0.1} \right)$$
$$= 0.36 < 0.75$$

$\pi_0($	$Y_i = y$	$v x_i)$		Sh.	Shi yer	
r0.3	0.6	0.1		F 0	1	0 7
0.5	0.4	0.1		1	1	0
0.1	0.1	0.8		0	0	1
0.6	0.3	0.1		0	0	0
0.2	0.5	0.7	Patients	0	1	1
0.7	0.2	0.1	ier	1	0	0
0.1	0.1	8.0	Jat	1	0	1
0.1	0.8	0.1		0	1	0
0.3	0.3	0.4		0	1	0
0.3	0.6	0.1		1	1	0
-0.4	0.4	0.2		1	1	0 -

Interventional vs Observational

- Interventional Controlled Experiment
 - Assignment Mechanism under our control
 - Propensities $p_i = \pi_0(Y_i = y_i | x_i)$ are known by design
 - Requirement: $\forall y: \pi_0(Y_i = y | x_i) > 0$ (probabilistic)
- Observational Study
 - Assignment Mechanism not under our control
 - Propensities p_i need to be estimated
 - Estimate $\hat{\pi}_0(Y_i|z_i) = \pi_0(Y_i|x_i)$ based on features z_i
 - Requirement: $\hat{\pi}_0(Y_i|z_i) = \hat{\pi}_0(Y_i|\delta_i, z_i)$ (unconfounded)

Conditional Treatment Policies

- Policy (deterministic)
 - Context x_i describing patient
 - Pick treatment y_i based on x_i : $y_i = \pi(x_i)$
 - Example policy:
 - $\pi(A) = drugs, \pi(B) = stent, \pi(C) = bypass$
- Average Treatment Effect
 - $U(\pi) = \frac{1}{n} \sum_{i} \delta(x_i, \pi(x_i))$
- IPS Estimator

$$- \widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = \pi(x_i)\}}{p_i} \delta(x_i, y_i)$$

	0	Star Star		.00
	87	` <i>`</i> ,``	0	ナ
	0	1	0	$\lceil B \rceil$
Patients	1	1	0	C A B
	0 0	0	1	A
		0	0	
	0 1	1	1	A
	1	0	0	B
Га	1		1	A B A C A C
	0	1	0	C
	0	1 1	0	A
		1	0	
	[1	1	0 _	$\lceil B \rceil$

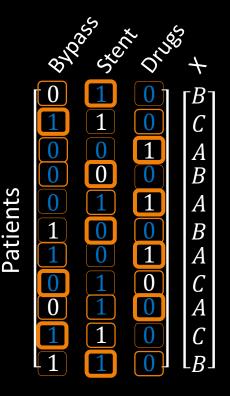
Stochastic Treatment Policies

- Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on $x_i: \pi(Y|x_i)$
- Note
 - Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect

$$- U(\pi) = \frac{1}{n} \sum_{i} \sum_{y} \delta(x_i, y) \pi(y|x_i)$$

• IPS Estimator

$$- \widehat{U}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i | x_i)}{p_i} \delta(x_i, y_i)$$



Counterfactual Model = Logs

		Medical	Search Engine	Ad Placement	Recommender	
secorded in Lo	Context x_i	Diagnostics	Query	User + Page	User + Movie	
	Treatment y _i	BP/Stent/Drugs	Ranking	Placed Ad	Watched Movie	
	Outcome δ_i	Survival	Click metric	Click / no Click	Star rating	
	Propensities p_i	controlled (*)	controlled	controlled	observational	
	New Policy π	FDA Guidelines	Ranker	Ad Placer	Recommender	
	T-effect U (π)	effect $U(\pi)$ Average quality of new policy.				

Evaluation: Outline

- Evaluating Online Metrics Offline
 - − A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator