
Batch Learning from 
Bandit Feedback

CS7792 Counterfactual Machine Learning – Fall 2018

Thorsten Joachims

Departments of Computer Science and Information Science
Cornell University

• A. Swaminathan, T. Joachims, Batch Learning from Logged Bandit Feedback through Counterfactual 
Risk Minimization, JMLR Special Issue in Memory of Alexey Chervonenkis, 16(1):1731-1755, 2015. 

• T. Joachims, A. Swaminathan, M. de Rijke. Deep Learning with Logged Bandit Feedback. In ICLR, 2018. 



Interactive Systems
• Examples

– Ad Placement
– Search engines
– Entertainment media
– E-commerce
– Smart homes

• Log Files
– Measure and optimize 

performance
– Gathering and maintenance 

of knowledge
– Personalization



Batch Learning from Bandit Feedback

• Data
𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛,𝑝𝑝𝑛𝑛

 “Bandit” Feedback
• Properties

– Contexts 𝑥𝑥𝑖𝑖 drawn i.i.d. from unknown 𝑃𝑃(𝑋𝑋)
– Actions 𝑦𝑦𝑖𝑖 selected by existing system 𝜋𝜋0: 𝑋𝑋 → 𝑌𝑌
– Loss 𝛿𝛿𝑖𝑖 drawn i.i.d. from unknown 𝑃𝑃 𝛿𝛿𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• Goal of Learning
– Find new system 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

context
𝜋𝜋0 action reward

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

propensity



Learning Settings

Full-Information 
(Labeled) Feedback

Partial-Information
(e.g. Bandit) Feedback

Online Learning • Perceptron
• Winnow
• Etc.

• EXP3
• UCB1
• Etc.

Batch Learning • SVM
• Random Forests
• Etc.

?



Comparison with Supervised Learning
Batch Learning from 
Bandit Feedback

Conventional 
Supervised Learning

Train example 𝑥𝑥,𝑦𝑦, 𝛿𝛿 𝑥𝑥,𝑦𝑦∗

Context 𝑥𝑥 drawn i.i.d. from 
unknown 𝑃𝑃(𝑋𝑋)

drawn i.i.d. from 
unknown 𝑃𝑃(𝑋𝑋)

Action 𝑦𝑦 selected by existing 
system ℎ0: 𝑋𝑋 → 𝑌𝑌

N/A

Feedback 𝛿𝛿 Observe 𝛿𝛿 𝑥𝑥,𝑦𝑦 only 
for 𝑦𝑦 chosen by ℎ0

Assume known loss 
function ∆(𝑦𝑦,𝑦𝑦∗)
 know feedback 
𝛿𝛿 𝑥𝑥,𝑦𝑦 for every 
possible y



Outline of Lecture
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF policies for structured 

outputs
– BanditNet: Bandit training of deep network policies



Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:
Given context 𝑥𝑥, hypothesis/policy 𝜋𝜋 selects action 
𝑦𝑦 with probability 𝜋𝜋 𝑦𝑦 𝑥𝑥

Note: stochastic prediction rules ⊃ deterministic 
prediction rules

𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋2(𝑌𝑌|𝑥𝑥)

𝑌𝑌|𝑥𝑥



Risk

Definition [Expected Loss (i.e. Risk)]: 
The expected loss / risk R(𝜋𝜋) of policy 𝜋𝜋 is

R 𝜋𝜋 = ��𝛿𝛿 𝑥𝑥,𝑦𝑦 𝜋𝜋 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋2(𝑌𝑌|𝑥𝑥)

𝑌𝑌|𝑥𝑥



Evaluating Online Metrics Offline

• Online: On-policy A/B Test

• Offline: Off-policy Counterfactual Estimates

Draw 𝑆𝑆1
from 𝜋𝜋1
 �𝑈𝑈 𝜋𝜋1

Draw 𝑆𝑆2
from 𝜋𝜋2
 �𝑈𝑈 𝜋𝜋2

Draw 𝑆𝑆3
from 𝜋𝜋3
 �𝑈𝑈 𝜋𝜋3

Draw 𝑆𝑆4
from 𝜋𝜋4
 �𝑈𝑈 𝜋𝜋4

Draw 𝑆𝑆5
from 𝜋𝜋5
 �𝑈𝑈 𝜋𝜋5

Draw 𝑆𝑆6
from 𝜋𝜋6
 �𝑈𝑈 𝜋𝜋6

Draw 𝑆𝑆 from 𝜋𝜋0

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋6

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋12

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋18

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋24

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋30

Draw 𝑆𝑆7
from 𝜋𝜋7
 �𝑈𝑈 𝜋𝜋7



Approach 1: Direct Method

• Data: 
𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛

1. Learn reward predictor 
𝛿̂𝛿: 𝑥𝑥 × 𝑦𝑦 → ℜ

Represent via features Ψ 𝑥𝑥,𝑦𝑦
Learn regression based on Ψ 𝑥𝑥,𝑦𝑦
from 𝑆𝑆 collected under 𝜋𝜋0

2. Derive policy 𝜋𝜋(𝑥𝑥)
𝜋𝜋 𝑥𝑥 ≝ argmax

𝑦𝑦
𝛿𝛿 𝑥𝑥,𝑦𝑦

𝛿𝛿(𝑥𝑥,𝑦𝑦)

𝛿𝛿 𝑥𝑥,𝑦𝑦𝑦

Ψ1

Ψ2



Approach 2:
Off-Policy Risk Evaluation

Given 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛 collected 
under 𝜋𝜋0,

 Unbiased estimate of risk, if propensity nonzero
everywhere (where it matters).

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝛿𝛿𝑖𝑖
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝜋𝜋0 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]

Propensity 
𝑝𝑝𝑖𝑖

𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋(𝑌𝑌|𝑥𝑥)



Partial Information 
Empirical Risk Minimization

• Setup
– Stochastic logging using 𝜋𝜋0 with 𝑝𝑝𝑖𝑖 = 𝜋𝜋0(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

 Data S = 𝑥𝑥1,𝑦𝑦1 , 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 , 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Stochastic prediction rules 𝜋𝜋 ∈ 𝐻𝐻: 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

• Training

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

�𝜋𝜋 ≔ argmin𝜋𝜋∈𝐻𝐻�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋237(𝑌𝑌|𝑥𝑥)



Generalization Error Bound for BLBF
• Theorem [Generalization Error Bound]

– For any hypothesis space 𝐻𝐻 with capacity 𝐶𝐶, and for all 
𝜋𝜋 ∈ 𝐻𝐻 with probability 1 − 𝜂𝜂

�𝑅𝑅 𝜋𝜋 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖

�𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 = �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖

 Bound accounts for the fact that variance of risk 
estimator can vary greatly between different  𝜋𝜋 ∈ H

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

[Swaminathan & Joachims, 2015]

Unbiased 
Estimator

Variance 
Control

Capacity 
Control



Counterfactual Risk Minimization
• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐 = argmin
𝜋𝜋∈𝐻𝐻𝑖𝑖

�𝑅𝑅 𝜋𝜋 + 𝜆𝜆1 �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝜆𝜆2𝐶𝐶(𝐻𝐻𝑖𝑖)

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 �𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋) =

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

2

− �𝑅𝑅 𝜋𝜋 2



Outline of Lecture
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF policies for structured 

outputs
– BanditNet: Bandit training of deep network policies



POEM Hypothesis Space

Hypothesis Space: Stochastic policies

𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 =
1

𝑍𝑍(𝑥𝑥)
exp 𝑤𝑤 ⋅ Φ 𝑥𝑥, 𝑦𝑦

with
– 𝑤𝑤: parameter vector to be learned
– Φ 𝑥𝑥,𝑦𝑦 : joint feature map between input and output
– Z(x): partition function

Note: same form as CRF or Structural SVM



POEM Learning Method
• Policy Optimizer for Exponential Models (POEM)

– Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypothesis space: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥,𝑦𝑦 /𝑍𝑍(𝑥𝑥)
– Training objective: Let 𝑧𝑧𝑖𝑖(𝑤𝑤) = 𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 𝛿𝛿𝑖𝑖/𝑝𝑝𝑖𝑖

[Swaminathan & Joachims, 2015]

Unbiased Risk 
Estimator

Variance 
Control

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖(𝑤𝑤) + 𝜆𝜆1
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤 2 −
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤
2

+ 𝜆𝜆2 𝑤𝑤 2

Capacity 
Control



POEM Experiment
Multi-Label Text Classification

• Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛,𝑝𝑝𝑛𝑛
Reuters LYRL RCV1 (top 4 categories)

• Results: POEM with H isomorphic to CRF with one weight vector per label

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 4 8 16 32 64 128

Ha
m

m
in

g 
Lo

ss

|S| = Quantity (in epochs) of Training Interactions from pi0

f0 (log data)
CoStA
CRF(supervised)
POEM

[Swaminathan & Joachims, 2015]

𝑦𝑦𝑖𝑖 = {sport, politics}
𝑝𝑝𝑖𝑖 = 0.3

𝜋𝜋0
𝛿𝛿𝑖𝑖 = 1

Learning from Logged Interventions

Every time a system places an ad, 
presents a search ranking, or makes 
a recommendation, we can think 
about this as an intervention for 
which we can observe the user's 
response (e.g. click, dwell time, 
purchase). Such logged intervention 
data is actually one of the most 
plentiful types of data available, as 
it can be recorded from a variety of

𝑥𝑥𝑖𝑖

𝜋𝜋0 logging policy



Does Variance Regularization
Improve Generalization?

• IPS:

• POEM:   

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅 𝑤𝑤 + 𝜆𝜆2 𝑤𝑤 2

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅 𝑤𝑤 + 𝜆𝜆1 �𝑉𝑉𝑉𝑉𝑉𝑉 𝑤𝑤 /𝑛𝑛 + 𝜆𝜆2 𝑤𝑤 2

Hamming Loss Scene Yeast TMC LYRL
𝜋𝜋0 1.543 5.547 3.445 1.463

IPS 1.519 4.614 3.023 1.118
POEM 1.143 4.517 2.522 0.996

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4



POEM Efficient Training Algorithm
• Training Objective:

• Idea: First-order Taylor Majorization
– Majorize at current value
– Majorize − 2 at current value

• Algorithm:
– Majorize objective at current 𝑤𝑤𝑡𝑡
– Solve majorizing objective via Adagrad to get 𝑤𝑤𝑡𝑡+1

𝑂𝑂𝑂𝑂𝑂𝑂 = min
𝑤𝑤∈ℜ𝑁𝑁

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖(𝑤𝑤) + 𝜆𝜆1
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤 2 −
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤
2

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ min
𝑤𝑤∈ℜ𝑁𝑁

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝐴𝐴𝑖𝑖 𝑧𝑧𝑖𝑖 𝑤𝑤 + 𝐵𝐵𝑖𝑖 𝑧𝑧𝑖𝑖 𝑤𝑤 2

[De Leeuw, 1977+] [Groenen et al., 2008] [Swaminathan & Joachims, 2015]



Counterfactual Risk Minimization
• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐 = argmin
𝜋𝜋∈𝐻𝐻𝑖𝑖

�𝑅𝑅 𝜋𝜋 + 𝜆𝜆1 �𝑉𝑉𝑉𝑉𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝜆𝜆2𝐶𝐶(𝐻𝐻𝑖𝑖)

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 �𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋) =

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

2

− �𝑅𝑅 𝜋𝜋 2



Propensity Overfitting Problem
• Example

– Instance Space 𝑋𝑋 = 1, … ,𝑘𝑘
– Label Space 𝑌𝑌 = 1, … ,𝑘𝑘

– Loss 𝛿𝛿 𝑥𝑥,𝑦𝑦 = �−2 𝑖𝑖𝑖𝑖 𝑦𝑦 == 𝑥𝑥
−1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

– Training data: uniform x,y sample (𝑝𝑝𝑖𝑖 = 1
𝑘𝑘

)
– Hypothesis space: all deterministic functions

 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 = 𝑥𝑥 with risk 𝑅𝑅 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 = −2

𝑅𝑅 �𝜋𝜋 = min
𝜋𝜋∈𝐻𝐻

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 =

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
1

1/𝑘𝑘
𝛿𝛿𝑖𝑖 ≤ −𝑘𝑘

 Problem 1: Unbounded risk estimate!

S
S

S
S

S
S

S

𝑋𝑋

𝑌𝑌



Propensity Overfitting Problem
• Example

– Instance Space 𝑋𝑋 = 1, … ,𝑘𝑘
– Label Space 𝑌𝑌 = 1, … ,𝑘𝑘

– Loss 𝛿𝛿 𝑥𝑥,𝑦𝑦 = �−2 𝑖𝑖𝑖𝑖 𝑦𝑦 == 𝑥𝑥
−1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

– Training data: uniform x,y sample (𝑝𝑝𝑖𝑖 = 1
𝑘𝑘

)
– Hypothesis space: all deterministic functions

 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 = 𝑥𝑥 with risk 𝑅𝑅 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 = −2

𝑅𝑅 �𝜋𝜋 = min
𝜋𝜋∈𝐻𝐻

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 =

1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
0

1/𝑘𝑘
𝛿𝛿𝑖𝑖 = 0

 Problem 2: Lack of equivariance!

S
S

S
S

S
S

S

𝑋𝑋

𝑌𝑌

0
1

0



Control Variate
• Idea: Inform estimate when expectation of correlated 

random variable is known.
– Estimator:

– Correlated RV with known expectation: 

𝑆̂𝑆 𝜋𝜋 =
1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖

𝐸𝐸 𝑆̂𝑆 𝜋𝜋 =
1
𝑛𝑛�

𝑖𝑖

𝑛𝑛

�
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)
𝜋𝜋0 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝜋𝜋0 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)𝑃𝑃 𝑥𝑥 𝑑𝑑𝑦𝑦𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 = 1

Alternative Risk Estimator: Self-normalized estimator

�𝑅𝑅𝑆𝑆𝑆𝑆 𝜋𝜋 =
�𝑅𝑅 𝜋𝜋
𝑆̂𝑆 𝜋𝜋

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛
�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

[Hesterberg, 1995] [Swaminathan & Joachims, 2015]



SNIPS Learning Objective
• Method:

– Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypothesis space: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥,𝑦𝑦 /𝑍𝑍(𝑥𝑥)
– Training objective:

[Swaminathan & Joachims, 2015]

Self-Normalized 
Risk Estimator

Variance 
Control

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) + 𝜆𝜆1 �𝑉𝑉𝑉𝑉𝑉𝑉 �𝑅𝑅𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) + 𝜆𝜆2 𝑤𝑤 2

Capacity 
Control



How well does NormPOEM 
generalize?

Hamming 
Loss

Scene Yeast TMC LYRL

𝜋𝜋0 1.511 5.577 3.442 1.459

POEM (IPS) 1.200 4.520 2.152 0.914
POEM (SNIPS) 1.045 3.876 2.072 0.799

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4



Outline of Lecture
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF policies for structured 

outputs
– BanditNet: Bandit training of deep network policies



BanditNet: Hypothesis Space

Hypothesis Space: Stochastic policies

𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 =
1

𝑍𝑍(𝑥𝑥)
exp 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥,𝑦𝑦|𝑤𝑤)

with
– 𝑤𝑤: parameter tensors to be learned
– Z(x): partition function

Note: same form as Deep Net with softmax output

[Joachims et al., 2017]



BanditNet: Learning Method
• Method:

– Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypotheses: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑥𝑥|𝑤𝑤 /𝑍𝑍(𝑥𝑥)
– Training objective:

Self-Normalized 
Risk Estimator

Variance 
Control

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) + 𝜆𝜆1 �𝑉𝑉𝑉𝑉𝑉𝑉 �𝑅𝑅𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) + 𝜆𝜆2 𝑤𝑤 2

Capacity 
Control

[Joachims et al., 2017]



BanditNet: Learning Method
• Method:

– Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Representation: Deep Network Policies

𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 =
1

𝑍𝑍(𝑥𝑥,𝑤𝑤)
exp 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑦𝑦|𝑥𝑥,𝑤𝑤

– SNIPS Training Objective:

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤) + 𝜆𝜆 𝑤𝑤 2

= argmin
𝑤𝑤∈ℜ𝑁𝑁

1

∑𝑖𝑖=1𝑛𝑛 𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝑝𝑝𝑖𝑖

�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 + 𝜆𝜆 𝑤𝑤 2



Optimization via SGD

• Problem: SNIPS objective not suitable for SGD
• Step 1: Discretize over values in denominator

• Step 2: View as series of constrained OP

• Step 3: Eliminate constraint via Lagrangian

�𝑤𝑤𝑗𝑗 = argmin
w

∑𝑖𝑖=1𝑛𝑛 𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖 subject to  1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑆𝑆𝑗𝑗

�𝑤𝑤 = argmin
𝑆𝑆𝑗𝑗

argmin
w

1
𝑆𝑆𝑗𝑗
�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 subject to

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
= 𝑆𝑆𝑗𝑗

�𝑤𝑤𝑗𝑗 = argmin
w

max
𝜆𝜆

�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
(𝛿𝛿𝑖𝑖−𝜆𝜆) + 𝜆𝜆𝑆𝑆𝑗𝑗



Optimization via SGD

• Step 4: Search grid over 𝜆𝜆 instead of 𝑆𝑆𝑗𝑗
– Hard: Given 𝑆𝑆𝑗𝑗, find 𝜆𝜆𝑗𝑗. 
– Easy: Given 𝜆𝜆𝑗𝑗, find 𝑆𝑆𝑗𝑗.

Solve

Compute

�𝑤𝑤𝑗𝑗 = argmin
w

�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
(𝛿𝛿𝑖𝑖−𝜆𝜆𝑗𝑗) + 𝜆𝜆𝑗𝑗𝑆𝑆𝑗𝑗

𝑆𝑆𝑗𝑗 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖



BanditNet: Training Algorithm

• Given: 
– Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛,𝑝𝑝𝑛𝑛
– Lagrange Multipliers: 𝜆𝜆𝑗𝑗 ∈ 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘

• Compute:
– For each 𝜆𝜆𝑗𝑗 solve: 

– For each �w𝑗𝑗 compute: 

– Find overall �𝑤𝑤:

�𝑤𝑤𝑗𝑗 = argmin
w

�
𝑖𝑖=1

𝑛𝑛
𝜋𝜋𝑤𝑤(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
(𝛿𝛿𝑖𝑖−𝜆𝜆𝑗𝑗)

𝑆𝑆𝑗𝑗 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛 𝜋𝜋�𝑤𝑤𝑗𝑗(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)
𝑝𝑝𝑖𝑖

�𝑤𝑤 = argmin
�𝑤𝑤𝑗𝑗,𝑆𝑆𝑗𝑗

1
𝑆𝑆𝑗𝑗
�
𝑖𝑖=1

𝑛𝑛 𝜋𝜋�𝑤𝑤𝑗𝑗(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖



Object Recognition: Data and Setup

• Data: CIFAR-10 (fully labeled)
 𝑆𝑆∗ = 𝑥𝑥1,𝑦𝑦1∗ , … , 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚∗

• Bandit feedback generation:
– Draw image 𝑥𝑥𝑖𝑖
– Use logging policy 𝜋𝜋0 𝑌𝑌|𝑥𝑥𝑖𝑖 to predict 𝑦𝑦𝑖𝑖

• Record propensity 𝜋𝜋0 𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖
– Observe loss 𝛿𝛿𝑖𝑖 = 𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖∗

 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1, 𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛,𝑝𝑝𝑛𝑛

• Network architecture: ResNet20 [He et al., 2016]

[Beygelzimer & Langford, 2009] [Joachims et al., 2017]

𝑦𝑦𝑖𝑖 = dog
𝑝𝑝𝑖𝑖 = 0.3

𝜋𝜋0

𝛿𝛿𝑖𝑖 = 1



Bandit Feedback vs. Test Error

Logging Policy 𝜋𝜋0: 49% error rate
Bandit-ResNet with naïve IPS: >49% error rate 

[Joachims et al., 2017]



Lagrange Multiplier vs. Test Error

Large basin of optimality far away from naïve IPS.



Analysis of SNIPS Estimate

Control variate responds to the Lagrange multiplier monotonically.
SNIPS training error resembles test error.



Conclusions and Future
• Batch Learning from Bandit Feedback

– Feedback for only presented action 
𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛

– Goal: Find new system 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿
– Learning Principle for BLBF: Counterfactual Risk Minimization

• Learning from Logged Interventions: BLBF and Beyond
– POEM: [Swaminathan & Joachims, 2015c]
– NormPOEM: [Swaminathan & Joachims, 2015c]
– BanditNet: [Joachims et al., 2018]
– SVM PropRank [Joachims et al., 2017a] 
– DeepPropDCG: [Agarwal et al., 2018]
– Unbiased Matrix Factorization: [Schnabel et al. 2016] 

• Future Research
– Other learning algorithms? Other partial-information settings?
– How to handle new bias-variance trade-off in risk estimators?
– Applications

• Software, Papers, SIGIR Tutorial, Data: www.joachims.org

http://www.joachims.org/

	Batch Learning from Bandit Feedback
	Interactive Systems
	Batch Learning from Bandit Feedback
	Learning Settings
	Comparison with Supervised Learning
	Outline of Lecture
	Hypothesis Space
	Risk
	Evaluating Online Metrics Offline
	Approach 1: Direct Method
	Approach 2:�Off-Policy Risk Evaluation
	Partial Information �Empirical Risk Minimization
	Generalization Error Bound for BLBF
	Counterfactual Risk Minimization
	Outline of Lecture
	POEM Hypothesis Space
	POEM Learning Method
	POEM Experiment�Multi-Label Text Classification
	Does Variance Regularization Improve Generalization?
	POEM Efficient Training Algorithm
	Counterfactual Risk Minimization
	Propensity Overfitting Problem
	Propensity Overfitting Problem
	Control Variate
	SNIPS Learning Objective
	How well does NormPOEM generalize?
	Outline of Lecture
	BanditNet: Hypothesis Space
	BanditNet: Learning Method
	BanditNet: Learning Method
	Optimization via SGD
	Optimization via SGD
	BanditNet: Training Algorithm
	Object Recognition: Data and Setup
	Bandit Feedback vs. Test Error
	Lagrange Multiplier vs. Test Error
	Analysis of SNIPS Estimate
	Conclusions and Future

