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Interactive Systems

 Examples
— Ad Placement
— Search engines
— Entertainment media
— E-commerce
— Smart homes
* Log Files
— Measure and optimize
performance

— Gathering and maintenance
of knowledge

— Personalization




Batch Learning from Bandit Feedback

e Data
5= ((xl»yp 61, 01)s s (X Y, O, pn))

%

- “Bandit” Feedback

* Properties
— Contexts x; drawn i.i.d. from unknown P (X)
— Actions y; selected by existing systemmy: X = Y
— Loss §; drawn i.i.d. from unknown P (6;|x;, y;)
* Goal of Learning
— Find new system m that selects y with better 6

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]




Learning Settings

Online Learning Perceptron
Winnow

Etc.

Batch Learning SVM
Random Forests
Etc.




Comparison with Supervised Learning

Train example  (x,y,6) (x,y%)

Context x drawn i.i.d. from drawn i.i.d. from
unknown P(X) unknown P(X)

Action y selected by existing  N/A
system hy: X =Y

Feedback 6 Observe 6(x,y) only Assume known loss
for y chosen by h function A(y,y")
- know feedback
d(x,y) for every
possible y




Outline of Lecture

e Batch Learning from Bandit Feedback (BLBF)

S = ((xl' V1, 51)» ) (xni Vn 671))
-> Find new policy  that selects y with better §
* Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization
e Learning Algorithms for BLBF

— POEM: Bandit training of CRF policies for structured
outputs

— BanditNet: Bandit training of deep network policies



Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:

Given context x, hypothesis/policy m selects action
y with probability m(y|x)

Note: stochastic prediction rules D deterministic
prediction rules



Risk

Definition [Expected Loss (i.e. Risk)]:
The expected loss / risk R(mr) of policy i is

R(r) = j f 5(x, ) r(I0)P(x) dx dy




Evaluating Online Metrics Offline

* Online: On-policy A/B Test

Draw S;
from m;
> U(my)

Draw S,
from m,
2 ﬁ(ﬂz)

Draw S5
from 15
> U(m3)

Draw S,
from m,
> ﬁ(”t})

Draw S5
from 75
> U(ms)

Draw Sg
from 14
2 ﬁ(”s)

Draw S,
from T,
2 ﬁ(7T7)

e Offline: Off-policy Counterfactual Estimates

Draw S from m




Approach 1: Direct Method

* Data: o8
S = (G, Y1620, e, Gt Yo )

1. Learn reward predictor
d:x Xy —->R
Represent via features W(x, y)

Learn regression based on W(x, y)
from S collected under i,

2. Derive policy m(x)
m(x) & argmax[S (x, y)]
y




Approach 2:

Off-Policy Risk Evaluation

Given S = ((xl,yl, 51), ..., (X, Vi, 5n)) collected
under 1,

R(m) = %z 5 m(y;lx;)

in()(yilxi)

Propensity
Pi

- Unbiased estimate of risk, if propensity nonzero
everywhere (where it matters).

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]



Partial Information
Empirical Risk Minimization

* Training

n

T = argmin,cy E

l

m(y;|x;) 5,
Di

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]



Generalization Error Bound for BLBF

* Theorem [Generalization Error Bound]

— For any hypothesis space H with capacity C, and for all
m € H with probability 1 —n

R(n) <R(m) +0 (\/V/c?r(n)/n) + 0(C)

Unbiased
Estimator

R(r) = Mean (”(ypiixi) 5:)

Var(n) = Var (n(y;.xi) c?l-)

Variance Capacity

Control Control

—> Bound accounts for the fact that variance of risk
estimator can vary greatly between different m € H

[Swaminathan & Joachims, 2015]



Counterfactual Risk Minimization

* Theorem [Generalization Error Bound]

R(n) <R(m) +0 (\/V/c?r(n)/n) + 0(C)

—> Constructive principle for designing learning algorithms

™ = argmin R(m) + 1, <\/V/5r(n)/n> + A,C(H;)

TEH;

_ 1% ilX; .
R(m) = EZ n(ypllx ) O; Var(m) = Ez <n(3;|xl) > — R(m)>?

L i

[Swaminathan & Joachims, 2015]




Outline of Lecture

e Batch Learning from Bandit Feedback (BLBF)

S = ((xl' V1, 51)» ) (xni Vn 671))
-> Find new policy  that selects y with better §
* Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization
e Learning Algorithms for BLBF

— POEM: Bandit training of CRF policies for structured
outputs

— BanditNet: Bandit training of deep network policies



POEM Hypothesis Space

Hypothesis Space: Stochastic policies

exp(w - D (x, y))

1
nw(le) — Z(X)
with

— w: parameter vector to be learned

— ®(x,y): joint feature map between input and output

— Z(x): partition function

Note: same form as CRF or Structural SVM



POEM Learning Method

* Policy Optimizer for Exponential Models (POEM)

— Data: S = ((x]_; Y1, 51) pl)) ) (xn: Vn 571’ pn))

— Hypothesis space: m,, (y]|x) = exp(w - P (x, y))/Z(x)
— Training objective: Let z;(w) = m,, (y;|x;)8; /p;

n n 2 _
Zi(W)2> - < Zi(W)> + lz||W||2
i=1 =1

Variance
Control

S|
S|

n
|
w = argmin Ez zi(w) + 44 (

weRN

Unbiased Risk
Estimator

Capacity

Control

[Swaminathan & Joachims, 2015]




Xi

POEM Experiment
Multi-Label Text Classification

Data: S = ((xl,yl, 51, p1); ey (Xn, Yns 671; pn))

Reuters LYRL RCV1 (top 4 categories)

Learning ogged Interventions

Pi = 0.3

y; = {sport, politics} 5 =1
—_— 5 =

Results: POEM with H isomorphic to CRF with one weight vector per label

0.58
0.53
0.48
0.43
0.38
0.33
0.28

Hamming Loss

\

m, logging policy
===POEM I
CRF(supervised)

e

1 2 4 8 16

32 64 128

|S| = Quantity (in epochs) of Training Interactions from pi0

[Swaminathan & Joachims, 2015]



Does Variance Regularization
Improve Generalization?

e |PS: w = argmin ﬁ(w) +/12||W||2]

weRN

—

e POEM: w =argmin|R(w)+ A4 (\[Var(w)/n) +/12||W||2]

weRN

Ty 1.543 5.547 3.445 1.463

1.519 4.614 3.023 1.118
POEM 1.143 4.517 2.522 0.996

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4




POEM Efficient Training Algorithm

* Training Objective:

RN RN RN
0PT=mr}r61§iRr11V EZZL-(W)-Fﬂ.l <EZZL-(W)2>—<EZZL-(W)>

i=1 V l=1

- |dea: First-order Taylor Majorization

— Majorize V' at current value
— Majorize —(  )? at current value
n
OPT < Mrll’elg}v l%z Ai Zi(W) + Bi Zi(W)Z]
* Algorithm: =
— Majorize objective at current w;
— Solve majorizing objective via Adagrad to get w; 4

[De Leeuw, 1977+] [Groenen et al., 2008] [ Swaminathan & Joachims, 2015]



Counterfactual Risk Minimization

* Theorem [Generalization Error Bound]

R(n) <R(m) +0 (\/V/c?r(n)/n) + 0(C)

—> Constructive principle for designing learning algorithms

™ = argmin R(m) + 1, (\/Vﬂr(n)/n) + A,C(H;)

TEH;

_ 1% ilX; .
R(m) = EZ n(ypllx ) O; Var(m) = Ez <n(3;|xl) > — R(m)>?

L i

[Swaminathan & Joachims, 2015]




Propensity Overfitting Problem

 Example
— Instance Space X = {1, ..., k}
— Label SpaceY =1{1, ..., k} X

-2 ify==x
— Loss 8(x,y) =
055 0(x,7) {—1 otherwise

— Training data: uniform x,y sample (p; = %)

— Hypothesis space: all deterministic functions
2 Tope(X) = x with risk R(nopt) = -2

1~ 7y lx;)
VIA X
R(7) =min—z Yilti §; =

meH N & Di
l

- Problem 1: Unbounded risk estimate!



Propensity Overfitting Problem

 Example
— Instance Space X = {1, ..., k}
— Label SpaceY =1{1, ..., k}

— Loss 6 (x,y) ={>{ fy==x

>4 1 otherwise
— Training data: uniform x,y sample (p; =

— Hypothesis space: all deterministic functions
2 Tope (x) = x with risk R(nopt) = X

1~ (i lx;)
VIA X
R(7) =min—z Yilti §; =

mEH N L Di
l

- Problem 2: Lack of equivariance!




Control Variate

Idea: Inform estimate when expectation of correlated
random variable is known.

— Estimator: X 1 n(y;lx;)
R =2 ), =58
n Di

[
— Correlated RV with known expectation:

S0 = _z n(y;[xi)

ﬂ(Ylel) _
E[S(m)] = Z | F T moGilx)P () dyida; = 1

- Alternative RISk Estimator: Self-normalized estimator

[Hesterberg, 1995] [Swaminathan & Joachims, 2015]



SNIPS Learning Objective

e Method:

— Data: S = ((x]_; Y1, 51) pl)) ) (xn: Vn 571’ pn))

— Hypothesis space: m,, (y]|x) = exp(w - P (x, y))/Z(x)
— Training objective:

W = argmin
weRN

R‘SNIPS(W) + Al\/V/CIT(R\SNIPS(W)) 4+ /12||W||2

Capacity
Control

Variance
Control

Self-Normalized
Risk Estimator

[Swaminathan & Joachims, 2015]



How well does NormPOEM
generalize?

T, 3.442 1.459

POEM (IPS) 2.152 0.914
POEM (SNIPS) 2.072 0.799

# examples 4*21519 4*23149
# features 30438 47236
# labels 22 4




Outline of Lecture

e Batch Learning from Bandit Feedback (BLBF)

S = ((xl' V1, 51)» ) (xni Vn 671))
-> Find new policy  that selects y with better §
* Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization
e Learning Algorithms for BLBF

— POEM: Bandit training of CRF policies for structured
outputs

— BanditNet: Bandit training of deep network policies



BanditNet: Hypothesis Space

Hypothesis Space: Stochastic policies

Ty (Y]x) = exp(DeepNet(x, y|w))

Z(x)
with
— w: parameter tensors to be learned
— Z(x): partition function

Note: same form as Deep Net with softmax output

[Joachims et al., 2017]



BanditNet: Learning Method

e Method:

—Data: § = ((xl) V1, 51' pl)» Ll (xn' Yno 511' pn))
— Hypotheses: m,, (y|x) = exp(DeepNet(x|w))/Z(x)

— Training objective:

w = argmin [}?SNIPS(W) -+ Al\/V/cfr(ﬁSNIPS(W)) + Az“W”z

weRN

Self-Normalized Variance
Risk Estimator Control

Capacity
Control

[Joachims et al., 2017]



BanditNet: Learning Method

e Method:

—Data: § = ((xl; Y1 51’ pl): LIy (xn: Yn» 571’ pn))
— Representation: Deep Network Policies

nw(le) =

Z(x,w)

exp(DeepNet(y|x, W))

— SNIPS Training Objective:

w = argmin

weRN

= argmin
weRN

RSNIPS(W) + /1||W|| ]

w( 1 l)

n ﬂw (yl
Z D




Optimization via SGD

Problem: SNIPS objective not suitable for SGD
Step 1: Discretize over values in denominator

n n
1 7Tw(yll l) 1 ﬂw(yllxl)
= argmin |argmin S d;| subject to - y

S
J w J =1 i=1

Step 2: View as series of constrained OP

Wi = arg“rlnln lZ" M(S] subject to —Zn %lel) S;

Step 3: Eliminate constraint via Lagrangian

n
T i1 X5
@; = argmin max [Z w5 5y 4 s,
w A - pi



Optimization via SGD

* Step 4: Search grid over A instead of §;
— Hard: Given §;, find 4;.
— Easy: Given 4;, find §;.

—>Solve = argmm[ W(yl (5 =) + 4;S;

AN o (1)
- Compute ‘EZ

i=1



BanditNet: Training Algorithm

e Given:

— Data: § = ((xl’ Y1, 51! pl): ety (xn' Vi 511» pn))
— Lagrange Multipliers: A; € {44, ..., A}

* Compute:

n
. . Ty (Vi lx;)
— For each 4; solve: W; = argmin z T (6= )
w — Di
n
1~ Tw; Vil %)
— For each W; compute: s ——z M
nl 1 Pi
1~ 7w, (Vi x)
— Find overall W: = argmin [_z i ]
WjSj S] i=1



Object Recognition: Data and Setup

e Data: CIFAR-10 (fully labeled)
> 5% = (e, Y15 s (o Yim))

 Bandit feedback generation:
— Draw image x;
— Use logging policy my(Y|x;) to predict y;
 Record propensity o (Y = y;|x;)
— Observe loss 6; = [y; # y;]

9 S = ((xll Y1, 61) pl); ) (xn’ Yn 671' pn))

 Network architecture: ResNet20 [He et al., 2016]

[Beygelzimer & Langford, 2009] [Joachims et al., 2017]



Bandit Feedback vs. Test Error

15 r

14 Fulllnfo ResNet with CrossE

13
12

11

=
W)
Q
=
QL
-
¥
A
| —
o
| -
| -
LLl

10

9

Bandit-ResNet —+—

8 1 L L
50000 100000 150000 200000

Number of Bandit-Feedback Examples

Logging Policy my: 49% error rate
Bandit-ResNet with naive IPS: >49% error rate

250000

[Joachims et al., 2017]



Lagrange Multiplier vs. Test Error

Error Rate (test) —

=
W)
Q
=
QL
-
¥
A
| —
o
| -
| -
LLl

0.75 0.8 0.85 0.9 0.95
Lagrange Multiplier (lambda)

Large basin of optimality far away from naive IPS.




Analysis of SNIPS Estimate

SNIPS Error Estimate (train) —+— 1
Control Variate —¢— 1.3
1.2
1.1
1
0.9

0.8

Value of Control Variate

=
0
g
o]
£
»
L]
S
L1l
)
Q
Z
%)

0.7

0.6
07 075 08 08 09 09 1 1.05

Lagrange Multiplier {(lambda)

Control variate responds to the Lagrange multiplier monotonically.
SNIPS training error resembles test error.



Conclusions and Future

Batch Learning from Bandit Feedback
— Feedback for only presented action
S = ((xl' Y1, 511 pl): ey (xnr Yn» 571' pn))
— Goal: Find new system m that selects y with better 6
— Learning Principle for BLBF: Counterfactual Risk Minimization
Learning from Logged Interventions: BLBF and Beyond
— POEM: [Swaminathan & Joachims, 2015c]
— NormPOEM: [Swaminathan & Joachims, 2015c]
— BanditNet: [Joachims et al., 2018]
— SVM PropRank [Joachims et al., 20173]
— DeepPropDCG: [Agarwal et al., 2018]
— Unbiased Matrix Factorization: [Schnabel et al. 2016]
Future Research
— Other learning algorithms? Other partial-information settings?
— How to handle new bias-variance trade-off in risk estimators?
— Applications
Software, Papers, SIGIR Tutorial, Data: www.joachims.org



http://www.joachims.org/
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