Counterfactual Machine Learning CS 7792 - Fall 2018

Thorsten Joachims

Department of Computer Science & Department of Information Science Cornell University

Outline of Today

- Introduction
 - Thorsten Joachims
- Overview of Class Topics
 - Machine Learning in Interactive Systems
 - Counterfactual Questions in Interactive Systems
 - Challenges in Policy Learning and Evaluation
- Administrivia
 - Goals for the Class
 - Pre-Requisites
 - Credit Options and Format
 - Course Material
 - Contact Info

User Interactive Systems

Arry time

adaboost.

Examples

- Search engines
- Entertainment media
- E-commerce
- Smart homes, robots, etc.

User Behavior as Data for

- Evaluating system performance
- Learning improved systems and gathering knowledge
- Personalization

Interactive Learning System

Feedback SA

System π_0

Action y for x

Ad Placement

- Context *x*:
 - User and page
- Action *y*:
 - Ad that is placed
- Feedback $\delta(x, y)$: - Click / no-click

News Recommender

- Context *x*:
 - User
- Action *y*:
 - Portfolio of newsarticles
- Feedback $\delta(x, y)$:
 - Reading time in minutes

• Context *x*:

- Query
- Action *y*:
 - Ranking
- Feedback $\delta(x, y)$:
 - Rank of click

Search Engine

		x
svm - Google Searc		
← → C ♠ ©	www.google.com/search?aq=f&gcx=c&sourceid=chrome&ie=UTI 😭 🔝	2
+You Web Images	Videos Maps News Shopping Gmail More - Sign in 🔅	: -
Google	svm	
Search	About 16,600,000 results (0.11 seconds)	
Everything Images Maps Videos News Shopping	Support vector machine - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Support_vector_machine A support vector machine (SVM) is a concept in statistics and computer science for set of related supervised learning methods that analyze data and recognize Formal definition - History - Motivation - Linear SVM SVM: Summary for Silvercorp Metals Inc Ordinary - Yahool Finance finance, yahoo.com/q?s=SVM View the basic SVM stock chart on Yahool Finance. Change the date range, chart typ and compare Silvercorp Metals Inc Ordinary against other companies.	r a
Any time Past hour Past 24 hours Past 2 days Past week Past month Past year Custom range All results	SVM_LP www.svmcards.net/ SVM. A leader in the gift card industry and devoted to helping your business reward, promote, entice and grow. Established in 1997, we handle the sales, SVM Asset Management - Home www.svmcnine.co.uk/ Founded in 1990, SVM Asset Management is a privately-owned firm based in Edinburg. The three founding directors continue to own 100% of the equity, with LIBSVM A Library for Support Vector Machines www. csie.ntu.edu.tw/~cjlin/libsvm/ 5. Nov 2011 - An integrated and easysteuse tool for support vector classification and	gh
More search tools	regression.	
•	III	F F

• Data $\begin{aligned} & \text{Log Data from Interactive Systems} \\ & \text{S} = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n) \right) \end{aligned}$

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

Online Evaluation: A/B Testing

Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0 , $\widehat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^n \delta_i$

→ A/B Testing Deploy π_1 : Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x, y)$ Deploy π_2 : Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x, y)$: Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x, y)$

Pros and Cons of A/B Testing

• Pro

- User centric measure
- No need for manual ratings
- No user/expert mismatch
- Cons
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy π_i
 - Number of A/B Tests limited
 - Long turnaround time

Evaluating Online Metrics Offline

• Online: On-policy A/B Test

• Offline: Off-policy Counterfactual Estimates

Goals of Offline/Off-Policy Methods

• Use interaction log data

$$S = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n) \right)$$

for

- Evaluation:
 - Estimate online measures of some system π offline.
 - System π is typically different from π_0 that generated log.
 - → How well would system π have performed, if I had used it instead of system π_0 ?
- Learning:
 - Find new system π that improves performance over π_0 .
 - Do not rely on interactive experiments like in online learning.
 - → Which system $\pi \in \Pi$ would have performed best, if I had used it instead of system π_0 ?

Example: Learning-to-Rank from

Clicks

Evaluating Rankings

Evaluation with Missing Judgments

- Loss: $\Delta(y|r)$
 - Relevance labels $r_i \in \{0,1\}$
 - This talk: rank of relevant <u>do</u>cuments

$$\Delta(y|r) = \sum_{i} rank(i|y) \cdot r_{i}$$

- Assume:
 - Click implies observed and relevant:

$$(c_i = 1) \leftrightarrow (o_i = 1) \land (r_i = 1)$$

- Problem:
 - No click can mean not relevant OR not observed

$$(c_i = 0) \leftrightarrow (o_i = 0) \lor (r_i = 0)$$

 \rightarrow Understand observation mechanism

Presented \overline{y}	
А	
В	
Click	
D	
Е	
F	
G	

Inverse Propensity Score Estimator

- Observation Propensities $Q(o_i = 1 | x, \overline{y}, r)$
 - Random variable $o_i \in \{0,1\}$ indicates whether relevance label r_i for is observed
- Inverse Propensity Score (IPS) Estimator:

$$\widehat{\Delta}(y|r,o) = \sum_{i:c_i=1} \frac{rank(i|y)}{Q(o_i = 1|\overline{y}, r)}$$
New Ranking

• Unbiasedness: $E_o[\widehat{\Delta}(y \mid r, o)] = \Delta(y \mid r)$

Presented \overline{y}	Q	
А	1.0	
В	0.8	
С	0.5	
D	0.2	
Е	0.2	
F	0.2	
G	0.1	

Research Agenda

- Data dependent on system actions
 - Not full information, but partial information feedback
 - Data comes from interventions, not teacher
- Designing off-policy evaluation and learning algorithms
 - Handling large action spaces
 - Handling application-specific reward functions
 - Learning complex policies
 - Observational vs. interventional data
 - Adaptive vs. stationary intervention control
 - Stochastic vs. deterministic logging systems

Overall Goals for this Class

- Deeply explore one active research area in ML.
 → Narrow focus.
- Practice being a successful academic.

→ Class targeted towards current PhD students with research interests in this area!

Pre-Requisites

- This is not an introductory Machine Learning class!
- You need to satisfy one of the following ML pre-reqs:
 - Successfully taken CS4780 "Machine Learning"
 - Successfully taken CS6780 "Advanced Machine Learning"
 - Successfully taken a comparable "Intro to ML" class (*)
 - Acquired the equivalent ML knowledge in some other way (e.g. strong background in Statistics + ML textbook) (*)
- You need to be a PhD student
- Currently doing or planning to do research in this area of ML
- Basic probability, basic statistics, general mathematical maturity

(*) means talk to me

Format of Class

- Lectures (by TJ)
 - Background material
- Research paper presentations (by students)
 - Explore current state of the art
- Peer reviewing

Research Paper Presentations

- Students present the paper in class
 - Slide presentation
 - Prepare discussion topics / group activity
 - Create critique, extended bibliography, examples, demo software, experiments etc. that help understand the paper
 - Prepare quiz
- Everybody reads the paper in preparation for class
 - Quiz about each paper
- All students give feedback afterwards.

Peer Reviewing

- Goals
 - Give presenter constructive feedback from audience.
 - Reviewer has to think through what works about a presentation.
 - Learn how to write reviews. Be constructive, respectful, and mindful of biases.
- Reviewing the reviewers
 - Presenter gets to give feedback on the reviews (both direct and confidential to me)

Credit Options and Grades

- Pass/Fail: Need to get at least 50% of points on each of following to pass.
 - paper presentation
 - in-class quizzes (lowest grades replaced by second lowest grade)
 - peer reviewing (lowest grades replaced by second lowest grade)
 - in-class participation
- Letter grade:
 - not allowed
- Audit:
 - not allowed, unless you have very good arguments

Course Material

Reference Books

- Imbens, Rubin, "Causal Inference for Statistics, Social, and Biomedical Sciences", Cambridge University Press, 2015. (<u>online</u> via Cornell Library)
- Morgan, Winship "Counterfactuals and Causal Inference", Cambridge University Press, 2007.
- T. Joachims, A. Swaminathan. SIGIR Tutorial on Counterfactual Evaluation and Learning for Search, Recommendation and Ad Placement, 2016. (<u>homepage</u>)

Background Reading

- K. Murphy, "Machine Learning a Probabilistic Perspective", MIT Press, 2012. (<u>online</u> via Cornell Library)
- B. Schoelkopf, A. Smola, "Learning with Kernels", MIT Press, 2001. (online)
- C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- R. Duda, P. Hart, D. Stork, "Pattern Classification", Wiley, 2001.
- T. Hastie, R. Tishirani, and J. Friedman, "The Elements of Statistical Learning", Springer, 2001.
- Slides, Notes and Papers
 - Slides available on course homepage or CMT
 - Papers on course homepage

Bidding on Papers to Present

- Use CMT bidding mechanism to assign papers
 - If you are
 - enrolled via studentcenter,
 - filled out the paper sheet (no promise we still have space though) you will get email from me through CMT.
 - Place your bids on the papers by Monday night.
 - I'll send you your assignment next week.
 - Let me know, if there are other papers we should be reading.

How to Get in Touch

- Course Web Page
 - <u>https://www.cs.cornell.edu/Courses/cs7792/2018fa/</u>
- Email
 - Thorsten Joachims: <u>tj@cs.cornell.edu</u>
- Office Hours
 - Fridays 11:10pm 12:10pm, 418 Gates Hall
- Piazza
 - <u>https://piazza.com/cornell/fall2018/cs7792</u>
- Peer reviewing platform
 - <u>https://cmt3.research.microsoft.com/CS77922018</u>