A First Step Towards Automated
Detection of Buffer Overrun
Vulnerabilities

Wagner, Foster,
Brewer, Aiken

UC Berkeley
NDSS ‘00

CS 711 29 Sep 2005

Motivation

m C is unsafe
m Buffer overruns a major security problem

m up to 50% of CERT-reported vulnerabilities
(up to 1999)

m Yadda yadda yadda

m Want: automatic static detection of overruns
s Dynamic testing doesn’t test all the cases

m Static testing provides assurance before
deployment

s Automatic to deal with large legacy code bases

Design Philosophy

m Practical
=Scalable
= Flow insensitive
= Context insensitive
= Imprecise

= Useful
= Few false positives/false negatives
= Precise

m Trade off between precision and scalability
m Have they found the sweet spot?

Design

m Treat C strings as abstract data type
m Gloss over pointer arithmetic, layout in memory, ...

m Model buffers as pairs of integer ranges

m For each string variable track:
e allocated size of buffer

e length (number of bytes in use)

m Reduces overrun problem to tracking integer ranges
e Buffer overrun if max length of v > allocated size of v

m Architecture

source —-

C parser

integer constraint
generation

constraint solver

—= warnings

Constraint Language

m/Z®=7UJ<{-0c0, 00}
m Range: [m,n] ={ieZ® . m<i<n}
m S+T={s+t:seS5,teT}
m S-T={s-t:seS5,teT}
m SxT={sxt:seS,teT}
m Min(S,T) ={min(s,t) :seS,teT}
m Mmax(S5,T) ={min(s, t) :s€S,teT}
m Range closure of S = [inf S, sup S]
m Take range closures for all operations
me.qg.
[2,2] x [1,4] = [2,8]
min([1,4], [3,6]) = [1,4]

Constraint Language

m Integer range expression
e .=V e Vars
nezZ
nxv | e+e | e-e
max(e, ..., e) | min (e, ...,)

m Integer range constraint
ecyv

m Assignment a: Vars - Z*
m 'satisfies constraints” with obvious definition

Constraint Generation

m Parse source code, and then...

m For each integer program variable v
s Have range variable v

m For each string variable s

m Have two variables: alloc(s) and len(s)
m Note: len(s) includes the "\0’ terminator

m For each function £(al, .., an)

m Have a variable for each formal param
m Have a variable for return value, f_return
s Note: functions monomorphic (context insensitive)

m For each statement
m Generate a constraint...

Constraint Generation for Statements

m Integer expressions and integer variables
modeled by appropriate range operations

mv = e produces constraint ecv
meg.i=1i+ jproducesi + jci
m Model string library by pattern matching:

char s[n]; n € alloc(s)

s = “foo” {4} c alloc(s) {4} <clen(s)
strcpy (src, dst) len(src) € len(dst)

strcat (s, sfx) len(s)+len(sfx)-1 < len(s)

p[n] = *\O0’ min(len(p), n+1) € len(p)

Constraint System

m Now have a constraint system

m Solve it [2 slides away]
m get a satisfying assignment a

m For each string variable s
ma(len(s)) = [a, D]
m a(alloc(s)) = [c, d]
mif b < c then the buffer never overruns
mif a > d then buffer always overruns!

mif [a,b] and [c,d] overlap then there may
be an overrun

Imprecision from Pointers

m Ideally, should have soundness:
m a(v) 2 {values that v may take during execution}
s Don't, due to aliasing, double indirect pointers, structs,

unions, ...

char s[20], *p, t[10]
strcpy (s, “Hello”);
p =s + 5;

strcpy (p, “ world!”);
strcpy(t, s)

20 c alloc(s) 10 <€ alloc(t)
6 € len(s)

alloc(s)-5 € alloc(p)

len(s)-5 S len(p)

8 € len(p)

len(s) < len(t)

m All structures assumed to be potentially aliased, only
one variable for each field of structure

Solving Range Constraints: Bounding Box

Solving Integer Range Constraints

m Assume all constraints of the form
ncv, or f(v;) € v;

for affine functions f

a(v,) = [5,5]
a(v,) = [5,5]
a(vs) = [22,-33]
a(v,) = [2,11]

a(vsg) = [e11,-7]

Solving Integer Range Constraints

m What about cycles?
m Can handle precisely without infinite ascending chains

m Cyclef ="f..f; vV,
m composition of affine functions will be affine function
m eg. f(x) =-2x + 1 X

A 2x+1
m Compare f(a(v)) to a(v)
= if f(a(v)) € a(v) then least solution is a(v) -
then

= if sup(f(a(v))) > sup(a(v)) and inf(f(a(v))) < inf(a(v))

Y
. . 3
least solution is [-c0, oo]

m if f h
if sup(f(a(v))) >SthJ%((3)(\Q))[i%f?g(V)), o] and try again

= if inf(inf h
Ay O O to en cup((v})] and try agaln

m e.g. f(x) =-2x+ 1, f([0,5]) = [-9, 1]
m Least solution is [-oc0, 5]

Experiments

m Linux Net Tools
m 3.5 kloc
m Previously hand audited in 1996
m Tool found new buffer overrun bugs (probably

exploitable)
m Sendmail 8.9.3
m 32 kloc

= Previously hand audited

s Found some minor bugs (probablry not
exploitable), including complex off-by-one error

m Sendmail 8.7.5
m 32 kloc

m Prior to Sendmail hand audit, to test false
negatives

Limitations/comparison

m Large number of false positives
m Requires human to check them

m e.g. sendmail 8.9.3, of 44 warnings, 4 were bugs

m Reduce with improved analysis?

Improved analysis False alarms that could be eliminated
flow-sensitive 19/40 ~ 48%
flow-sens. with pointer analysis 25/40 ~ 63%
flow- and context-sens., with linear mvariants 28 /40 ~ T0%
flow- and context-sens., with pointer analysis and inv. | 38/40 ~ 95%

m What's the alternative?

e 695 call sites to potentially unsafe string functions, all to

be checked by hand...

DISCUSSION 1o

m How to improve soundness while maintaining
scalability?

s Add context sensitivity, pointer analysis

e Ganapathy, Jha, Chandler, Melski, Vitek “Buffer Overrun
Detection using Linear Programming and Static Anaylsis”
(CCS03)

s Add limited forms of flow sensitivity
e [GICMV 03] suggest SSA form for some flow-sensitivity

e Different constraints vars for different lexical scopes?
® €.4d. int x; .. while (x < 10) { .. }; ..

Xwhite € [-99, 9] Xiwhile S X
m Other forms of solutions than ranges? Linear
relations?

m Other ways?

DISCUSSION 1ofm

m Approach to false negatives
Interesting...
m How else to measure false negatives?

m Advantages/disadvantages of
constraint-based approach?

m Usefulness
m What does it take to get an analysis used?
m Downloadable as an extension to eclipse?

