
ESP ESP -- PathPath--Sensitive Sensitive
Program Verification in Program Verification in

Polynomial TimePolynomial Time
M. Das, S. Lerner, M. SeigleM. Das, S. Lerner, M. Seigle

PLDI '02PLDI '02

Partial program verificationPartial program verification

Verify that a program obeys a temporal safety Verify that a program obeys a temporal safety
propertyproperty

e.g. correct file opening/closing behaviore.g. correct file opening/closing behavior

Property representable as DFA (FSM)Property representable as DFA (FSM)

$uninit

$error

Opened

Open Close

Open,
Print,
Close

Print,
Close

Print
Open

Why itWhy it’’s hard:s hard:

In a program, FSM may transition differently In a program, FSM may transition differently
along different execution pathsalong different execution paths
PathPath--insensitive dataflow analysis will merge and insensitive dataflow analysis will merge and
lose relevant informationlose relevant information
The program may satisfy the property, but we The program may satisfy the property, but we
won't be able to determine this.won't be able to determine this.

ExampleExample

void main(){void main(){
if (dump)if (dump)

f = fopen(dumpFil, "w");f = fopen(dumpFil, "w");
if (p)if (p)

x = 0;x = 0;
elseelse

x = 1;x = 1;
if (dump) if (dump)

fclose(f);fclose(f);
}}

PathPath--insensitive dataflow analysisinsensitive dataflow analysis

void main(){void main(){
if (dump)if (dump)

f = fopen(dumpFil, "w");f = fopen(dumpFil, "w");
if (p)if (p)

x = 0;x = 0;
elseelse

x = 1;x = 1;
if (dump)if (dump)

fclose(f);fclose(f);
}}

[$uninit]

[$uninit, Opened]

[$uninit, Opened]

[$uninit, $error]

PathPath--sensitive analysissensitive analysis

void main(){void main(){
if (dump)if (dump)

f = fopen(dumpFil, "w");f = fopen(dumpFil, "w");
if (p)if (p)

x = 0;x = 0;
elseelse

x = 1;x = 1;
if (dump)if (dump)

fclose(f);fclose(f);
}}

[$uninit]

[$uninit, ¬d]
[Opened, d]

[$uninit, ¬ d, ¬ p, x =1]

[$uninit, ¬ d, p, x = 0]

[Opened, d, ¬ p, x =1]

[Opened, d, p, x =0]

Only one of the two
paths possible from
each state

Moral of the story:Moral of the story:

PathPath--insensitive dataflow analysis is too insensitive dataflow analysis is too
impreciseimprecise
But pathBut path--sensitive analysis is overkill and too sensitive analysis is overkill and too
expensive.expensive.
The obvious solution: keep as much information The obvious solution: keep as much information
as needed, no more, no lessas needed, no more, no less

the paper presents a heuristic for thisthe paper presents a heuristic for this

Main contributions of this paperMain contributions of this paper

An analysis framework that is An analysis framework that is only as pathonly as path--
sensitive as neededsensitive as needed to verify a propertyto verify a property

Including an interIncluding an inter--procedural version procedural version

Insights into developing a verification system Insights into developing a verification system
using property simulation that will scale to large using property simulation that will scale to large
programs (such as programs (such as gccgcc))

This is ESP This is ESP -- Error detection via Scalable Program Error detection via Scalable Program
analysisanalysis

Property analysisProperty analysis

An analysis framework that parametrizes how pathAn analysis framework that parametrizes how path--
sensitive we choose to be.sensitive we choose to be.
Includes pathIncludes path--insensitive and fully pathinsensitive and fully path--sensitive sensitive
analyses as extremes.analyses as extremes.
Essentially a normal dataflow analysis, with interesting Essentially a normal dataflow analysis, with interesting
things happening at the merge points.things happening at the merge points.

pathpath--insensitive insensitive -- merge everythingmerge everything
pathpath--sensitive sensitive -- no mergesno merges
property simulation property simulation -- merge only info "irrelevant" for the merge only info "irrelevant" for the
property being verifiedproperty being verified

A few detailsA few details

State carried in analysis is State carried in analysis is symbolic statesymbolic state
Two components:Two components:

abstract state abstract state ⊆⊆ D, where D = set of states in the D, where D = set of states in the
property FSMproperty FSM
execution state (as normal)execution state (as normal)

S = domain of all symbolic statesS = domain of all symbolic states
Analysis computes dataflow facts from the Analysis computes dataflow facts from the
domain 2domain 2SS

A few details (2)A few details (2)

Key is filtering function used at merge points:Key is filtering function used at merge points:
αα : 2: 2SS →→ 22SS

ααcscs(ss) = ss(ss) = ss
gives pathgives path--sensitive analysissensitive analysis

ααdfdf(ss) = {(ss) = {∪∪s s ∈∈ ssss as(s), as(s), tts s ∈∈ ssss es(s)]}es(s)]}
gives pathgives path--insensitive dataflow analysisinsensitive dataflow analysis

A few details (3)A few details (3)

Property simulation merges all those symbolic Property simulation merges all those symbolic
states that have the same property statestates that have the same property state
ααasas = {[{d}, = {[{d}, tts s ∈∈ ss[d]ss[d] es (s)] | d es (s)] | d ∈∈ D & ss[d] D & ss[d] ≠≠ ∅∅}}
Notation: Notation:

ss[d] = { s | s ss[d] = { s | s ∈∈ ss & d ss & d ∈∈ as(s) }as(s) }
““set of all s in ss containing dset of all s in ss containing d””

ExampleExample
Will see limitations of this heuristic soonWill see limitations of this heuristic soon

PathPath--sensitive analysissensitive analysis

void main(){void main(){
if (dump)if (dump)

f = fopen(dumpFil, "w");f = fopen(dumpFil, "w");
if (p)if (p)

x = 0;x = 0;
elseelse

x = 1;x = 1;
if (dump)if (dump)

fclose(f);fclose(f);
}}

[$uninit]

[$uninit, ¬d]
[Opened, d]

[$uninit, ¬ d, ¬ p, x =1]

[$uninit, ¬ d, p, x = 0]

[Opened, d, ¬ p, x =1]

[Opened, d, p, x =0]

Property simulationProperty simulation

void main(){void main(){
if (dump)if (dump)

f = fopen(dumpFil, "w");f = fopen(dumpFil, "w");
if (p)if (p)

x = 0;x = 0;
elseelse

x = 1;x = 1;
if (dump)if (dump)

fclose(f);fclose(f);
}}

[$uninit]

[$uninit, ¬d]
[Opened, d]

[$uninit, ¬ d] [Opened, d]

No changes to
property state

Only one of the two
paths possible from
each state

A few details (4)A few details (4)

Not all branches are possible from a particular symbolic Not all branches are possible from a particular symbolic
statestate

Analysis exploits this by using a theorem prover to attempt to Analysis exploits this by using a theorem prover to attempt to
determine whether path is feasible from a given symbolic determine whether path is feasible from a given symbolic
statestate

Complexity O(H |E||D| (T + J + Q)) whereComplexity O(H |E||D| (T + J + Q)) where
H is the lattice heightH is the lattice height
E is the number of edges in CFGE is the number of edges in CFG
D is the number of property statesD is the number of property states
T is the cost of one call to the flow function (includes T is the cost of one call to the flow function (includes
deciding branch feasibility), J is join, Q is deciding equality deciding branch feasibility), J is join, Q is deciding equality on on
execution states.execution states.

Property AnalysisProperty Analysis

Instantiation to constant propagation with Instantiation to constant propagation with
property simulation property simulation –– O(VO(V22 |E||D|)|E||D|)

V = number of variablesV = number of variables

Can obtain an interCan obtain an inter--procedural analysis using the procedural analysis using the
framework by Reps, Horwitz and Sagivframework by Reps, Horwitz and Sagiv

the algorithm is contextthe algorithm is context--sensitive for property states sensitive for property states
only (insensitive for execution states).only (insensitive for execution states).

But property simulation is no But property simulation is no
magic bulletmagic bullet

if (dump)if (dump)
flag = 1;flag = 1;

else else
flag = 0;flag = 0;

if (dump)if (dump)
f = fopen(...);f = fopen(...);

if (flag)if (flag)
fclose(f);fclose(f);

We lose informationWe lose information

if (dump)if (dump)
flag = 1;flag = 1;

else else
flag = 0;flag = 0;

if (dump)if (dump)
f = fopen(...);f = fopen(...);

if (flag)if (flag)
fclose(f);fclose(f);

Property state stays same
here, so analysis won’t save
correlation between flag
and dump

Property states will be
$uninit and Opened

Potential error
here!

The authorsThe authors’’ responseresponse

This is not a common exampleThis is not a common example
Property simulation matches Property simulation matches ““the behavior of a the behavior of a
careful programmercareful programmer””

Programmers use variables to maintain a correlation Programmers use variables to maintain a correlation
between a given property state and the between a given property state and the
corresponding execution states corresponding execution states
Property simulation models thisProperty simulation models this

ESPESP

Want to use property simulation to verify large Want to use property simulation to verify large
programs like programs like gccgcc (140,000 LOC)(140,000 LOC)
Main insight: analysis is not monolithicMain insight: analysis is not monolithic

and different parts can be run at different levels of and different parts can be run at different levels of
precision, flowprecision, flow--sensitivity, etc.sensitivity, etc.

Stateful ValuesStateful Values

e.g. file handlese.g. file handles
programmer supplies a specification for the safety programmer supplies a specification for the safety
property:property:

FSMFSM
Mapping from source code patterns to FSM transitions and Mapping from source code patterns to FSM transitions and
to stateful value creationto stateful value creation

e = fopen(...) Open Yes

C code pattern Transition Creation?

fprintf(e, _) Print No

fclose(e) Close No

Value flow analysisValue flow analysis

First step is value flow analysis to discover First step is value flow analysis to discover
which stateful values are affected at relevant which stateful values are affected at relevant
function callsfunction calls

flowflow--insensitive, contextinsensitive, context--sensitivesensitive

Note they disallow properties that correlate the Note they disallow properties that correlate the
states of multiple valuesstates of multiple values

so can analyze one stateful value at a timeso can analyze one stateful value at a time
cf. gcc, 15 files instead of 2^15 possibilities!cf. gcc, 15 files instead of 2^15 possibilities!

ESP analysis ESP analysis –– the steps:the steps:

CFG constructionCFG construction
Value flow alnalysisValue flow alnalysis
Abstract CFG constructionAbstract CFG construction

essentially combines 2 steps aboveessentially combines 2 steps above
Various computations to optimize analysisVarious computations to optimize analysis

alias set computation for stateful valuesalias set computation for stateful values
mod set (things that can be ignored by property mod set (things that can be ignored by property
simulation)simulation)

Property simulationProperty simulation

Experimental resultsExperimental results

Used to verify correctness of calls to Used to verify correctness of calls to fprintffprintf in gccin gcc
Initially, 15 files created based on user flagsInitially, 15 files created based on user flags

for each file handle, core code analyzed twice for each file handle, core code analyzed twice –– with this file with this file
open, and with this file closed and user flag set to false.open, and with this file closed and user flag set to false.

Analysis verifies the correctness of all 646 calls to Analysis verifies the correctness of all 646 calls to
fprintffprintf

Running time Running time –– average 72.9 s, max 170 s (for one file average 72.9 s, max 170 s (for one file
handle)handle)
Memory usage Memory usage –– average 49.7 MB, max 102 MBaverage 49.7 MB, max 102 MB

