ESP - Path-Sensitive
Program Verification in

Polynomial Time
M. Das, S. Lerner, M. Seigle
PIL.DI '02

Partial program verification

m Verify that a program obeys a temporal safety
property

m c.g. correct file opening/closing behavior

m Property representable as DFA (FSM)

Print,
$uninit Close

Open,
Open Close Print,
Close
Print C Open

Why it’s hard:

m [n a program, FSM may transition differently
along different execution paths

m Path-insensitive datatflow analysis will merge and
lose relevant information

m The program may satisty the property, but we
won't be able to determine this.

Example

void main(){
1T (dump)
T = fopen(dumpFil, "w");
it (p)
X = 0;
else
X = 1;
It (dump)
fclose(T);

Path-insensitive dataflow analysis

void main()4{

1T (dump)
T = fopen(dumpFil, "w'");

it (p) [$uninit, Opened |
X =

else
X = 1;

1T (dump)
fclose(T);

[$uninit |

[$uninit, Opened |

[$uninit, Ferror]

Path-sensitive analysis

void main(){

i F (dump) [$uninit |

T = fopen(dumpFil, "w'");

[$uninit, —d]

[Opened, d]

[$uninit, = d, - p, x =1]
[$uninit, = d, p, x = 0]

[Opened, d, — p, x =1]

1T (dump) [Opened, d, p, x =0]
fclose(T);
Only one of the two
paths possible from
each state

Moral of the story:

m Path-insensitive datatlow analysis 1s too
imptecise

m But path-sensitive analysis 1s overkill and too
expensive.

m The obvious solution: keep as much information
as needed, no more, no less

m the paper presents a heuristic for this

Main contributions of this paper

® An analysis framework that 1s only as path-
sensitive as needed to verify a property

B Including an inter-procedural version
m [nsights into developing a verification system

using property simulation that will scale to large
programs (such as gCC)

m This is ESP - Error detection via Scalable Program
analysis

Property analysis

® An analysis framework that parametrizes how path-
sensitive we choose to be.

® Includes path-insensitive and fully path-sensitive
analyses as extremes.

m Hssentially a normal dataflow analysis, with interesting
things happening at the merge points.
m path-insensitive - merge everything
B path-sensitive - o merges

m property simulation - merge only info "irrelevant” for the
property being verified

A few details

m State carried in analysis is symbolic state

m T'wo components:

m abstract state € D, where D = set of states in the
property FSM

B execution state (as normal)

m S = domain of all symbolic states

m Analysis computes dataflow facts from the

domain 2°

A few details (2)

m Key is filtering function used at merge points:
25— 20
o (SS) = ss
B oives path-sensitive analysis

O(‘df<ss> — {Us € ss 218(8), I—ls € ssS €S<S>]}

m oives path-insensitive dataflow analysis

A few details (3)

m Property simulation merges all those symbolic
states that have the same property state

m o= {[{d}, Usegqares 9] | d €D &ss[d] # 0}
® Notation:

mss[d|={s|s&ss&d € as(s) |

m “set of all s in ss containing d”

m Example

m Will see imitations of this heuristic soon

Path-sensitive analysis

void main(){
1T (dump)

T = fopen(dumpFil, "w");

X =

else
X =

1T (dump)
fclose(T);

[$uninit |

[$uninit, —d]

[Opened, d]

[$uninit, = d, — p, x =1]

[$uninit, = d, p, x = 0]

[Opened, d, — p, x =1]
[Opened, d, p, x =0]

Property simulation

void main(){

i F (dump) [$uninit |

T = fopen(dumpFil, "w'");

[$uninit, —d]

[Opened, d]

No changes to
property state

i f (dump) [$uninit, — d] [Opened, d]

fclose ;\
() ? Only one of the two

paths possible from
each state

A few details (4)

® Not all branches are possible from a particular symbolic
state

= Analysis exploits this by using a theorem prover to attempt to
determine whether path is feasible from a given symbolic
state

s Complexity O(H [E||D] (T +] + Q) where
m H is the lattice height
m [1s the number of edges in CFG
= D is the number of property states

m T is the cost of one call to the flow function (includes
deciding branch feasibility), | is join, Q 1s deciding equality on

execution states.

Property Analysis

m [nstantiation to constant propagation with
property simulation — O(V= |E[|D])
® V = number of variables
m Can obtain an inter-procedural analysis using the
framework by Reps, Horwitz and Sagiv

m the algorithm 1s context-sensitive for property states
only (insensitive for execution states).

But property simulation is no
magic bullet

1T (dump)
flag = 1;
else
flag = O;
1T (dump)
T = fopen(.-..);
i1t (flag)
fclose(T);

We lose information

1T (dump)
.l: I ag — 1 ; Property state Stays same

here, so analysis won’t save
e I se correlation between flag

and dump
flag = O;
1T (dump)
f = fopen(...); [l
it (flag)
fC I ose (f) - Potential error

here!

The authors’ response

m This is not a common example

m Property simulation matches “the behavior of a
caretul programmer”

® Programmers use variables to maintain a correlation
between a given property state and the
corresponding execution states

® Property simulation models this

ESP

m Want to use property simulation to verity large

programs like gee (140,000 LOC)

®m Main insight: analysis 1s not monolithic

® and different parts can be run at different levels of
precision, tflow-sensitivity, etc.

Stateful Values

m c.g. file handles

B programmer supplies a specification for the safety

property:
m FSM

= Mapping from source code patterns to FSM transitions and
to stateful value creation

Value flow analysis

m [irst step is value flow analysis to discover
which stateful values are affected at relevant
function calls

B flow-insensitive, context-sensitive
m Note they disallow properties that correlate the
states of multiple values

® so can analyze one stateful value at a time

m cf. gcc, 15 files instead of 2715 possibilities!

ESP analysis — the steps:

m CHFG construction
m Value tlow alnalysis
m Abstract CEFG construction
m ecssentially combines 2 steps above

® Various computations to optimize analysis
®m alias set computation for statetul values

® mod set (things that can be ignored by property
simulation)

m Property simulation

Experimental results

Used to verity correctness of calls to Fprintf in gcc

Initially, 15 files created based on user flags

m for each file handle, core code analyzed twice — with this file
open, and with this file closed and user flag set to talse.

Analysis verifies the correctness of all 646 calls to
fprintf

Running time — average 72.9 s, max 170 s (for one file

handle)
Memory usage — average 49.7 MB, max 102 MB

