
CS711 Advanced Programming Languages

Shape Analysis With Tracked Locations

Radu Rugina

22 Sep 2005

Shape Analysis with Local Reasoning

• All previous abstractions:

– Describe the entire heap at once

– Makes inter-procedural analysis difficult

• This approach:

– Idea 1: build shape analysis on top of an underlying
pointer analysis

– Idea 2: Reason locally about one heap cell at a time.

New Memory Abstraction

• Decompose memory abstraction

Heap Abstraction

New Memory Abstraction

• Decompose memory abstraction

– run pointer analysis, then shape analysis

Shape Abstraction

Region Abstraction

Shape
analysis

Pointer
analysis

New Memory Abstraction

• Decompose memory abstraction

– Build shape abstraction using independent pieces

Region Abstraction

Shape
analysis

Pointer
analysis

New Memory Abstraction

• Decompose memory abstraction

– Build shape abstraction using independent pieces

Region Abstraction

Shape
analysis

Pointer
analysis

Configurations

Region Abstraction

Shape
analysis

Pointer
analysis

Configuration:

- Talk about one location:
the “tracked location”

- No knowledge about
other locations

Configurations

Region Abstraction

Shape
analysis

Pointer
analysis

Configuration:

- Reference counts from
each region

- Hit expressions
- Miss expressions

Concrete Memory:

Region Abstraction Shape Abstraction

Example Abstraction

x

y

X

LY

Concrete Memory:

Region Abstraction Shape Abstraction

Example Abstraction

x

(X1, {x}, ø)

(L1Y1, {x->n,y}, ø)

(L1, ø, {x->n})

X

L

y

Y

Concrete Memory:

Region Abstraction Shape Abstraction

Cyclic Structures

x

(X1, {x}, ø)

(L1Y1, {x->n,y}, ø)

(L1, ø, {x->n})

X

L

y

Y

(L2, ø, {x->n})

Analysis Example: List Reversal

List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

Given acyclic list x:
is returned list y acyclic?

List Reversal

• Region abstraction:

• Acyclic list x, two configurations:

– (X1,{x},ø) describes list head

– (L1, ø, ø) describes tail

Y L

T

X

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

X1,{x},ø

X1,{x},ø

X1,{x},ø

X1Y1,{x,y},ø

Y1,{y},ø

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

L1

ø,{x->n}

L1T1

{t,x->n},ø

T1

{t},ø

L1

ø,{x->n}

T1

{t},ø

T1X1

{t,x},ø

L1

ø,{x->n}

L1

ø,ø

L1,ø,ø

Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->next;

x->next = y;

y = x;

x = t;

}

return y;

}

X1 L1

X1 L1T1 L1

X1 T1 L1

X1Y1 T1

Y1 T1X1

T1X1

L1

L1

X1 L1

Y1 L1

Y1

Y1

Y1L1

Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->next;

x->next = y;

y = x;

x = t;

}

return y;

}

X1 L1

X1 L1T1 L1

X1 T1 L1

X1Y1 T1

Y1 T1X1

T1X1

L1

L1

X1 L1

Y1 L1

Y1

Y1

Y1L1

Property Verified
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->next;

x->next = y;

y = x;

x = t;

}

return y;

}

Acyclic input

Acyclic output

X1 L1

X1 L1T1 L1

X1 T1 L1

X1Y1 T1

Y1 T1X1

T1X1

L1

L1

X1 L1

Y1 L1

Y1

Y1

Y1L1

Cyclic Input

reverse

x

y

Cyclic Input

reverse

x

y

Cyclic Input

X1 L1

Y1 L1

L2

L2

Analysis:

reverse

x

y

Analysis Algorithm

• Phase 1: Pointer Analysis

– Flow-insensitive, unification-based

– Context-sensitive

• Phase 2: Shape Analysis

– Intra and inter-procedural

– Flow-sensitive, context-sensitive

– Granularity of configurations

Inter-Procedural Shape Analysis

• Context-sensitive analysis

• Summary input = a configuration

• Summary output = set of configurations that

correspond to the input

• Tag configurations with the input they originated from
– Output = retrieve configurations with the desired tag

foo()

input output

Inter-Procedural Shape Analysis

• Efficient: reuse previous analyses of functions

– Match individual configurations!

• Not entire heap abstractions

– Works even if there is only partial redundancy

Reuse!

Abstraction at
a call site

Abstraction at
a different site

Detecting Memory Errors

• For languages with explicit de-allocation
– free(e) de-allocates cell referenced by e

• Extend configurations with one bit:

has the tracked cell been de-allocated?
– malloc() sets bit to false

– free() sets bit to true

– Keep tracking cells even after de-allocation

Reference counts
Hit expressions
Miss expressions

Freed flag

Detecting Memory Errors

• Dereference *e may be unsafe if:

– Expression e may reference the tracked locations

– And tracked location is marked as de-allocated

– Catches double frees: free(e) checked as *e

• A potential memory leak occurs if:

– The tracked location has all reference counts zero

– And not marked as de-allocated

– Allocated in the current function

Implementation

• Implementation for C programs in SUIF

• Singly linked lists

– Handles standard list manipulations:

insert, append, swap, reverse, quicksort,

insertionsort.

• Doubly linked lists

– Does not identify structural invariants

Implementation

• Tested tool on three larger programs:

44 sec22 sec45 secTotal Time

6 sec13 sec16 secPoints-to

38 sec9 sec29 secShape

24410Bugs

581326Reported

24.4 KLOC25.6 KLOC18.6 KLOCLines

binutilsSSLSSH

Comparison

< 30, 222YESYESJeannet, Loginov, Reps,
Sagiv /2004

1.3K, 12881YESYESYahav, Ramalingam /2004

< 30, 295 noYESLev-Ami, Reps, Sagiv,
Wilhelm/2000

< 30, 2noYESDor, Rodeh, Sagiv/2000

< 30, 1028YESYESRinetzky, Sagiv /2001

noSagiv, Reps,Wilhelm /1996

noSagiv, Reps,Wilhelm /1999

25 K, 45YESYESHackett/Rugina /2005

3.3 K, n/aYESYESGhiya, Hendren /1996

noChase, Wegman,Zadeck /
1990

noJones, Muchnick / 1979

size(LOC), time(sec)Inter-Procedural?Implemented?Analysis/Year

Summary

• Shape analysis:

– Needed for precise analysis of heap structures

– Necessarily flow-sensitive

– Not scalable until recently

