
CS711 Advanced Programming Languages

Shape Analysis Overview

Radu Rugina

15 Sep 2005

Shape Analysis

• Shape Analysis

– A metaphor for invariants or properties that describe
“data structure shapes”

– Focuses on dynamic heap structures

• “shape analysis” = “heap analysis”
– Difficult case: recursive structures

– E.g, “tree structure”, “dag”, “acyclic list”
– Even “sorted list”, “binary search tree”, “tree balancing”

Why Isn’t Pointer Analysis Enough?

• Example:

• Typical pointer analysis result:

• Imprecise: doesn’t say that list is free of cycles

x …

x L

Example Shape Invariant

• Lack of shared-ness/cyclicity: reference count = 1
– Distinguish trees from graphs, detect (lack of) cycles

– Invariant expresses non-aliasing

heap heap

Challenge 1

• Heap abstraction:
– How do we “name” heap cells?

– Recursive structures: unbounded number of heap locations

• How to we model them using a finite abstraction?

– Need more than “one abstract location per-allocation site”

Challenge 2

• Destructive updates: invariants temporarily broken

List *swap(List *x) {

List *y, *t;

if (x != NULL &&

x->next != NULL) {

y = x;

x = y->n;

t = x->n;

y->n = t;

x->n = y;

}

return x;

}

x

x

Challenge 2

• Destructive updates: invariants temporarily broken

x

x

Not
a list!

xList *swap(List *x) {

List *y, *t;

if (x != NULL &&

x->next != NULL) {

y = x;

x = y->n;

t = x->n;

y->n = t;

x->n = y;

}

return x;

}

Challenge 2

• Destructive updates: invariants temporarily broken
– Shape analysis is necessarily flow-sensitive

– Abstraction must be powerful enough to recover invariants

– Functional languages fundamentally easier

Challenge 3

• Interprocedural analysis:
– More complicated than for pointer analysis

– Few shape analyses have an inter-procedural component

– Even fewer have been implemented

– And those are expensive

– Lack of scalability is a big concern

Timeline

1979: Jones, Muchnick k-limited heap abstraction

1990: Chase,Wegman,Zadeck Shape graphs, reference counts

1990: Hendren, Nicolau Reachability/access path matrices

1996: Ghyia, Hendren

1996: Sagiv, Reps, Wilhelm Materialization, soundness proof

1999: Sagiv, Reps, Wilhelm 3-valued logic, TVLA

2005: Hackett, Rugina Local reasoning, tracked locations

k-limiting [JM’79]

• k-limited heap abstraction:
– k = a constant (e.g, 3)

– Describe all heap shapes with depth at most k

– Approximate the rest of the heap with “summaries”
– Label summaries with:

• “c” if there may be a cycle

• “s” if there may be sharing

• Drawbacks:
– Exponential number of shapes (large even for small k)

– Does not distinguish between “deep” heap cells.

• Shape graph abstraction:
– Distinguish between:

• the heap cells directly pointed to by variables

• “summary nodes” for the “deeper” heap cells (bounded by the
number of allocation sites)

– Strong updates on heap cells

– Heap reference counts for summaries

• Lattice {0, 1, ∞}

• Ref counts never decreased!

Storage Shape Graphs [CWZ’90]

x

Example [CWZ’90]

0 1t

x

0 1t

x

0

1 1t

x

0

0 1t

x

t = cons()

t.cdr = x

x = t

while() do {

}

Limitations [CWZ’90]

• Ref counts are never decreased
– Swap example doesn’t work

– Neither does insertion/deletion into the middle of a list or tree

• Once a heap cell is summarized, it cannot be
“unsummarized”
– Cannot perform strong updates in such cases

– Imprecise for programs that traverse recursive structures and
destructively updates them

Quote [CWZ’90]

• “Stransky also proposes a similar analysis in his
thesis [Str88], but we are unable to compare our
work with his because our French is inadequate.”

Shape Graphs [SRW’96]

• Similar to [CWZ’90]:
– Model each heap cell by the set of variables that point to it

– Abstraction size bounded by 2|Var|

– Exactly one summary node: the “Ø node”
– Variables always point to non-summary nodes

• Can always perform strong updates

– Label the summary with a “sharing” flag

Materialization [SRW’96]

• Key innovation: make non-summary nodes from
summary nodes

– Enables strong updates during structure traversals

x F x F

y

“materialization”

y = x.n

Materialization [SRW’96]

• Key innovation: make non-summary nodes from
summary nodes

– Enables strong updates during structure traversals

x T x T

y

“materialization”

y = x.n

Summarization [SRW’96]

• Summarization = dual operation

– Similar to [CWZ’90]

x Fx F

y

“summarization”

y = nil

Compatibility [SRW’96]

• Some nodes cannot occur in the same concrete heap
– when the intersection of their pointed-by sets is non-empty

– Incompatible edges = edges that involve incompatible nodes

• Can use a set of shape graph at each program point to
avoid this issue
– Simpler; presented in then Nielson/Nielson/Fleming book

ty

x

List Reversal

x F

x F

y F
x

x

Fy

x

Fy

t = y

y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t

Second Iteration

x F

x F

y F
x

x

Fy

x

F

t = y

y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t

y

y
t

t

t

t

y

Fixed Point

x F

x F

y F
x

x

Fy

x

F

t = y

y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t

y

y
t

t

t

t

y

t

• Relatively easy for all except load/store
– Assume each assignment preceded by a nullification

– For x = null: remove x from the set, merge into summary if
necessary

– For x = y: add x to all of the nodes that contain y

• Load: may trigger materialization

• Store: perform strong updates

• Additional complexity because of node compatibility

• Overall, fairly sophisticated analysis

Transfer Functions

• Formal proof of soundness:
– Give a concrete (operational) semantics (cs)

– Define abstraction function (α)

– Show that transfer functions (as) and semantics (cs) agree for
each assignment statement v

Soundness

csv(h)

asv(a)

h

a

h’

a’

α(csv(h)) < asv(α(h))α α

Complexity

• One shape graph per program point:

exponential in the number of variables: 2|Var|

• Set of shape graphs per program point:

doubly exponential: 2 2|Var|

