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Shape Analysis

• Shape Analysis

– A metaphor for invariants or properties that describe 
“data structure shapes”

– Focuses on dynamic heap structures

• “shape analysis” = “heap analysis”
– Difficult case: recursive structures

– E.g, “tree structure”, “dag”, “acyclic list”
– Even “sorted list”, “binary search tree”, “tree balancing”



Why Isn’t Pointer Analysis Enough?

• Example: 

• Typical pointer analysis result:

• Imprecise: doesn’t say that list is free of cycles
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Example Shape Invariant

• Lack of shared-ness/cyclicity: reference count = 1
– Distinguish trees from graphs, detect (lack of) cycles 

– Invariant expresses non-aliasing

heap heap



Challenge 1

• Heap abstraction:
– How do we “name” heap cells?

– Recursive structures: unbounded number of heap locations

• How to we model them using a finite abstraction?

– Need more than “one abstract location per-allocation site”



Challenge 2

• Destructive updates: invariants temporarily broken

List *swap(List *x) {

List *y, *t;

if (x != NULL && 

x->next != NULL) {

y = x;

x = y->n;

t = x->n;

y->n = t;

x->n = y;

}

return x;

}
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Challenge 2

• Destructive updates: invariants temporarily broken

x
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Not 
a list!

xList *swap(List *x) {

List *y, *t;

if (x != NULL && 

x->next != NULL) {

y = x;

x = y->n;

t = x->n;

y->n = t;

x->n = y;

}

return x;

}



Challenge 2

• Destructive updates: invariants temporarily broken
– Shape analysis is necessarily flow-sensitive

– Abstraction must be powerful enough to recover invariants

– Functional languages fundamentally easier



Challenge 3

• Interprocedural analysis:
– More complicated than for pointer analysis

– Few shape analyses have an inter-procedural component

– Even fewer have been implemented

– And those are expensive

– Lack of scalability is a big concern



Timeline

1979: Jones, Muchnick k-limited heap abstraction

1990: Chase,Wegman,Zadeck Shape graphs, reference counts

1990: Hendren, Nicolau Reachability/access path matrices

1996: Ghyia, Hendren

1996: Sagiv, Reps, Wilhelm Materialization, soundness proof

1999: Sagiv, Reps, Wilhelm 3-valued logic, TVLA

2005: Hackett, Rugina Local reasoning, tracked locations



k-limiting [JM’79]

• k-limited heap abstraction:
– k = a constant (e.g, 3)

– Describe all heap shapes with depth at most k

– Approximate the rest of the heap with “summaries”
– Label summaries with:

• “c”  if there may be a cycle 

• “s” if there may be sharing

• Drawbacks:
– Exponential number of shapes (large even for small k)

– Does not distinguish between “deep” heap cells.



• Shape graph abstraction:
– Distinguish between:

• the heap cells directly pointed to by variables 

• “summary nodes” for the “deeper” heap cells (bounded by the 
number of allocation sites)

– Strong updates on heap cells

– Heap reference counts for summaries

• Lattice {0, 1, ∞}

• Ref counts never decreased!

Storage Shape Graphs [CWZ’90]
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Example [CWZ’90]

0 1t

x

0 1t

x

0

1 1t

x

0

0 1t

x

t = cons()

t.cdr = x

x = t

while() do {

}



Limitations [CWZ’90]

• Ref counts are never decreased
– Swap example doesn’t work

– Neither does insertion/deletion into the middle of a list or tree

• Once a heap cell is summarized, it cannot be 
“unsummarized”
– Cannot perform strong updates in such cases

– Imprecise for programs that traverse recursive structures and 
destructively updates them



Quote [CWZ’90]

• “Stransky also proposes a similar analysis in his 
thesis [Str88], but we are unable to compare our 
work with his because our French is inadequate.”



Shape Graphs [SRW’96]

• Similar to [CWZ’90]:
– Model each heap cell by the set of variables that point to it

– Abstraction size bounded by 2|Var|

– Exactly one summary node: the “Ø node”
– Variables always point to non-summary nodes

• Can always perform strong updates

– Label the summary with a “sharing” flag



Materialization [SRW’96]

• Key innovation: make non-summary nodes from 
summary nodes

– Enables strong updates during structure traversals 

x F x F

y

“materialization”

y = x.n



Materialization [SRW’96]

• Key innovation: make non-summary nodes from 
summary nodes

– Enables strong updates during structure traversals 
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y

“materialization”

y = x.n



Summarization [SRW’96]

• Summarization = dual operation

– Similar to [CWZ’90]

x Fx F

y

“summarization”

y = nil



Compatibility [SRW’96]

• Some nodes cannot occur in the same concrete heap
– when the intersection of their pointed-by sets is non-empty

– Incompatible edges = edges that involve incompatible nodes

• Can use a set of shape graph at each program point to 
avoid this issue
– Simpler; presented in then Nielson/Nielson/Fleming book
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List Reversal

x F

x F

y F
x

x

Fy
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t = y

y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t



Second Iteration
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t = y

y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t
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Fixed Point
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y = x

x = x.cdr

while (x != nil) do {

}

y.cdr = t
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• Relatively easy for all except load/store
– Assume each assignment preceded by a nullification

– For x = null: remove x from the set, merge into summary if 
necessary

– For x = y: add x to all of the nodes that contain y

• Load: may trigger materialization

• Store: perform strong updates

• Additional complexity because of node compatibility

• Overall, fairly sophisticated analysis

Transfer Functions



• Formal proof of soundness:
– Give a concrete (operational) semantics (cs) 

– Define abstraction function (α)

– Show that transfer functions (as) and semantics (cs) agree for 
each assignment statement v

Soundness

csv(h)

asv(a)

h

a

h’

a’

α(csv(h)) < asv(α(h))α α



Complexity

• One shape graph per program point: 

exponential in the number of variables: 2|Var|

• Set of shape graphs per program point: 

doubly exponential: 2 2|Var|


