CS711 Advanced Programming Languages Shape Analysis Overview

Radu Rugina

15 Sep 2005

Shape Analysis

- Shape Analysis
 - A metaphor for invariants or properties that describe "data structure shapes"
 - Focuses on dynamic heap structures
 - "shape analysis" = "heap analysis"
 - Difficult case: recursive structures
 - E.g, "tree structure", "dag", "acyclic list"
 - Even "sorted list", "binary search tree", "tree balancing"

Why Isn't Pointer Analysis Enough?

• Example:

• Typical pointer analysis result:

• Imprecise: doesn't say that list is free of cycles

Example Shape Invariant

- Lack of shared-ness/cyclicity: reference count = 1
 - Distinguish trees from graphs, detect (lack of) cycles
 - Invariant expresses non-aliasing

- Heap abstraction:
 - How do we "name" heap cells?
 - Recursive structures: unbounded number of heap locations
 - How to we model them using a finite abstraction?
 - Need more than "one abstract location per-allocation site"

• Destructive updates: invariants temporarily broken

• Destructive updates: invariants temporarily broken

- Destructive updates: invariants temporarily broken
 - Shape analysis is necessarily flow-sensitive
 - Abstraction must be powerful enough to recover invariants
 - Functional languages fundamentally easier

- Interprocedural analysis:
 - More complicated than for pointer analysis
 - Few shape analyses have an inter-procedural component
 - Even fewer have been implemented
 - And those are expensive
 - Lack of scalability is a big concern

Timeline

1979: Jones, Muchnick

1990: Chase, Wegman, Zadeck

1990: Hendren, Nicolau 1996: Ghyia, Hendren

1996: Sagiv, Reps, Wilhelm

1999: Sagiv, Reps, Wilhelm

2005: Hackett, Rugina

k-limited heap abstractionShape graphs, reference countsReachability/access path matrices

Materialization, soundness proof 3-valued logic, TVLA Local reasoning, tracked locations

k-limiting [JM'79]

- k-limited heap abstraction:
 - k = a constant (e.g, 3)
 - Describe all heap shapes with depth at most k
 - Approximate the rest of the heap with "summaries"
 - Label summaries with:
 - "c" if there may be a cycle
 - "s" if there may be sharing
- Drawbacks:
 - Exponential number of shapes (large even for small k)
 - Does not distinguish between "deep" heap cells.

Storage Shape Graphs [CWZ'90]

• Shape graph abstraction:

- Distinguish between:
 - the heap cells directly pointed to by variables
 - "summary nodes" for the "deeper" heap cells (bounded by the number of allocation sites)

- Strong updates on heap cells
- Heap reference counts for summaries
 - Lattice {0, 1, ∞}
 - Ref counts never decreased!

Example [CWZ'90]

while() do {

}

t = cons()

t.cdr = x

Limitations [CWZ'90]

- Ref counts are never decreased
 - Swap example doesn't work
 - Neither does insertion/deletion into the middle of a list or tree
- Once a heap cell is summarized, it cannot be "unsummarized"
 - Cannot perform strong updates in such cases
 - Imprecise for programs that traverse recursive structures and destructively updates them

Quote [CWZ'90]

 "Stransky also proposes a similar analysis in his thesis [Str88], but we are unable to compare our work with his because our French is inadequate."

Shape Graphs [SRW'96]

- Similar to [CWZ'90]:
 - Model each heap cell by the set of variables that point to it
 - Abstraction size bounded by 2^{|Var|}
 - Exactly one summary node: the " \emptyset node"
 - Variables always point to non-summary nodes
 - Can always perform strong updates
 - Label the summary with a "sharing" flag

Materialization [SRW'96]

- Key innovation: make non-summary nodes from summary nodes
 - Enables strong updates during structure traversals

Materialization [SRW'96]

- Key innovation: make non-summary nodes from summary nodes
 - Enables strong updates during structure traversals

Summarization [SRW'96]

- Summarization = dual operation
 - Similar to [CWZ'90]

Compatibility [SRW'96]

- Some nodes cannot occur in the same concrete heap
 - when the intersection of their pointed-by sets is non-empty
 - Incompatible edges = edges that involve incompatible nodes

- Can use a set of shape graph at each program point to avoid this issue
 - Simpler; presented in then Nielson/Nielson/Fleming book

List Reversal

Second Iteration

Fixed Point

F

F

F

↑ X

V

while (x != nil) do {

}

Transfer Functions

- Relatively easy for all except load/store
 - Assume each assignment preceded by a nullification
 - For x = null: remove x from the set, merge into summary if necessary
 - For x = y: add x to all of the nodes that contain y
- Load: may trigger materialization
- Store: perform strong updates
- Additional complexity because of node compatibility
- Overall, fairly sophisticated analysis

Soundness

- Formal proof of soundness:
 - Give a concrete (operational) semantics (cs)
 - Define abstraction function (α)
 - Show that transfer functions (as) and semantics (cs) agree for each assignment statement v

 $\alpha(cs_v(h)) \sqsubseteq as_v(\alpha(h))$

Complexity

- One shape graph per program point: exponential in the number of variables: 2^{|Var|}
- Set of shape graphs per program point: doubly exponential: 2^{2|Var|}