
Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Outline

1 Introduction

2 Andersen’s Analysis
The Algorithm
Constraints
Complexity

3 Steensgaard’s Analysis
The Algorithm
Making it Work
Complexity

4 Comparison

5 Hybrids

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Introduction and Rationale

Introduction

Last time we saw flow sensitive points-to analysis
Computes information at every point of a program

Precise
The information is a (large) graph — expensive!

Flow-Insensitive analysis

Compute just one graph for the entire program
Consider all statements regardless of control-flow
SSA or similar forms can recover some precision

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Introduction and Rationale

Introduction

Last time we saw flow sensitive points-to analysis
Computes information at every point of a program

Precise
The information is a (large) graph — expensive!

Flow-Insensitive analysis

Compute just one graph for the entire program
Consider all statements regardless of control-flow
SSA or similar forms can recover some precision

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

A little comparison

Code
int x;
int *y, *z;
x = &y;

x = &z;

Flow-Sensitive

yx

zx

Flow-Insensitive

y

z

x

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Outline

1 Introduction

2 Andersen’s Analysis
The Algorithm
Constraints
Complexity

3 Steensgaard’s Analysis
The Algorithm
Making it Work
Complexity

4 Comparison

5 Hybrids

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Andersen’s algorithm

Essentially the immediate adaptation of the usual dataflow
points-to algorithm to be flow-insensitive
Since do not know the order of statements, can say less:

x = &y — can only know that y ∈ pt(x)
x = y — can only know that pt(y) ⊆ pt(x)

When analyzing, collect such constraints
Can use a fixed-point computation to compute the actual
points-to sets

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for C

1 x = &y — y ∈ pt(x)

2 x = y — pt(y) ⊆ pt(x)

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for C II

x = *y

y w

z

a

b

c

x

∀a ∈ pt(y).pt(a) ⊆ pt(x)

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for C III

*x = y

x w

b

y

z

a

∀w ∈ pt(x).pt(y) ⊆ pt(w)

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for C — Summary

1 x = &y — y ∈ pt(x)

2 x = y — pt(y) ⊆ pt(x)

3 x = *y — ∀a ∈ pt(y).pt(a) ⊆ pt(x)

4 *x = y — ∀w ∈ pt(x).pt(y) ⊆ pt(w)

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for Java

1 Stack variables can not be pointed to, only heap objects can
be

2 Can take advantage of type safety
3 The following is one memory abstraction:

Name objects by allocation site
Variables point to objects
Fields of objects point to objects

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Constraints for Java II

1 x = y — pt(y) ⊆ pt(x)

2 y.f = x — ∀o ∈ pt(y) (pt(x) ⊆ pt(o.f))

3 x = y.f — ∀o ∈ pt(y) (o.f ⊆ pt(x))

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Cost of the algorithm

Asymptotically

Implicitly have a constraint graph, O(n) nodes, O(n2) edges
The fixed point computation essentially computes transitive
closure — which is an O(n3) computation

In practice

Usually, nowhere near that bad...
... but can be bad enough to be unusable

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Cost of the algorithm

Asymptotically

Implicitly have a constraint graph, O(n) nodes, O(n2) edges
The fixed point computation essentially computes transitive
closure — which is an O(n3) computation

In practice

Usually, nowhere near that bad...
... but can be bad enough to be unusable

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Actual Performance (from [ShHo97])

Name Size (LoC) Time (sec)
triangle 1986 2.9

gzip 4584 1.7
li 6054 738.5
bc 6745 5.5
less 12152 1.9

make 15564 260.8
tar 18585 23.2

espresso 22050 1373.6
screen 24300 514.5

75MHz SuperSPARC, 256MB RAM

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Constraints
Complexity

Reducing the cost

Cycles in a graph must have the same points-to sets, so can
be collapsed to a single node [FäFoSuAi98]

In some cases runs at much as 50x faster
li is done in 30.25 seconds, espresso in 27 seconds, on
UltraSparc in 167-400Mhz

If two variables have the same points-to sets, they can be
collapsed [RoCh00]

Around 2x improvement in run time, 3x lower memory usage

BDDs (Reduced Ordered Binary Decision Diagrams) have
been used to represent the graph more sparsely
[BeLhQiHeUm03]

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Outline

1 Introduction

2 Andersen’s Analysis
The Algorithm
Constraints
Complexity

3 Steensgaard’s Analysis
The Algorithm
Making it Work
Complexity

4 Comparison

5 Hybrids

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Overview

Can view the problem as trying to assign synthetic types to
each reference — so it points to objects of specified type
A type is defined recursively as pointing to an another type
Hence, proceeds as a type inference algorithm, doing
unification
x = y — τ(x) = τ(y), so take pt(x) = pt(y)

Each type points to one other type, so the points-to graph has
at most 1 out edge for each node (but each node can be
many variables)

Graph is of linear size — fast!
Limits precision

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Processing of assignments

x=*y

x a

y w v b

z

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Processing of assignments

x=*y

x a

y w v b

z

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Processing of assignments

x=*y

x

y w b

az

v

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Processing of assignments

x=*y

x

y w

z

v b

a

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Making it work

There are a couple of problems that arise in practice
Building a call graph

Make the type a pair, including a function pointer portion
Compute the set of functions that may point to using
unification as well

Integer assignments to pointers/lack of type safety
int* a = 0, *x = a, *y = b;
Will collapse them into a single node
Should only do unification if RHS is known to be a pointer

Don’t unify if we don’t see the RHS pointing to anything, just
record an edge
Perform a unification if RHS gets to point to something

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

The Algorithm
Making it Work
Complexity

Complexity

It’s fast!

Asymptotically, O(Nα(N, N))

Has been shown to analyze programs with millions of lines of
code in under a minute

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Outline

1 Introduction

2 Andersen’s Analysis
The Algorithm
Constraints
Complexity

3 Steensgaard’s Analysis
The Algorithm
Making it Work
Complexity

4 Comparison

5 Hybrids

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Some numbers — time (from [ShHo97])

Name Size (LoC) Andersen(sec) Steensgaard(sec)
triangle 1986 2.9 0.8

gzip 4584 1.7 1.1
li 6054 738.5 4.7
bc 6745 5.5 1.6
less 12152 1.9 1.5

make 15564 260.8 6.1
tar 18585 23.2 3.6

espresso 22050 1373.6 10.2
screen 24300 514.5 10.1

75MHz SuperSPARC, 256MB RAM

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Some numbers — Average alias set size (from [ShHo97])

Name Size (LoC) Andersen Steensgaard
triangle 1986 4.01 21.93

gzip 4584 2.96 25.17
li 6054 171.14 457.89
bc 6745 18.57 83.55
less 12152 7.11 63.75

make 15564 74.70 414.03
tar 18585 17.41 53.7

espresso 22050 109.53 143.4
screen 24300 106.89 652.8

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Relation between algorithms

Andersen’s algorithm can be viewed as type-inference, too
But with subtyping
x = y: τ(y) <: τ(x), so pt(y) ⊆ pt(x).

Steensgaard’s algorithm can be thought as restricting the
out-degree of the graph procuded by Andersen’s algorithm to
1, by merging nodes when that is exceeded

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Outline

1 Introduction

2 Andersen’s Analysis
The Algorithm
Constraints
Complexity

3 Steensgaard’s Analysis
The Algorithm
Making it Work
Complexity

4 Comparison

5 Hybrids

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

k-limiting

[ShHo97] provides a k-limiting algorithm, which with k = 1 behave
as Steensgaard, with k = N as Andersen

Assign variables k colors
Have a separate points-to slot for each color
Do a few runs with different assignments, and intersect the
results (k2 logk N factor slowdown)
Average alias set size was shrunk by about 1.78,
About 2x faster than Andersen when that runs slowly, but
often slower than it — very high constant factors

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

One level flow

[Das2000] introduced an another heuristic.

Algorithm

Observation: C programs mostly use pointers to pass in
parameters, which are basically assignments
Solution: Accurately model the simple cases by using
containment constraints to refer to points-to sets of symbols
in the assignment, but unify stuff further out
Can get some context sensitivity on top of it, by labeling
edges, and doing CFL reachability (makes it O(n3))

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Accuracy

Produces nearly identical sets as Andersen for most test
programs (except one that used pointers to pointers)

Performance

Asymptotically: linear memory use, quadratic time (in the
constraint-solving phase)
About 2x slower than Steensgaard’s algorithm in practice
Analyzes 1.4 million lines of code (Word97) in about 2
minutes on a 450Mhz Xeon

Maks Orlovich On Flow-Insensitive Points-To Analyses

Introduction
Andersen’s Analysis

Steensgaard’s Analysis
Comparison

Hybrids

Discussion...

Maks Orlovich On Flow-Insensitive Points-To Analyses

	Introduction
	Andersen's Analysis
	The Algorithm
	Constraints
	Complexity

	Steensgaard's Analysis
	The Algorithm
	Making it Work
	Complexity

	Comparison
	Hybrids

