
CS711 Advanced Programming Languages

Pointer Analysis
Overview and Flow-Sensitive Analysis

Radu Rugina

8 Sep 2005

Pointer Analysis

• Informally: determine where pointers (or references) in
the program may point to.

• Significant amount of research in past 15 years
– … still going

• It is a fundamental problem in program analysis
– Required by virtually all other analyses, optimizations, program

understanding tools, bug-finding tools, etc.

– Worst-case assumptions are too conservative

• Especially for type-unsafe languages (e.g., C)

Points-To vs. Alias Analysis

• Points-to analysis: Compute the set of memory locations
that each pointer may point to.
– Hence, a may analysis

– E.g., pt(x)={z,t}, pt(t)={u}, pt(y)={z}

– Essentially, a points-to graph

• (Pointer) alias analysis computes alias pairs
– E.g. (*x,z), (*x,t), (*t,u), (**x,u), (*y,z)

– Points-to graphs = a compact representation of alias pairs

– Used in older analyses, e.g., [LR92]

x

y

t

z

u

Classifying Points-To Analyses

• Flow-sensitivity
– Flow analyses

• compute a points-to graph at each program point

– Flow-insensitive analyses

• Assignments can execute in any order, any number of times

• Obviously models program execution

• A points-to graph for the entire program

• Two main kinds:
– Steensgaard, a.k.a. unification-based

– Andersen, a.k.a. inclusion-based

• Context-sensitivity
– Distinguish the behavior of a function based on its calling context

Classifying Points-To Analyses

DataflowFlow-Insensitive
Andersen

Flow-Insensitive
Steensgaard

Context
Insensitive

Context
Sensitive

[And94]
[BLQ+03][Ste96]

[EGH94]
[WL95]

[Ruf95]
[SH98]
[Das00]

[SGSB05]

[RH98]
[FRD00]

[WL04][DLFR01]

C analyses (yellow)
Java analyses (green)

Points-To Analysis

• “compute set of locations where each pointer may
point to”

• Ambiguities:

– What are locations?

– What about heap-allocated pointers?

– What about aggregate structures: records, arrays, etc?

– What about different instances of the same variable?

• We’re missing a notion of memory abstraction

Memory Model

• An abstraction of the memory

– Map concrete locations to “abstract locations/nodes”
• One abstract node may represent one or more concrete

memory locations

• Approximate unbounded concrete program state using a
finite abstraction

– Analysis clients need to know about this abstraction

– Difficult to compare (results for) different abstractions

Heap Abstraction

• Heap abstraction
– Typically: one abstract node for each allocation site

– Think: “one global variable per malloc”

12: x = malloc(…)

• Alternatives:
– Less precise: one node for the entire heap

– More precise: different nodes for locations allocated in different
calling contexts

• Aka “context-sensitive heap abstraction”
• Think malloc wrappers

• Model is imprecise for recursive structures
– Shape analysis is significantly more precise here

x m12

Records and Structures

• Option A: Model each field of each struct variable

– A.k.a. “field-sensitive”. Think “x.f”

• Option B: Merge all fields of each struct variable

– A.k.a. “field-independent”, “field-insensitive”. Think “x.*”

• Option C: Model each field of all struct variables

– A.k.a. “field-based”. Think “*.f”

x.a x.b
struct { int a, b; } x, y;

y.a y.b

x.* y.*struct { int a, b; } x, y;

*.a *.bstruct { int a, b; } x, y;

Unions

• Unions are type-unsafe
– Sound approach: merge all fields

• As in “field-independent” (B)

– Unsound approach: assume fields don’t interfere

• As in “field-sensitive” (A)

x.*union { int a; char b; } x;

x.aunion { int a; char b; } x; x.b

Arrays

• Merge all array elements together

• Or use a separate abstraction for the first element

int a[10];

a[0]int a[10]; a[1..10]

a[*]

Nested Arrays and Structures

• Recurse through nested structure
– Merge array elements

– Separate all structure fields

• even if structure is nested in an array

x[*].a[*] x[*].bstruct { int a[3], b; } x[3];

x[0] x[1] x[2]

The Flow Analysis

• Program assignments:

address-of copy load store

x = &y x = y x = *y *x = y

• Dataflow information = points-to graphs

– Use pt(x) = points-to set of x

• Merge operator = set union

• Transfer functions

– x = &y : pt’(x) = {y}

– x = y : pt’(x) = pt(y)

– x = *y : pt’(x) = U pt(z), for all z ∈ pt(y)

– *x = y : pt’(z) U= pt(y), for all z ∈ pt(x)

Strong vs. Weak Updates

• “strong updates” = update value

• “weak updates” = accumulate value

• Strong updates = more precise

• Weak updates if can’t tell which concrete location is written

– *x = y

– x[i] = y

• Strong updates = key difference between flow-sensitive
and flow-insensitive analyses

Inter-Procedural Analysis [EGH’94]

• Analyze callee for each function call
– “map” the points-to information in the caller

– Analyze callee with mapped information

– “unmap” result and return to caller

• Mapping process:
– Use “invisible variables” to model variables that are not in the

current scope, but accessible through pointers

– Store mapping information, use it during unmap

Call site graph: b a

Mapped graph: p p_1 p_2

Mapping info: (b,p_1) (a,p_2)

foo() { int a, *b = &a;

bar(&b); }

bar(int** p) { … }

Invocation Graph

• Use an “invocation graph” for context-sensitivity

– Unroll call-graph, turn it into a tree

main

g

f

g

f

main() { g(); g(); }

g() { f(); }

f() { … }

Invocation Graph

• Use an “invocation graph” for context-sensitivity

– For recursion:

• Use two nodes: “approximate” and “recursive”
• Perform a fixed-point computation along the back edge

• Use summaries for each node

main

g

f-A

f-R
main() { f(); }

f() { if (…) g(); }

g() { f(); }

Function Pointers

• Indirect calls: a “chicken-and-egg” problem
– Need points-to information to resolve such calls

– Need to resolve the calls to compute the points-to info

– Solution: compute both at the same time

– Once a call is resolved: analyze each callee, merge the results

main

fp

f-A

f-R

fp

g

main

f

fp

g

fp

main

fp

Evaluating an Analysis

• What is the right metric?
– An ongoing debate

– Option 1: size of points-to sets

• At loads and stores, at indirect calls

• Difficult to compare analyses that use different abstractions

– Option 2: evaluate effect on analysis clients

• E.g, how many virtual calls are disambiguated? Or how many
false data dependencies are being removed?

• How much faster do programs run because of a better points-
to analysis?

• How is the false positive ratio improved in a bug-finding tool?

Experiments [EGH’94]

• Programs ranging from 0.1 K to 2.2 K LOC

• Small points-to set sizes at indirect accesses (avg. 1.13)

• Many indirect with one single target (28%)
– But only 19% where the target is a program variable

• Invocation Graph statistics:
– Average ratio IG size / call-sites = 1.45 (up to 2.5)

– Ratio IG size / procedures larger (up to 21)

– In theory, IG size is exponential

Memoization [WL’95]

• [Wilson,Lam,PLDI’95] “Efficient Context-Sensitive Pointer
Analysis for C Programs”
– Always use procedure summaries (not just for recursion)

• Called “partial transfer functions” (PTFs)

– Do not build an Invocation Graph

– Build “invisible variables” lazily

– Memory abstraction using triples (b, f, s), with base b, offset
f,and stride s

– Ratio PTFs / procedures : between 1.00 and 1.39

– Report a program with 37 procedures that generates an
invocation graph with more than 700,000 nodes

