
Interprocedural
control-flow analysis

Nate Nystrom
CS 711

6 Sep 05

Call graphs

• Statically compute a precise call graph
• Maps call sites to functions called

• Challenge:
• Methods
• Higher-order functions

• Can use precise call graph for:
• optimization

• reduce dispatch overhead
• convert calls to lambdas to direct jumps
• reduce code size

• program understanding

2

Various techniques

• Unique Name [Calder and Grunwald, POPL’94]

• Class Hierarchy Analysis [Dean, Grove, Chambers, ECOOP’95]
[Fernandez, PLDI’95]

• Optimistic Reachability Analysis
• Rapid Type Analysis [Bacon and Sweeney, OOPSLA’96]

• Propagation-based analysis
• 0-CFA [Shivers, PLDI’88]

• k-CFA [Shivers ‘91]

• Unification-based analysis [Steensgaard, POPL’96]

• Interprocedural Class Analysis [DeFouw, Grove, Chambers, POPL’98]

3

Unique Name
• Does not build call graph, but does

resolve virtual calls
• If only one method named m in

entire program
• Replace all virtual calls to a

method named m with a non-
virtual call

• Do at link time on object files
• Can resolve (1) only
• For C++ benchmarks, resolves 15%

of virtual calls
• Can’t handle same method name in

different classes

4

class A {
 int foo() { return 1; }
}
class B extends A {
 int foo() { return 2; }
 int bar(int i) { return i+1; }
}
void main() {
 B p = new B();
 int r1 = p.bar(1); // 1: B.bar
 int r2 = p.foo(); // 2: B.foo
 A q = p;
 int r3 = q.foo(); // 3: B.foo
}

Class Hierarchy Analysis

• Use static type of receiver and the
class hierarchy to narrow set of
possible targets

• Whole program analysis
• Flow insensitive
• O(N)
• Can resolve (1) and (2)
• For C++ benchmarks, resolves 51%

of virtual calls

5

class A {
 int foo() { return 1; }
}
class B extends A {
 int foo() { return 2; }
 int bar(int i) { return i+1; }
}
void main() {
 B p = new B();
 int r1 = p.bar(1); // 1: B.bar
 int r2 = p.foo(); // 2: B.foo
 A q = p;
 int r3 = q.foo(); // 3: B.foo
}

Rapid Type Analysis

• Do CHA to build call graph
• If no object of class C allocated in

the program,
• Remove edges to methods of C

• O(N)
• Slightly more expensive than CHA
• Can resolve (1), (2), and (3)
• For C++ benchmarks, resolves 71%

of virtual calls

6

class A {
 int foo() { return 1; }
}
class B extends A {
 int foo() { return 2; }
 int bar(int i) { return i+1; }
}
void main() {
 B p = new B();
 int r1 = p.bar(1); // 1: B.bar
 int r2 = p.foo(); // 2: B.foo
 A q = p;
 int r3 = q.foo(); // 3: B.foo
}

Disjoint polymorphism

• Multiple related object types used
independently
• e.g., Square and Circle objects

are never mixed together in, say,
a Collection of Shapes

• Pathological case:
• Derived1 and Derived2 are

disjoint
• No Base objects allocated
• All calls are through Base

pointers

7

class Base {
 void m() { assert(false); }
 void p() { assert(false); }
}

class Derived1 extends Base {
 void m() { ... }
}

class Derived2 extends Base {
 void p() { ... }
}

Unification-based analysis
• Partitions variables in program and

maps each partition to a set of classes
• Initialize with each variable in own

partition
• If classes can flow between variables,

unify the classes for those variables

• Resolves (4), but not (5)
• O(Nα(N,N))

8

class A {
 int foo() { return 1; }
}
class B extends A {
 int foo() { return 2; }
}
void main() {
 A p = new B();
 int r1 = p.foo(); // 4: B.foo
 A q = new A();
 q = new B();
 int r2 = q.foo(); // 5: B.foo
}

target = source;

T1 m(T2 target) { ... }
m(source);

Interprocedural class analysis

• Framework integrates
• propagation-based analysis (0-CFA)
• unification-based analysis
• optimistic reachability analysis (RTA)

• Computes set of classes for each program variable
• Builds call graph as side effect

9

Flow graph representation
• Node for each variable, method, new, call
• Algorithm computes set of classes for each node

• Edge between two nodes if classes can flow between them

10

targetsource
target = source;

T1 m(T2 target) { ... }
m(source);

Basic algorithm (0-CFA)

• Construct nodes and edges for top-level variables,
statements, and expressions (e.g., main)

• Propagate classes through flow graph starting with main
and top-level new expressions

• When call encountered, add edge to target and construct
flow graph for target method (if not already done)

• If method not reachable, it will be pruned (as in RTA)

11

Edge filters

• Edges may have a filter set
• encode constraints ensured by type declarations or by

dynamic dispatch
• Don’t propagate class if filter does not include that class
• Makes algorithm more precise than 0-CFA

12

thisB

o

filter: {C}

class B { m() { ... this ... } }
class C ext B { m() { ... this ... } }

B o = new C();
o.m()

thisC

B.m()

C.m()

filter: {B}

Call merging
• Analysis parameterized by MergeCalls
• When MergeCalls = false:

• When MergeCalls = true:

13

thisBo1

thisCo2

a1

a2
o2.m(a2)

o1.m(a1)

C.m(x2) { ... }

B.m(x1) { ... }
x1

x2

o1

o2

a1

a2
o2.m(a2)

o1.m(a1)

C.m(x2) { ... }

B.m(x1) { ... }
thisB

thisC

x1

x2

m0

m1

Node merging
• Can speedup analysis by merging nodes into supernodes
• Nodes merged with successors

• Always merging is equivalent to unification-based analysis

14

target = source;

T1 m(T2 target) { ... }
m(source);

targetsource

targetsource

Merging parameters

• Analysis parameterized by P and MergeWithGlobal

• When P = k, merge node with its successors if node visited
more than k times

• When P = 0, always merge
• When P = N, never merge

• When MergeWithGlobal = true, use only one global
supernode

15

Instantiations

16

Algorithm P MergeWithGlobal MergeCalls Complexity

0-CFA N N/A false O(N3)

linear-edge 0-CFA N N/A true O(N2)

bounded 0-CFA O(1) false false O(N2α(N,N))

bounded linear-edge 0-CFA O(1) false true O(Nα(N,N))

simply bounded 0-CFA O(1) true false O(N2)

simply bounded linear-edge 0-CFA O(1) true true O(N)

equivalence class analysis 0 false true O(Nα(N,N))

RTA 0 true true O(N)

Analysis time

17

• Analysis time increases slightly with P
• Mostly flat when P small, finite

• MergeWithGlobal = true (simply bounded)
• saves ~10% on Cecil
• negligible improvement for Java

• but all the benchmarks are Java compilers
• 250% for one case when P = N

• MergeCalls = true (linear edge)
• up to 3x for Cecil, or more
• only 5-20% savings for Java

• no multimethods, so less edge filtering?
• some programs can only be analyzed with linear edge

(or small P)

Precision

• Larger P more precise (less merging)
• Run-time speedup 0-10% for P = 0, 10-350% for P = N

• MergeCalls = true (linear edge)
• About as precise as quadratic edge
• Less so for Java, but no difference in speedup

• MergeWithGlobal = true (simply bounded)
• Slightly less precision
• but on some Cecil benchmarks, improved precision of

MergeWithGlobal = false caused 2.5x speedup
• precision lost on hot virtual calls?

18

Questions

• All of these analyses are whole-program
• Can they be modularized?

• Integrating alias analysis, or more precise points to analysis
• Extend class analysis to incorporate context as in k-CFA

19

