# CS711 Advanced Programming Languages Inter-Procedural Analysis

Radu Rugina

1 Sep 2005

#### Inter-Procedural Analysis

- Standard intra-procedural dataflow analysis:
  - Build flow graph, propagate dataflow facts
  - Assumes no procedure calls
  - Or uses worst-case assumptions about procedure calls
- Inter-procedural analysis
  - Analyze procedure interactions more precisely
  - Difficult to do it efficiently and precisely

## The problem



- Transfer function of call = analysis of callee's body
- Two quick 'solutions" to this problem

# Quick Solution 1: Inlining

- Inline callees into callers
  - End up with one big procedure
  - CFGs of individual procedures = duplicated many times
- Good: it is precise
  - distinguishes between different calls to the same function
- Bad: exponential blow-up, not efficient

main() { f(); f(); }
f() { g(); g(); }
g() { h(); h(); }
h() { ... }

• Bad: doesn't work with recursion

## Quick Solution 2: Extend CFG

- Build a "supergraph" = inter-procedural CFG
- Replace each call from P to Q
  - An edge from point before the call (call point) to Q's entry point
  - An edge from Q's exit point to the point after the call (return pt)
  - If necessary, add assignments of actuals to formals, and assignment of return value
- Good: efficient
  - Graph of each function included exactly once in the supergraph
  - Works for recursive functions (although local variables need additional treatment)
- Bad: imprecise, "context-insensitive"
  - The "unrealizable paths problem": dataflow facts can propagate along infeasible control paths

#### **Unrealizable Paths**



Inter-Procedural Analysis

#### **Unrealizable Paths**



Inter-Procedural Analysis

#### **DFA** Review

- CFG with nodes  $n \in N$
- Dataflow facts: d ∈ L (lattice)
- Transfer function:  $\llbracket n \rrbracket : L \rightarrow L$
- MFP (maximal fixed point) solution = greatest solution of: X(n) = d<sub>0</sub>, if n = entry X(n) = □ { [[m]] X(m) | m ∈ preds(n) }
- MOP (meet-over-paths) solution: MOP(n) = □ { ([[p<sub>k</sub>]] o ... o [[p<sub>1</sub>]] o [[p<sub>0</sub>]]) (d<sub>0</sub>) | p<sub>0</sub> p<sub>1</sub> ... p<sub>k</sub> is a path to n}
- Safe:  $MOP \subseteq MFP$
- Precise if transfer functions are distributive: MOP = MFP

## Inter-Procedural DFA

- Consider the supergraph
- Additionally, for each call *i* :
  - label call  $\rightarrow$  entry edge with ( $_i$
  - label exit  $\rightarrow$  return edge with  $)_i$
- Consider only valid paths through the supergraph: matched ::= matched (<sub>i</sub> matched )<sub>i</sub> | ε valid ::= valid (<sub>i</sub> matched | matched
- MOVP = meet-over-valid-paths $MOVP(n) = \sqcap \{ (\llbracket p_k \rrbracket \circ ... \circ \llbracket p_1 \rrbracket \circ \llbracket p_0 \rrbracket) (d_0) \mid p_0 p_1 ... p_k \text{ is a valid path to } n \}$

#### Valid Paths



### **IFDS** Problems

- Finite subset, distributive problems:
  - Lattice:  $L = 2^{D}$  for some finite set D
  - Partial order is  $\subseteq$ , meet is  $\cup$
  - Transfer functions are distributive
- A precise, efficient solution to IPA for such dataflow problems
  - 1: an encoding of transfer functions
  - 2: a formulation of the problem using CFL reachability
  - 3: an efficient CFL reachability algorithm for the matched parentheses grammar

#### **Transfer Function Encoding**

- Enumerate all input space and output space
- Represent functions as graphs with 2(D+1) nodes
- Use a special symbol "0" to describe empty sets
- Example:  $D = \{ a, b, c \}$ f (S) = (S - { a })  $\cup$  { b }



# Exploded Supergraph

#### • Exploded supergraph:

- Start with supergraph
- Replace each node by its graph representation
- Add edges between corresponding elements in D at consecutive program points

#### • CFL reachability:

 Finding MOVP solution is equivalent to computing CFL reachability over the exploded supergraph using the valid parentheses grammar.



CS711



Inter-Procedural Analysis

CS711

# The Tabulation Algorithm

- Worklist algorithm, start from entry of "main"
- Keep track of:
  - Path edges: matched paren paths from procedure entry
  - Summary edges: matched paren call-return paths
- At each instruction:
  - Propagate facts using transfer functions; extend path edges
- At each call:
  - Propagate to procedure entry, start with an empty path
  - If a summary for that entry exits, use it
- At each exit:
  - Store paths from corresponding call points as summary paths
  - When a new summary is added, propagate to the return node

# Complexity

- Polynomial-time complexity

   Recall that inlining is exponential
- Inter-procedural: O(ED<sup>3</sup>)
   E = number of edges
   D = size of the dataflow set
- Locally-separable (bit-vector): O(ED)

# Experiments

| Example       | Tabulation Algorithm<br>(realizable paths) |                           | Naive Algorithm<br>(any path) |                           |
|---------------|--------------------------------------------|---------------------------|-------------------------------|---------------------------|
|               | Time<br>(sec.)                             | Reported<br>uses of       | Time<br>(sec.)                | Reported<br>uses of       |
|               |                                            | possibly<br>uninitialized |                               | possibly<br>uninitialized |
|               |                                            | variables                 |                               | variables                 |
| struct-beauty | 4.83+0.75                                  | 543                       | $1.58 \pm 0.04$               | 583                       |
| -C-parser     | $0.70 \pm 0.19$                            | 11                        | $0.54 \pm 0.02$               | 127                       |
| ratfor        | $3.15 \pm 0.58$                            | 894                       | $1.46 \pm 0.04$               | 998                       |
| twig          | $5.45 \pm 1.20$                            | 767                       | $5.04 \pm 0.11$               | 775                       |