CS711 Advanced Programming Languages

Inter-Procedural Analysis

Radu Rugina

1 Sep 2005

Inter-Procedural Analysis

e Standard intra-procedural dataflow analysis:
— Build flow graph, propagate dataflow facts
— Assumes no procedure calls

— Or uses worst-case assumptions about procedure calls

* Inter-procedural analysis
— Analyze procedure interactions more precisely

— Difficult to do it efficiently and precisely

Inter-Procedural Analysis

The problem

e Transfer function of call = analysis of callee’s body

e Two quick ‘solutions” to this problem

Inter-Procedural Analysis

Quick Solution 1: Inlining

Inline callees into callers
— End up with one big procedure
— CFGs of individual procedures = duplicated many times

Good: it is precise
— distinguishes between different calls to the same function

Bad: exponential blow-up, not efficient

main() { £O; £O; }
£fO {gO; gO; }
gO) { hO; nO; }
h() { ...}

Bad: doesn’t work with recursion

CS711 Inter-Procedural Analysis

Quick Solution 2: Extend CFG

Build a “supergraph” = inter-procedural CFG

Replace each call from P to Q
— An edge from point before the call (call point) to Q’s entry point
— An edge from Q’s exit point to the point after the call (return pt)

— If necessary, add assignments of actuals to formals, and
assignment of return value

Good: efficient

— Graph of each function included exactly once in the supergraph

— Works for recursive functions (although local variables need
additional treatment)

Bad: imprecise, “context-insensitive”

— The “unrealizable paths problem”: dataflow facts can propagate
along infeasible control paths

Inter-Procedural Analysis

Unrealizable Paths

Inter-Procedural Analysis

Unrealizable Paths

Inter-Procedural Analysis

DFA Review

CFG with nodes n € N

Dataflow facts: d € L (lattice)

Transfer function: [[n]] : L — L

MFP (maximal fixed point) solution = greatest solution of:
X(n) = d,, if n = entry
X(n) = M { [m] X(m) | m € preds(n) }

MOP (meet-over-paths) solution:
MOP(n) = M { (IpJ o ... o [p;ll o [p,ll) (dy) |

PoP; Py is @ path to n}
Safe: MOP = MFP

Precise if transfer functions are distributive: MOP = MFP

Inter-Procedural Analysis

Inter-Procedural DFA

Consider the supergraph

Additionally, for each call I :
— label call — entry edge with (;

— label exit — return edge with).

Consider only valid paths through the supergraph:

matched ::= matched (; matched); | ¢
valid = valid (; matched | matched

MOVP = meet-over-valid-paths
MOVP(n) = m{ (pJ o ... o Ip,] o [p,I) (dy) |

PoP; P, is a valid path to n}

Inter-Procedural Analysis

Valid Paths

Inter-Procedural Analysis

IFDS Problems

* Finite subset, distributive problems:
— Lattice: L = 2P for some finite set D

— Partial order is S, meet is U
— Transfer functions are distributive

e A precise, efficient solution to IPA for such
dataflow problems
1: an encoding of transfer functions
2: a formulation of the problem using CFL reachability

3: an efficient CFL reachability algorithm for the
matched parentheses grammar

Inter-Procedural Analysis

Transfer Function Encoding

Enumerate all input space and output space
Represent functions as graphs with 2(D+1) nodes

Use a special symbol “0” to describe empty sets

Example: D =1{a, b, c}
f(S)=(S-{a})ui{b}

0

N

0] a

Inter-Procedural Analysis

Exploded Supergraph

e Exploded supergraph:
— Start with supergraph
— Replace each node by its graph representation

— Add edges between corresponding elements in D at
consecutive program points

e CFL reachability:

— Finding MOVP solution is equivalent to computing
CFL reachability over the exploded supergraph using
the valid parentheses grammar.

Inter-Procedural Analysis

]
FTIE

=
ENTER main ENTER P

(e
Ihen S0 m)
o452 5. 40}

i

EXIT main

Inter-Procedural Analysis

L

waE o
ENTER maln ENTER F

RE&

CALLF

RETURM
FROM P

[e |

EXIT maln

o

FRENTag)

Inter-Procedural Analysis

The Tabulation Algorithm

Worklist algorithm, start from entry of “main”

Keep track of:
— Path edges: matched paren paths from procedure entry
— Summary edges: matched paren call-return paths

At each instruction:
— Propagate facts using transfer functions; extend path edges

At each call:

— Propagate to procedure entry, start with an empty path
— If a summary for that entry exits, use it

At each exit:

— Store paths from corresponding call points as summary paths
— When a new summary is added, propagate to the return node

CS711 Inter-Procedural Analysis

Complexity

e Polynomial-time complexity

— Recall that inlining is exponential

* Inter-procedural: O(ED3)

— E = number of edges

— D = size of the dataflow set

* Locally-separable (bit-vector): O(ED)

Inter-Procedural Analysis

Experiments

Tabulation Algorithim Maive Algonthm
(realizable % vath
Reporied
S0, nsss of
piossibly piossibly
tninitialized nninitialized
viariahles

struct-beaaty as X
C-parser L7040 19 0, 54-+0.02
ratfor 3.1 5+0.538 |4+ 0.04
bwig 545+1.20 7637 504001

Inter-Procedural Analysis

