
CS711 Advanced Programming Languages

Inter-Procedural Analysis

Radu Rugina

1 Sep 2005

CS711 Inter-Procedural Analysis 2

Inter-Procedural Analysis

• Standard intra-procedural dataflow analysis:

– Build flow graph, propagate dataflow facts

– Assumes no procedure calls

– Or uses worst-case assumptions about procedure calls

• Inter-procedural analysis

– Analyze procedure interactions more precisely

– Difficult to do it efficiently and precisely

CS711 Inter-Procedural Analysis 3

The problem

• Transfer function of call = analysis of callee’s body

• Two quick ‘solutions” to this problem

call Q()

P() Q()

CS711 Inter-Procedural Analysis 4

Quick Solution 1: Inlining

• Inline callees into callers
– End up with one big procedure

– CFGs of individual procedures = duplicated many times

• Good: it is precise
– distinguishes between different calls to the same function

• Bad: exponential blow-up, not efficient

main() { f(); f(); }

f() { g(); g(); }

g() { h(); h(); }

h() { ... }

• Bad: doesn’t work with recursion

CS711 Inter-Procedural Analysis 5

Quick Solution 2: Extend CFG

• Build a “supergraph” = inter-procedural CFG

• Replace each call from P to Q
– An edge from point before the call (call point) to Q’s entry point

– An edge from Q’s exit point to the point after the call (return pt)

– If necessary, add assignments of actuals to formals, and
assignment of return value

• Good: efficient
– Graph of each function included exactly once in the supergraph

– Works for recursive functions (although local variables need
additional treatment)

• Bad: imprecise, “context-insensitive”
– The “unrealizable paths problem”: dataflow facts can propagate

along infeasible control paths

CS711 Inter-Procedural Analysis 6

Unrealizable Paths

Q()

y = x call Q()

R()

x = z

print(1)

call Q()

P()

read(x)

print(y)

CS711 Inter-Procedural Analysis 7

Unrealizable Paths

Q()

y = x call Q()

R()

x = z

print(1)

call Q()

P()

read(x)

print(y)

CS711 Inter-Procedural Analysis 8

DFA Review

• CFG with nodes n ∈ N

• Dataflow facts: d ∈ L (lattice)

• Transfer function: n : L → L

• MFP (maximal fixed point) solution = greatest solution of:

X(n) = d0, if n = entry

X(n) = { m X(m) | m ∈ preds(n) }
• MOP (meet-over-paths) solution:

MOP(n) = { (pk o … o p1 o p0) (d0) |
p0 p1 …pk is a path to n}

• Safe: MOP MFP

• Precise if transfer functions are distributive: MOP = MFP

CS711 Inter-Procedural Analysis 9

Inter-Procedural DFA

• Consider the supergraph

• Additionally, for each call i :
– label call → entry edge with (i

– label exit → return edge with)i

• Consider only valid paths through the supergraph:

matched ::= matched (i matched)i | ε
valid ::= valid (i matched | matched

• MOVP = meet-over-valid-paths

MOVP(n) = { (pk o … o p1 o p0) (d0) |

p0 p1 …pk is a valid path to n}

CS711 Inter-Procedural Analysis 10

Valid Paths

(1

)1

(2

)2

Q()

y = x call Q()

R()

x = z

print(1)

call Q()

P()

read(x)

print(y)

CS711 Inter-Procedural Analysis 11

IFDS Problems

• Finite subset, distributive problems:
– Lattice: L = 2D for some finite set D

– Partial order is ⊆, meet is ∪
– Transfer functions are distributive

• A precise, efficient solution to IPA for such
dataflow problems
1: an encoding of transfer functions

2: a formulation of the problem using CFL reachability

3: an efficient CFL reachability algorithm for the
matched parentheses grammar

CS711 Inter-Procedural Analysis 12

Transfer Function Encoding

• Enumerate all input space and output space

• Represent functions as graphs with 2(D+1) nodes

• Use a special symbol “0” to describe empty sets

• Example: D = { a, b, c }

f (S) = (S – { a }) ∪ { b }

a b c0

a b c0

CS711 Inter-Procedural Analysis 13

Exploded Supergraph

• Exploded supergraph:

– Start with supergraph

– Replace each node by its graph representation

– Add edges between corresponding elements in D at
consecutive program points

• CFL reachability:

– Finding MOVP solution is equivalent to computing
CFL reachability over the exploded supergraph using
the valid parentheses grammar.

CS711 Inter-Procedural Analysis 14

CS711 Inter-Procedural Analysis 15

CS711 Inter-Procedural Analysis 16

The Tabulation Algorithm

• Worklist algorithm, start from entry of “main”
• Keep track of:

– Path edges: matched paren paths from procedure entry

– Summary edges: matched paren call-return paths

• At each instruction:
– Propagate facts using transfer functions; extend path edges

• At each call:
– Propagate to procedure entry, start with an empty path

– If a summary for that entry exits, use it

• At each exit:
– Store paths from corresponding call points as summary paths

– When a new summary is added, propagate to the return node

CS711 Inter-Procedural Analysis 17

Complexity

• Polynomial-time complexity

– Recall that inlining is exponential

• Inter-procedural: O(ED3)

– E = number of edges

– D = size of the dataflow set

• Locally-separable (bit-vector): O(ED)

CS711 Inter-Procedural Analysis 18

Experiments

