Static Analysis of Executables
to Detect Malicious Patterns

[12th USENIX Security Symposium, 2003]

Mihai Christodorescu
Somesh Jha

CS @ University of Wisconsin, Madison

Presented by K. Vikram
Cornell University

Problem & Motivation...

Malicious code Is ... malicious

Categorize: Propagation Method & Goal
Viruses, worms, trojan horses, spyware, etc.

Detect Malicious Code
In executables

The Classical Stuff

Focus mostly on Viruses
Code to replicate itself + Malicious payload
Inserted into executables

Look for signatures
Not always enough
Obfuscation-Deobfuscation Game

Common Obfuscation Techniques

Encryption

Dead Code Iinsertion*
Code transposition*
Instruction Substitution*
Register reassignment*
Code Integration

Entry Point Obscuring

Common Deobfuscation Techniques

Reqgular Expressions
Heuristic Analyses
Emulation

Mostly Syntactic...

The Game

Vanilla Virus Signatures

Register Renaming Regex Signatures
Packing/Encryption Emulation/Heuristics
Code Reordering ?

Code Integration ?

Current Technology

Antivirus Software
Norton, McAfee, Command

Brittle

Cannot detect simple obfuscations
nop-insertion, code transposition

Chernobyl, zOmbie-6.b, f0sfOrO, Hare

Theoretical Limits

Virus Detection Is undecidable
Some Static Analyses are undecidable
But, Obfuscation is also hard

The SAFE* Methodology

Static Analyzer for Executables (SAFE)- - - - - -

Intermediate Form
""Gc-r the Patterns

Annotator |———

CFG for the
Executable

/" Annotated
cFG |/

/ Pattern Pattern
' Definitions /| Definition
: Loader
o
_ Binary /[: Executable
/ Executable | Loader
l
Malicious :
_ Code .. :
Automaton / :
! |

Cf‘es (with malicious cod

e
trace found in prog ram})

Procedure

Key ldeas:
Analyze program’s semantic structure
Use existing static analyses (extensible)
Use uninterpreted symbols

Abstract Representation of Malicious Code

Abstract Representation of Executable
Deobfuscation

Detect presence of malicious code

The Annotator

Inputs:
CFG of the executable
Library of Abstraction Patterns

Outputs:
Annotated CFG

Some groundwork

Instruction | : 1, X ... X T, — T
Program P : (I, ..., Iy)
Program counter/point

pc:{l, ..., Iy} —[1,...,N]

pc(l) =), V1I<|]<N
Basic Block, Control Flow Graph*
Static Analysis Predicates

Types for data and instructions

Example Predicates

Dominators(B)
Post Dominators(B)
Pred(B)

Suece(B)

First(B)

Last(DB)

Previous(I)

Next(I)
Kills(p,a)

Uses(p,a)
Alias(p,x.y)
LiveRangeStart(p, a)
LiveRangeEnd(p, a)
Delta(p, m,n)
Delta(m., p1,p2)
PointsTo(p,x, a)

the set of basic blocks that dominate the basic block B
the set of basic blocks that are dominated by the basic block B
the set of basic blocks that immediately precede B
the set of basic blocks that immediately follow 3
the first instruction of the basic block B
the last instruction of the basic block B
{ Uprepreasy Last(B') if I = First(By)
I iftBr = (..., I'. I,...)
{ Up'esuces,) First(B’) if I = Last(Br)
I it Br = (..., I,I' ...)
true 1f the instruction at program point p kills variable a
frue 1f the instruction at program point p uses variable a
true 1f variable x 1s an alias for y at program point p
the set of program points that start the a’s live range that includes p
the set of program points that end the a’s live range that includes p
the difference between integer variables m and n at program point p
the change m m’s value between program points p; and p2
true 1f variable « points to location of @ at program point p

Abstraction Patterns

Abstraction pattern I : (V,0,C)
V=AX 1Ty oo, X i T }
O=(I(Vy, ..., V) [1 1Ty X oo X T, > T)

C = boolean expression involving static analysis
predicates and logical operators

Represents a deobfuscation
Predicate controls pattern application
Jnify patterns with sequence of instructions

Example of a pattern

N(X:int(0:1:31)) =
({ X :nt(0:1:31)},
(p1: “pop X7,
p2 : “add X,03AFh”),
p1 € Live RangeStart(ps, X))

Defeating Garbage Insertion

<instruction A>
<instruction B>

instr 1

Pattern: instr N
Where

v

<instruction A>
add ebx, 1

sub ebx, 1

nop
<instruction B>

Delta(state pre 1, state post N) =0

Defeating Code-reordering

jmp TARGET

Pattern: where
Count (CFGPredecessors(TARGET)) =1

The Annotator

Given setof patterns 2 ={T',, ..., [}
Given a node n for program point p
Matches each pattern in 2 with

(..., Previous?(l,), Previous(l,), I,)
Associates all patterns that match with n
Also stores the bindings from unification

The Detector

Inputs:
Annotated CFG for a procedure
Malicious code representation

Output:

Sequence of instructions exhibiting the
malicious pattern

Malicious Code Automaton

Abstraction of the vanilla virus
6-tuple (V,2,5,0,5,,F)

V={vTy ..., VT }

2={l,,T,}

S = finite set of states

d:S x X — 2%is atransition function

S, C S is a non-empty set of initial states
F C S is a non-empty set of final states

Malicious Code

WVCTF :
mov eax, drl
mowv ebx, [sax+10h]
mowv edl, [eax]
LOWVCTF:
pop ecx
Jjecxz SFMM
mowv eal, ecx
mov eax, 0d4de0lh
pop edx
pop ecx
call edi
Jmp LOWVCTF
SFMM :
pop ebx
pop eax
atc

pusht

() dunpyueasTeIIl LMIea)
.|.11|.|||I T
-~ i

p

{) ey

-~

(@) TTED3oeITRUT

() dump jueasTaITL __qrm.@ () dumpaueast mﬂHHaf_H.la
=

() sovIaIyEng {o)dog

() dunpjueasTsaaL 9 () dumpjueasTeIIT _mua
{) Berafzzenyag (@) deg

() dunp juessezal ﬁtmmm_v () dumpjuessTeIIl m@
(¢) dog (UTO9RD “¥) SncH
() dunp quessTaza] m@ i) dumpyuessyeIr] ﬁl
lg)deq (3 '3) saoy

() dunpjuessTaIal ﬁ.@ {)dumpiueasTeII] _M.

{)ozegsIxogsrduny |()ozegsIxpEsIdump
lllll-llu

{) iy jue asT 33T ﬂ@l o

(2)dog

(%] "3 saol

() dumpjueasTeaal ﬁ@

([upT+¥] ‘g) saol

() dompjuesasTeza] ﬁ.@
i

(T3P ‘¥) 2aol

() dumpyuessTeaa] _m.e
!

Detector Operation

Inputs:

CFG P,
A=(V,5,S,8,S,,F)

Determines whether the same (malicious)
pattern occurs both in A and 2

More formally, tests the emptiness of
L(Py) N (Ug e 5, LB (A))

Detector Algorithm

Dataflow-like Algorithm

Maintain a pre and post list at each node
of the CFG Py

List is of [s,B,], s is a state in A
Join operation Is union

Detector Algorithm

Transfer Function:

foreach [s, B,| € LP"¢
foreach [[', B] € Annotation(n)
A Compatible(Bs, B)
add [5(s,T"), B, UB|to NewLPs?

Return:

dne N .3[s, B, € L' .se F

Defenses Against...

Code Re-ordering
Register Renaming

Insertion of irrelevant code
nops*, code that modifies dead registers
Needs live-range and pointer analyses

Experimental Results

False Positive Rate : O

False Negative Rate : O
not all obfuscations are detected

Performance

10000

M Detector avg.
B Annotater avg.

tiffdither winmine Spyxx
(6656) (12120) (307200)

959.913

QuickTimePlayer
(499712)

Future Directions

New languages
Scripts — VB, JavaScript, ASP
Multi-language malicious code

Attack Diversity
worms, trojans too

Irrelevant sequence detection
Theorem provers

Use TAL/external type annotations

Pitfalls/Criticisms?

Focus on viruses instead of worms
Still fairly Ad-hoc
Treatment of obfuscation is not formal enough

Intractable techniques
Use of theorem provers to find irrelevant code

Slow
No downloadable code
Not enough experimental evaluation

