
Static Analysis of Executables
to Detect Malicious Patterns

Mihai Christodorescu
Somesh Jha

CS @ University of Wisconsin, Madison

[12th USENIX Security Symposium, 2003]

Presented by K. Vikram
Cornell University



Problem & Motivation…

�Malicious code is … malicious
�Categorize: Propagation Method & Goal
�Viruses, worms, trojan horses, spyware, etc.

�Detect Malicious Code
�In executables



The Classical Stuff

�Focus mostly on Viruses
�Code to replicate itself + Malicious payload
�Inserted into executables

�Look for signatures
�Not always enough
�Obfuscation-Deobfuscation Game



Common Obfuscation Techniques

�Encryption
�Dead Code insertion*
�Code transposition*
� Instruction Substitution*
�Register reassignment*
�Code Integration
�Entry Point Obscuring



Common Deobfuscation Techniques

�Regular Expressions
�Heuristic Analyses
�Emulation

Mostly Syntactic…



The Game

�Signatures
�Regex Signatures
�Emulation/Heuristics
�?
�?

�Vanilla Virus
�Register Renaming
�Packing/Encryption
�Code Reordering
�Code Integration



Current Technology

�Antivirus Software
�Norton, McAfee, Command

�Brittle
�Cannot detect simple obfuscations
�nop-insertion, code transposition

�Chernobyl, z0mbie-6.b, f0sf0r0, Hare



Theoretical Limits

�Virus Detection is undecidable
�Some Static Analyses are undecidable
�But, Obfuscation is also hard



The SAFE* Methodology



Procedure

�Key Ideas:
�Analyze program’s semantic structure
�Use existing static analyses (extensible)
�Use uninterpreted symbols

�Abstract Representation of Malicious Code
�Abstract Representation of Executable
�Deobfuscation

�Detect presence of malicious code



The Annotator

� Inputs:
�CFG of the executable
�Library of Abstraction Patterns

�Outputs:
�Annotated CFG



Some groundwork

� Instruction I : τ1 × … × τk → τ
�Program P : 〈 I1, …, IN 〉
�Program counter/point
�pc : { I1, …, IN } → [1,…,N]
�pc(Ij) = j, ∀ 1 � j � N

�Basic Block, Control Flow Graph*
�Static Analysis Predicates
�Types for data and instructions



Example Predicates



Abstraction Patterns

�Abstraction pattern Γ : (V,O,C)
�V = { x1 : τ1, …, xk : τk }
�O = 〈 I(v1, …, vm) | I : τ1 × … × τm → τ 〉
�C = boolean expression involving static analysis 

predicates and logical operators

�Represents a deobfuscation
�Predicate controls pattern application
�Unify patterns with sequence of instructions



Example of a pattern



Defeating Garbage Insertion

<instruction A>
<instruction B>

<instruction A>
add ebx, 1
sub ebx, 1
nop
<instruction B>

Pattern:

instr 1
…
instr N
Where
Delta(state pre 1, state post N) = 0



Defeating Code-reordering

Pattern:
jmp TARGET
where
Count (CFGPredecessors(TARGET)) = 1



The Annotator

�Given set of patterns Σ = { Γ1, …, Γm }
�Given a node n for program point p
�Matches each pattern in Σ with
〈 …, Previous2(Ip), Previous(Ip), Ip 〉
�Associates all patterns that match with n
�Also stores the bindings from unification



The Detector

� Inputs:
�Annotated CFG for a procedure
�Malicious code representation

�Output:
�Sequence of instructions exhibiting the 

malicious pattern



Malicious Code Automaton

�Abstraction of the vanilla virus

�6-tuple (V,Σ,S,δ,S0,F)
�V = { v1:τ1, …, vk:τk }
�Σ = { Γ1, …, Γn }
�S = finite set of states
�δ : S × Σ → 2S is a transition function
�S0 ⊆ S is a non-empty set of initial states
�F ⊆ S is a non-empty set of final states



Malicious Code





Detector Operation

� Inputs:
�CFG PΣ

� A = (V,Σ,S,δ,S0,F)

�Determines whether the same (malicious) 
pattern occurs both in A and Σ
�More formally, tests the emptiness of

L(PΣ) ∩ (∪B ∈ BAll
L(B (A)) )



Detector Algorithm

�Dataflow-like Algorithm
�Maintain a pre and post list at each node 

of the CFG PΣ

�List is of [s,Bs], s is a state in A
�Join operation is union



Detector Algorithm

�Transfer Function:

�Return:



Defenses Against…

�Code Re-ordering
�Register Renaming
� Insertion of irrelevant code
�nops*, code that modifies dead registers
�Needs live-range and pointer analyses



Experimental Results

�False Positive Rate : 0
�False Negative Rate : 0
�not all obfuscations are detected



Performance



Future Directions

�New languages
�Scripts – VB, JavaScript, ASP
�Multi-language malicious code

�Attack Diversity
�worms, trojans too

� Irrelevant sequence detection
�Theorem provers

�Use TAL/external type annotations



Pitfalls/Criticisms?

� Focus on viruses instead of worms
� Still fairly Ad-hoc
� Treatment of obfuscation is not formal enough
� Intractable techniques
�Use of theorem provers to find irrelevant code

� Slow
� No downloadable code
� Not enough experimental evaluation


