Alias Analysis of

Executable Code

S. Debray, et al. (POPL ‘98)
Presented by Xin Qi



" S
What Is Special about Executables

m \We no longer have
Types — can’t do type filtering
Structures — jump all around
m We have
Pointer arithmetics — a lot!
Normally whole-program information
m |n addition

Compilers can do something unexpected
s Tom Reps’ example about uninitialized variables



" JJ
Introduction to the Analysis

m \Works on RISC instruction set
Memory accessed only through load & store

Three-operator integer instructions:
m Basically only add & mult (sub & mov modeled by add)
= Bitwise operators?

m Properties of the analysis
May alias analysis
Flow-sensitive, context-insensitive, interprocedural



" A
Nailve Approach

m Local Alias Analysis
Within a basic block

Two references are not aliasing each other if

m Either they use distinct offsets from the same base
register, and the register is not redefined in
between

= Or one points to stack and the other points to
global data area

Not working across basic block boundaries



"
Residue-based Approach

m \Want to know the set of possible addresses
referenced by a memory access
Basically the set of possible values in a register

m Impractical to consider all possible integer
values in registers

m For instruction add & mult, a very natural thing Is
to consider mod-k residues

Very easy to compute the new residue
k=2m"—Thesetof {0, 1, ..., k— 1} is called Z,



Residue-based Approach (cntd)

m Not always possible to compute a set of
actual values for a register

User inputs
Read from memory

m Can't just say thatitis Z,
Too Imprecise



" J
Example

load r1, addr

addrl, 3, r2
addrl, 5, r3



Address Descriptors

m The idea of “being relative to a common
value” Is captured in address descriptors

m Address descriptors <I, M>

| — defining instruction, abstract away the
unknown part

M — residue set, as before



" J
Address Descriptors (cntd)

m Defining instruction |
Can be an instruction, NONE, or ANY

<NONE, *> represents absolute addresses
<ANY, *> Is essentially L

m Residue set M

Set of mod-k addresses relative to the value
defined in the Iinstruction

<* Z>Is also L



" A
Address Descriptors (cntd?)

m val(I) = set of values that some execution
path of Pwould make I evaluate to

m Concretization function
conc(<I, M>) =
{w+ik+x|weval(I), x € M, 1> 0}
Why should ¢ > 0?



" A
Address Descriptors (cntds)

m A preorder relation <I , M > < <[, M >
I, =ANYor M, =_Z,
M, =
I =1,and M, C M,
m An equivalence relation
<*, 7,>=<ANY, *>= |
<* OD>=T
m \We hence have a lattice



" I
The Algorithm

m Transfer function

Load r, addr
s <NONE, {val mod k}> if addr is read-only with val
m </, {O}>
Add src,, src,, dest (<[, M > and <[, M,>)
m If one of I, and [, is NONE, say I,
A=<l,{(x,+x)modk |z, € M, x, € M,}>
A'if A= 1; <I, {O}> otherwise
m Otherwise, <1, {0}>



"
The Algorithm (cntd)

m For each program point, only keep a single
address descriptor for each register

Take glb if there are more
m Reasoning alias relationships

For different I's. can’t say much but assume
may alias

For same I, need to check it Is the same
value computed by I



" A
Experimental Results

m Benchmarks
SPEC-95, and 6 others

m k=04
m Precision measurement
Number of memory references that some information
IS obtained
= 30% ~ 60%
m Cost
Time and space: almost linear



Experimental Results (cntd)

m Reason for loss of precision & for low cost

Memory Is not modeled

= No information for something that is saved in
memory, and read out later

Multiple address descriptors are merged for
every program point

Context insensitivity



" S
Experimental Results (cntd?)

m Utllity of the analysis

Reducing the number of load instructions
= Naive algorithm improves by almost always < 1%

m This algorithm improves often close to 2%,
sometimes even higher
Not very impressive still
Because ...
s Compiler has done a good job
= Not many free registers to use



Conclusion

m [t IS an Interesting problem to analyze
executable code

m The algorithm is
Simple and elegant

Scalable
Somewhat useful




Discussion

m \Weakness?
m Possible improvements?



