
Alias Analysis of 
Executable Code

S. Debray, et al. (POPL ‘98)
Presented by Xin Qi



What is Special about Executables

We no longer have
Types – can’t do type filtering
Structures – jump all around

We have
Pointer arithmetics – a lot!
Normally whole-program information

In addition
Compilers can do something unexpected

Tom Reps’ example about uninitialized variables



Introduction to the Analysis

Works on RISC instruction set 
Memory accessed only through load & store
Three-operator integer instructions:

Basically only add & mult (sub & mov modeled by add)
Bitwise operators?

Properties of the analysis
May alias analysis
Flow-sensitive, context-insensitive, interprocedural



Naïve Approach

Local Alias Analysis
Within a basic block
Two references are not aliasing each other if

Either they use distinct offsets from the same base 
register, and the register is not redefined in 
between
Or one points to stack and the other points to 
global data area

Not working across basic block boundaries



Residue-based Approach

Want to know the set of possible addresses 
referenced by a memory access

Basically the set of possible values in a register
Impractical to consider all possible integer 
values in registers
For instruction add & mult, a very natural thing is 
to consider mod-k residues

Very easy to compute the new residue
k = 2m – The set of {0, 1, …, k – 1} is called Zk



Residue-based Approach (cntd)

Not always possible to compute a set of 
actual values for a register

User inputs
Read from memory

Can’t just say that it is Zk
Too imprecise



Example

load r1, addr
…
add r1, 3, r2
add r1, 5, r3
…



Address Descriptors

The idea of “being relative to a common 
value” is captured in address descriptors
Address descriptors <I, M>

I – defining instruction, abstract away the 
unknown part
M – residue set, as before



Address Descriptors (cntd)

Defining instruction I
Can be an instruction, NONE, or ANY
<NONE, *> represents absolute addresses
<ANY, *> is essentially ⊥

Residue set M
Set of mod-k addresses relative to the value 
defined in the instruction
<*, Zk> is also ⊥



Address Descriptors (cntd2)

valP(I) = set of values that some execution 
path of P would make I evaluate to
Concretization function
concP(<I, M>) = 

{w + ik + x | w ∈ valP(I), x ∈M, i ≥ 0}
Why should i ≥ 0?



Address Descriptors (cntd3)

A preorder relation <I1, M1> · <I2, M2>
I1 = ANY or M1 = Zk
M2 = ∅
I1 = I2 and M1 ⊆M2

An equivalence relation
<*, Zk> = <ANY, *> = ⊥
<*, ∅> = >

We hence have a lattice



The Algorithm

Transfer function
Load r, addr

<NONE, {val mod k}> if addr is read-only with val
<I, {0}>

Add srca, srcb, dest (<Ia, Ma> and <Ib, Mb>)
If one of Ia and Ib is NONE, say Ia

A’ = <Ib, {(xa + xb) mod k | xa ∈Ma, xb ∈Mb}>
A’ if A’ ≠ ⊥; <I, {0}> otherwise

Otherwise, <I, {0}>



The Algorithm (cntd)

For each program point, only keep a single 
address descriptor for each register

Take glb if there are more
Reasoning alias relationships

For different I’s. can’t say much but assume 
may alias
For same I, need to check it is the same 
value computed by I



Experimental Results

Benchmarks
SPEC-95, and 6 others

k = 64
Precision measurement

Number of memory references that some information 
is obtained

30% ~ 60%

Cost
Time and space: almost linear



Experimental Results (cntd)

Reason for loss of precision & for low cost
Memory is not modeled

No information for something that is saved in 
memory, and read out later

Multiple address descriptors are merged for 
every program point
Context insensitivity



Experimental Results (cntd2)

Utility of the analysis
Reducing the number of load instructions

Naïve algorithm improves by almost always · 1%
This algorithm improves often close to 2%, 
sometimes even higher

Not very impressive still

Because …
Compiler has done a good job
Not many free registers to use



Conclusion

It is an interesting problem to analyze 
executable code
The algorithm is

Simple and elegant
Scalable
Somewhat useful



Discussion

Weakness?
Possible improvements?


