
1

Extended Static CheckingExtended Static Checking

Michael Clarkson
CS 711

November 15, 2005

Clarkson: Extended Static Checking 2

AuthorsAuthors

Num.*Defn.Author

1Silvija Seres
1Manuel Fähndrich
1Robert DeLine
1JMark Lillibridge
1JCormac Flanagan
2SMike Barnett
2JRaymie Stata
2MDavid Detlefs
3SWolfram Schulte
6MJJames B. Saxe
6MJGreg Nelson

13MJSK. Rustan M. Leino

Spec#S
ESC/JavaJ
ESC/Modula-3M

* w.r.t. bibliography
at end of talk

Clarkson: Extended Static Checking 3

Verification of Safety PropertiesVerification of Safety Properties

• Purpose: finding bugs, not full verification

• Nine out of the last twelve seminar papers:
– ESP, buffer overflows, race detection,

ownership types, pointer assertions

• Approach so far:
– Define a clever abstraction
– Use (clever) algorithm to verify property in the

abstraction

Clarkson: Extended Static Checking 4

Extended Static Checking (ESC)Extended Static Checking (ESC)

• SRC project ca. 1995-2000

• Abstraction: predicates
– Encode program and property into (first-order)

predicate(s)
– Truth of predicates implies program satisfies property

• Algorithm: theorem prover
– Invoke prover on predicates

• Idea has been around since early 1970s

Clarkson: Extended Static Checking 5

Extended Static Checking (ESC)Extended Static Checking (ESC)

• Cons:
– Theorem prover is a blunt tool

• It may need help from the user (interaction, annotations)
• It may diverge

– Bug-finder, not full verifier
• “We aren’t proving that the program meets its full functional

specification, only that it doesn’t crash”
• “Without discipline, you can quickly slide into the black hole

of full correctness verification.”

• Pros:
– General purpose
– Conceptually elegant

Clarkson: Extended Static Checking 6

OverviewOverview

• ESC/Java
– Demo

• Spec#
• Data abstraction

2

Clarkson: Extended Static Checking 7

ESC/Java DesignESC/Java Design

• Priority: useful
– Check (statically) for runtime errors

• Null dereference, buffer overrun, type cast, division by 0, etc.
– Check for common synchronization errors

• Race conditions and deadlocks

– Check programmer-supplied specifications
• Preconditions, postconditions, invariants

– Be modular
– Be automatic

• Sacrifice soundness and completeness

Clarkson: Extended Static Checking 8

ESC/Java DemoESC/Java Demo

Actually ESC/Java2

Clarkson: Extended Static Checking 9

ESC/Java ArchitectureESC/Java Architecture

Front End

GC Translator

VC Generator

Theorem Prover

Postprocessor

AST

Annotated Java

GC for each routine

VCs for each routine

“Valid” or counterexample

Output to user

Java semantics

Clarkson: Extended Static Checking 10

ESC/Java Assertion LanguageESC/Java Assertion Language

• Two primitives:
– assume P
– assert P

• Variables:
– non_null

• Method specifications:
– requires P
– ensures P
– exsures (T t) P
– pure
– modifies V

Clarkson: Extended Static Checking 11

ESC Assertion LanguageESC Assertion Language

• Class declaration:
– invariant P

• Predicates:
– Any side-effect free Java expression
– \result
– \old(E)
– \forall T V; E
– \exists T V; E

• …

Clarkson: Extended Static Checking 12

Translating Java to GCsTranslating Java to GCs

• Target language is:

S ::= x = E | skip | raise | assert P | assume P
| var x in S end | S ; S | S ! S | S [] S
| loop {inv P} S end | call m (E*)

• Then loop and call are translated away

3

Clarkson: Extended Static Checking 13

Translating Java to GCsTranslating Java to GCs

• wlp and VCgen easy to define for remaining GCs
– wlp.S.R,X,Z
– Goal is to show that assert never fails

• Full translation takes 40 pages to document
– Example:

« t = (T) s; ¬ = assert (s = null ∨ typeof(s) <: T);
t = s;

– typeof and <: are relations defined by background
predicate

Clarkson: Extended Static Checking 14

Using Theorem ProverUsing Theorem Prover

• Effort to use must be low:
– Fully automatic
– Counterexample generation
– Reasonably fast
– Behaves like a type checker

• Simplify (ESC/Modula-3, ESC/Java, Spec#)
– Engineered to work well for the kinds of formulas that

VCgen produces
– Performs heuristic search for satisfying assignment to
¬VC

– Labels predicates with program location to produce
human-readable error messages

Clarkson: Extended Static Checking 15

Sources of UnsoundnessSources of Unsoundness

• Finite unrolling of loops (default is 1.5)
– Avoids need for programmers to supply invariants

• Object invariants not universally enforced
– Invariants should hold for all allocated objects at all

routine boundaries
– But checking would be

• Too expensive: too many objects to check
• Too strict: sometimes programmers temporarily violate

invariants
– So instead:

• At call sites, only check invariants for parameters
• Use heuristics to reduce set of invariants

Clarkson: Extended Static Checking 16

Sources of UnsoundnessSources of Unsoundness

• Modifies lists not enforced
– Aliasing and subclassing make it impossible to write

down an accurate modifies list anyway
– But prover still assumes that modifies list is correct

• Overriding methods can change strengthen
precondition
– Similar to allowing covariant arguments
– Included so that a class can mention its fields when

overriding a specification inherited from an interface
• Multiple inheritance: super types’ specifications

not all enforced
• Arithmetic overflow, string semantics

Clarkson: Extended Static Checking 17

Sources of UnsoundnessSources of Unsoundness

• Most Java errors and exceptions ignored
– NullPointer, IndexOutOfBounds, ClassCast,

ArrayStore, Arithmetic, NegativeArraySize are the
only one checked

• Constructors that terminate abnormally can leak
uninitialized objects

• …

Clarkson: Extended Static Checking 18

Sources of IncompletenessSources of Incompleteness

• Simplify
– Theory of arithmetic is undecidable: May

abort attempted proof and report a
counterexample to avoid potential infinite loop

– No semantics for multiplication
– No support for induction

• Java semantics not fully modeled
– Floating–points, strings, exceptions, JDK,

dynamic typing of arrays, integer overflow,
reflection

• …

4

Clarkson: Extended Static Checking 19

Spec#Spec#

• MSR project: ESC for C#
• Does not attempt to prove absence of

unchecked exceptions
• Major goal: recover soundness

– “[The verifier] attempts to completely verify a
program without missing errors; its ability to
do so is bound to depend on the simplicity of
the specifications”

Clarkson: Extended Static Checking 20

Spec# SoundnessSpec# Soundness

• Loops
– Use abstract interpretation to synthesize invariant

• Modifies clauses
– Checked statically
– Introduce mechanism to abstract over heap

• Overriding specifications
– No changes to preconditions allowed

• Multiple inheritance
– Disallow shared implementation of methods with

differing preconditions
• …

Clarkson: Extended Static Checking 21

Spec# DemoSpec# Demo

Clarkson: Extended Static Checking 22

Evaluation (ESC/Java)Evaluation (ESC/Java)

• Annotating a program increases LOC by 10%
• Annotation rate is 300-600 LOC/hour
• Time to check a routine correlates with size of

routine
– Reasonable (0-50 LOC): 0-10 sec
– Large (50-1000 LOC): up to 5 min deadline
– About 3 hours to check 41KLOC in 2300 routines

• These results are for their own front end
• There seems to be no reported, thorough

evaluation?

Clarkson: Extended Static Checking 23

EvaluationEvaluation

• “The start-up cost [for a preexisting code
base] is still too high”

• “[We] found about [6] errors…assessed as
not having been worth 3 weeks to
discover”

Clarkson: Extended Static Checking 24

Open Problems in ESCOpen Problems in ESC

• Reduce annotation burden (Houdini,
Daikon)

• Sound checking
• Sound and complete logic for higher-order

functions
• Temporary violation of invariants
• Reasoning about machine arithmetic
• Instructional use

5

Clarkson: Extended Static Checking 25

PseudoPseudo--Cornell Work on ESCCornell Work on ESC

• Yanling Wang, ESC for Cyclone:
– Safety policies supplied by code consumer

rather than producer
– Pluggable theorem provers

Clarkson: Extended Static Checking 26

Extensible ArchitectureExtensible Architecture

ESC

SAT-solver

Cyclone Prover

BDD-solver

Owl Simplify

Clarkson: Extended Static Checking 27

ConclusionConclusion

• Extended static checking
– Find bugs in programs
– User-supplied predicates as annotations
– Theorem prover as backend

• Still searching for sweet spot between
soundness, usefulness, completeness

• Wide-spread adoption requires reducing
annotation burden and improving safety
guarantees

Clarkson: Extended Static Checking 28

BibliographyBibliography

• Extended static checking for Java.
• The Spec# programming system: An overview.
• ESC/Java user’s manual.
• Data abstraction and information hiding.
• Verification of object-oriented programs with invariants.
• Applications of extended static checking.
• Extended static checking: A ten-year perspective.
• Houdini, an annotation assistant for ESC/Java.
• Static verification of dynamically detected program invariants:

Integrating Daikon and ESC/Java.
• Checking Java programs via guarded commands.
• ESC/Java quick reference.
• Simplify: A theorem prover for program checking.
• Exception safety for C#

