Extended Staitic Checking

Michael Clarkson
CS711
November 15, 2005

Verification of Safety Properties

* Purpose: finding bugs, not full verification

¢ Nine out of the last twelve seminar papers:

— ESP, buffer overflows, race detection,
ownership types, pointer assertions

¢ Approach so far:
— Define a clever abstraction
— Use (clever) algorithm to verify property in the

abstraction

Extended Static Checking (ESC)

¢ Cons:
— Theorem prover is a blunt tool
¢ It may need help from the user (interaction, annotations)
¢ It may diverge
— Bug-finder, not full verifier

* “We aren’t proving that the program meets its full functional
specification, only that it doesn’t crash”

¢ “Without discipline, you can quickly slide into the black hole
of full correctness verification.”

® Pros:
— General purpose
— Conceptually elegant

Clarkson: Extended Static Checkina 5

Author Defn. | Num.* ,
K. Rustan M. Leino | MJS 13 «——— n
Greg Nelson MJ 6 \
James B. Saxe MJ 6
Wolfram Schulte S 3
David Detlefs M 2
Raymie Stata] 2
Mike Barnett S 2
Cormac Flanagan |] 1 *w.r.t. bibliography
Mark Lillibridge ~ [J 1 at end of talk
Robert DeLine 1 M | ESC/Modula3
Manuel Fahndrich 1 7 |Escyjava
Silvija Seres 1 S | Spect

Clarkson: Extended Static Checkina 2

Extended Static Checking (ESC)

* SRC project ca. 1995-2000

¢ Abstraction: predicates

- Encode program and property into (first-order)
predicate(s)
— Truth of predicates implies program satisfies property

¢ Algorithm: theorem prover
- Invoke prover on predicates

¢ Idea has been around since early 1970s

Clarkson: Extended Static Checkina 4

vervi

e ESC/Java
— Demo
* Spect
¢ Data abstraction

Clarkson: Extended Static Checkina 6

ESC/Java Design

* Priority: useful
— Check (statically) for runtime errors
* Null dereference, buffer overrun, type cast, division by 0, etc.

— Check for common synchronization errors
® Race conditions and deadlocks

— Check programmer-supplied specifications
® Preconditions, postconditions, invariants

— Be modular

— Be automatic

e Sacrifice soundness and completeness

Clarkson: Extended Static Checkina 7

ESC/Java Architecture

Annotated Java

GC for each routine

VCs for each routine

Java semantics

“Valid” or counterexample

Output to user

Clarkson: Extended Static Checkina 9

ESC Assertion Language

e Class declaration:
— invariant P
¢ Predicates:
— Any side-effect free Java expression
— \result
— \old(E)
— \forall T V; E
—\exists T V; E

Clarkson: Extended Static Checkina 11

ESC/Java|Demo |

e e

Actually ESC/Java2
Clarkson: Extended Static Checkina 3

ESC/Java|Assertion Language

¢ Two primitives:
— assume P
— assert P
® Variables:
— non_null
* Method specifications:
— requires P
— ensures P
— exsures (Tt) P

- pure
— modifies V
Clarkson: Extended Static Checkina 10

Translating Java to GCs

¢ Target language is:

Su=x=E | skip | raise | assert P | assume P
| varxinSend | S;SI1S!SISJ[]S
| loop {inv P} Send | call m (E¥)

® Then loop and call are translated away

Clarkson: Extended Static Checkina 12

Translating Java to GCs

¢ wlp and VCgen easy to define for remaining GCs
- wlp.SRX,Z
— Goal is to show that assert never fails

¢ Full translation takes 40 pages to document
— Example:

[t=(T)s;] = assert(s=nullV typeof(s) <: T);
t=s;

— typeof and <: are relations defined by background

predicate
Clarkson: Extended Static Checkina 13

Sources of Unsoundness

e Finite unrolling of loops (default is 1.5)
— Avoids need for programmers to supply invariants
* Object invariants not universally enforced
— Invariants should hold for all allocated objects at all
routine boundaries
— But checking would be

* Too expensive: too many objects to check

¢ Too strict: sometimes programmers temporarily violate
invariants

— So instead:
e At call sites, only check invariants for parameters
® Use heuristics to reduce set of invariants

Clarkson: Extended Static Checkina 15

Sources of Unsoundness

* Most Java errors and exceptions ignored
— NullPointer, IndexOutOfBounds, ClassCast,
ArrayStore, Arithmetic, NegativeArraySize are the
only one checked
¢ Constructors that terminate abnormally can leak
uninitialized objects

Clarkson: Extended Static Checkina 17

Using Theorem Prover

e Effort to use must be low:
— Fully automatic
— Counterexample generation
— Reasonably fast
- Behaves like a type checker

¢ Simplify (ESC/Modula-3, ESC/Java, Spect#)
- Engineered to work well for the kinds of formulas that
VCgen produces
— Performs heuristic search for satisfying assignment to
-VC
— Labels predicates with program location to produce
human-readable error messages

Clarkson: Extended Static Checkina 14

Sources of Unsoundness

* Modifies lists not enforced

- Aliasing and subclassing make it impossible to write
down an accurate modifies list anyway

— But prover still assumes that modifies list is correct
¢ Overriding methods can change strengthen
precondition
— Similar to allowing covariant arguments
- Included so that a class can mention its fields when
overriding a specification inherited from an interface
® Multiple inheritance: super types’ specifications
not all enforced

¢ Arithmetic overflow, string semantics

Clarkson: Extended Static Checkina 16

Sources of Incompleteness

* Simplify
— Theory of arithmetic is undecidable: May

abort attempted proof and report a
counterexample to avoid potential infinite loop

— No semantics for multiplication
— No support for induction
¢ Java semantics not fully modeled

— Floating—points, strings, exceptions, JDK,
dynamic typing of arrays, integer overflow,
reflection

Clarkson: Extended Static Checkina 18

Spec#

* MSR project: ESC for C#

* Does not attempt to prove absence of
unchecked exceptions

* Major goal: recover soundness
— “[The verifier] attempts to completely verify a
program without missing errors; its ability to
do so is bound to depend on the simplicity of
the specifications”

Clarkson: Extended Static Checkina 19

Spec# Demo

»

Clarkson: Extended Static Checkina 21

Evaluation

* “The start-up cost [for a preexisting code
base] is still too high”

e “[We] found about [6] errors...assessed as
not having been worth 3 weeks to
discover”

Clarkson: Extended Static Checkina 23

Spec# Soundness |

* Loops
— Use abstract interpretation to synthesize invariant
* Modifies clauses
— Checked statically
— Introduce mechanism to abstract over heap
¢ Overriding specifications
— No changes to preconditions allowed
e Multiple inheritance

— Disallow shared implementation of methods with
differing preconditions

Clarkson: Extended Static Checkina 20

Evaluation (ESC/Java)

¢ Annotating a program increases LOC by 10%
e Annotation rate is 300-600 LOC/hour
e Time to check a routine correlates with size of
routine
— Reasonable (0-50 LOC): 0-10 sec
— Large (50-1000 LOC): up to 5 min deadline
— About 3 hours to check 41KLOC in 2300 routines
e These results are for their own front end

¢ There seems to be no reported, thorough
evaluation?

Clarkson: Extended Static Checkina 22

Open Problems in ESC

¢ Reduce annotation burden (Houdini,
Daikon)

¢ Sound checking

¢ Sound and complete logic for higher-order
functions

* Temporary violation of invariants
* Reasoning about machine arithmetic
¢ Instructional use

Clarkson: Extended Static Checkina 24

Pseudo-Cornell Work on ESC Extensible Architecture

* Yanling Wang, ESC for Cyclone:

— Safety policies supplied by code consumer
rather than producer

— Pluggable theorem provers

ESC
Clarkson: Extended Static Checkina 25 Clarkson: Extended Static Checkina 26

Bibliography

° Extended static Checking ¢ Extended static checking for Java.

. . * The Spec# programming system: An overview.
— Find bugs In programs e ESC/Java user’s manual.

- User-supplied predicates as annotations « Data abstraction and information hiding.

— Theorem prover as backend ¢ Verification of object-oriented programs with invariants.

¢ Applications of extended static checking.

¢ Extended static checking: A ten-year perspective.

e Still SearChing for sweet SpOt between ¢ Houdini, an annotation assistant for ESC/Java.
soundness, usefulness, completeness « Static verification of dynamically detected program invariants:
Integrating Daikon and ESC/Java.

¢ Checking Java programs via guarded commands.

* Wide-spread adoption requires reducing * ESC/Java quick reference.
annotation burden and improving safety : Z‘ml’htf_yi A t;‘etmfmgover for program checking.
. Xxception safe or
guarantees P y

Clarkson: Extended Static Checkina 27 Clarkson: Extended Static Checkina 28

