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Verification of Safety PropertiesVerification of Safety Properties

• Purpose:  finding bugs, not full verification

• Nine out of the last twelve seminar papers:
– ESP, buffer overflows, race detection, 

ownership types, pointer assertions

• Approach so far:
– Define a clever abstraction
– Use (clever) algorithm to verify property in the 

abstraction
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Extended Static Checking (ESC)Extended Static Checking (ESC)

• SRC project ca. 1995-2000

• Abstraction:  predicates
– Encode program and property into (first-order) 

predicate(s)
– Truth of predicates implies program satisfies property

• Algorithm:  theorem prover
– Invoke prover on predicates

• Idea has been around since early 1970s
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Extended Static Checking (ESC)Extended Static Checking (ESC)

• Cons: 
– Theorem prover is a blunt tool

• It may need help from the user (interaction, annotations)
• It may diverge

– Bug-finder, not full verifier
• “We aren’t proving that the program meets its full functional 

specification, only that it doesn’t crash”
• “Without discipline, you can quickly slide into the black hole 

of full correctness verification.”

• Pros:
– General purpose
– Conceptually elegant
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OverviewOverview

• ESC/Java
– Demo

• Spec#
• Data abstraction
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ESC/Java DesignESC/Java Design

• Priority:  useful
– Check (statically) for runtime errors

• Null dereference, buffer overrun, type cast, division by 0, etc.
– Check for common synchronization errors

• Race conditions and deadlocks

– Check programmer-supplied specifications
• Preconditions, postconditions, invariants

– Be modular
– Be automatic

• Sacrifice soundness and completeness
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ESC/Java DemoESC/Java Demo

Actually ESC/Java2
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ESC/Java ArchitectureESC/Java Architecture

Front End

GC Translator

VC Generator

Theorem Prover

Postprocessor

AST

Annotated Java

GC for each routine

VCs for each routine

“Valid” or counterexample

Output to user

Java semantics
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ESC/Java Assertion LanguageESC/Java Assertion Language

• Two primitives:
– assume P
– assert P

• Variables:
– non_null

• Method specifications:
– requires P
– ensures P
– exsures (T t) P
– pure
– modifies V
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ESC Assertion LanguageESC Assertion Language

• Class declaration:
– invariant P

• Predicates:
– Any side-effect free Java expression
– \result
– \old(E)
– \forall T V; E
– \exists T V; E

• …
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Translating Java to GCsTranslating Java to GCs

• Target language is:

S ::= x = E | skip | raise | assert P | assume P
| var x in S end | S ; S | S ! S | S [] S 
| loop {inv P} S end | call m (E*)

• Then loop and call are translated away
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Translating Java to GCsTranslating Java to GCs

• wlp and VCgen easy to define for remaining GCs
– wlp.S.R,X,Z
– Goal is to show that assert never fails

• Full translation takes 40 pages to document
– Example:

« t = (T) s; ¬ =   assert (s = null ∨ typeof(s) <: T);   
t = s;

– typeof and <: are relations defined by background 
predicate
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Using Theorem ProverUsing Theorem Prover

• Effort to use must be low:
– Fully automatic
– Counterexample generation
– Reasonably fast
– Behaves like a type checker

• Simplify (ESC/Modula-3, ESC/Java, Spec#)
– Engineered to work well for the kinds of formulas that 

VCgen produces
– Performs heuristic search for satisfying assignment to 
¬VC

– Labels predicates with program location to produce 
human-readable error messages
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Sources of UnsoundnessSources of Unsoundness

• Finite unrolling of loops (default is 1.5)
– Avoids need for programmers to supply invariants

• Object invariants not universally enforced
– Invariants should hold for all allocated objects at all

routine boundaries
– But checking would be

• Too expensive:  too many objects to check
• Too strict:  sometimes programmers temporarily violate 

invariants
– So instead:

• At call sites, only check invariants for parameters
• Use heuristics to reduce set of invariants
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Sources of UnsoundnessSources of Unsoundness

• Modifies lists not enforced
– Aliasing and subclassing make it impossible to write 

down an accurate modifies list anyway
– But prover still assumes that modifies list is correct

• Overriding methods can change strengthen 
precondition
– Similar to allowing covariant arguments
– Included so that a class can mention its fields when 

overriding a specification inherited from an interface
• Multiple inheritance:  super types’ specifications 

not all enforced
• Arithmetic overflow, string semantics
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Sources of UnsoundnessSources of Unsoundness

• Most Java errors and exceptions ignored
– NullPointer, IndexOutOfBounds, ClassCast, 

ArrayStore, Arithmetic, NegativeArraySize are the 
only one checked 

• Constructors that terminate abnormally can leak 
uninitialized objects

• …
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Sources of IncompletenessSources of Incompleteness

• Simplify
– Theory of arithmetic is undecidable:  May 

abort attempted proof and report a 
counterexample to avoid potential infinite loop

– No semantics for multiplication
– No support for induction

• Java semantics not fully modeled
– Floating–points, strings, exceptions, JDK, 

dynamic typing of arrays, integer overflow, 
reflection

• …
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Spec#Spec#

• MSR project: ESC for C#
• Does not attempt to prove absence of 

unchecked exceptions
• Major goal: recover soundness

– “[The verifier] attempts to completely verify a 
program without missing errors; its ability to 
do so is bound to depend on the simplicity of 
the specifications”

Clarkson: Extended Static Checking 20

Spec# SoundnessSpec# Soundness

• Loops 
– Use abstract interpretation to synthesize invariant

• Modifies clauses 
– Checked statically
– Introduce mechanism to abstract over heap

• Overriding specifications 
– No changes to preconditions allowed 

• Multiple inheritance 
– Disallow shared implementation of methods with 

differing preconditions
• …
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Spec# DemoSpec# Demo
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Evaluation (ESC/Java)Evaluation (ESC/Java)

• Annotating a program increases LOC by 10%
• Annotation rate is 300-600 LOC/hour
• Time to check a routine correlates with size of 

routine
– Reasonable (0-50 LOC): 0-10 sec
– Large (50-1000 LOC): up to 5 min deadline
– About 3 hours to check 41KLOC in 2300 routines

• These results are for their own front end
• There seems to be no reported, thorough 

evaluation?
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EvaluationEvaluation

• “The start-up cost [for a preexisting code 
base] is still too high”

• “[We] found about [6] errors…assessed as 
not having been worth 3 weeks to 
discover”
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Open Problems in ESCOpen Problems in ESC

• Reduce annotation burden (Houdini, 
Daikon)

• Sound checking
• Sound and complete logic for higher-order 

functions
• Temporary violation of invariants
• Reasoning about machine arithmetic
• Instructional use
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PseudoPseudo--Cornell Work on ESCCornell Work on ESC

• Yanling Wang, ESC for Cyclone:
– Safety policies supplied by code consumer 

rather than producer
– Pluggable theorem provers 
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Extensible ArchitectureExtensible Architecture

ESC

SAT-solver

Cyclone Prover

BDD-solver

Owl Simplify
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ConclusionConclusion

• Extended static checking
– Find bugs in programs
– User-supplied predicates as annotations
– Theorem prover as backend

• Still searching for sweet spot between 
soundness, usefulness, completeness

• Wide-spread adoption requires reducing 
annotation burden and improving safety 
guarantees 
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