
The
Pointer Assertion Logic Engine

Anders Mφller
Michael I. Schwartzbach

[PLDI ’01]

Presented by K. Vikram
Cornell University

Introduction
• Pointer manipulation is hard

– Find bugs, optimize code
• General Approach

– Model the heap, including records & pointers
– Describe properties in an assertion lang.
– Verify correctness

The Objective
• Pointer Verification
• Check for

– Type errors
– Memory errors
– Data structure invariant violations

• Safety critical data-type
implementations

Some slides have been adapted from a talk by Anders Mφller

Motivation
• Standard type-checking not enough

– Tree ≡ List
– Avoiding memory errors

• Verify an abstract data type

Graph Types
• Regular Types

– T → v(a1 : T1, …, an : Tn)• Graph Types
– T → v(… ai : Ti … aj : Tj [R] …)– data fields + routing fields (R)
– backbone (ST) + other pointers
– functionally dependent

• Doubly linked-list, trees with parent pointers, threaded trees, red-black trees, etc.

Routing Expressions
• Regular Expressions
• ⇓ a - move down along a
• ↑ - move along parent
• - verify presence at root
• $ - verify presence at leaf
• T:v – verify type and variant
• Well-formedness

Examples
• List with first and last pointers

H → (first: L, last: L[⇓ first ⇓ tail * $ ↑)
L → (head: Int, tail: L)

→ ()
• Doubly-linked cyclic list

D → (next: D, prev: D[↑ + ^⇓ next* $]
→ (next: D[↑ *], prev: D[↑ + ^]

Monadic Second Order Logic
• Quantification done over predicates and
terms

• Unary predicates
• Most expressive logic that is practically
decidable

• Decidable using tree automata

Pointer Assertion Logic
• Monadic 2nd order

– Over records, pointers and booleans
• Specify

– Structural invariants
– Pre- and post- conditions
– Invariants and assertions

Methodology
• Verify a single ADT at a time
• Data structures as graph types
• Programs in a restricted language
• Annotations in Pointer Assertion Logic

– properties of the store (assertions)
– invariants

• Encode in monadic 2nd order logic
• Use a standard tool (MONA)

Comparison with shape analysis
• Goals similar – approach different
• fixpoint iterations over store model vs.
encoding of program in logic

• Similar precision and speed
• Use of loop invariants/assertions
• Need to specify operational semantics
• Restriction to graph types
• Generation of counter-examples

Routing Expressions
• Slightly generalized
• ptr <routingexp> ptr
• Up – x^T.p
• A general formula can be embedded

Example data structure
• Binary tree with pointers to root

Another Example

Example Program

Details…
• Store Model
• Graph Types
• Abstract Programming Language
• Program Annotations

The Programming Language

The Programming Language

The Programming Language

Program Annotations
• Monadic 2nd order Logic on graph types
• Quantification over heap records

– Individual elements, sets of elements
• Formulas* used for

– Constraining destinations of pointers
– Invariants in loops and procedure calls
– Pre- and post- conditions
– Assert and split statements

Monadic 2L on finite trees
• Φ ::= ¬ Φ | Φ ∨ Φ | Φ ∧ Φ | Φ ⇒ Φ |

Φ ⇔ Φ | ∀1x.Φ | ∃1x.Φ | ∀2x.Φ | ∃2x.Φ |
t = t | t ∈ T | T = T | T ⊆ T | …
(formulas)

• T ::= X | T ∪ T | T ∩ T | T \ T | ∅
(set terms)

• t ::= x | t.left | t.right | t.up
(position terms)

Program Annotations

Program Annotations

A More Involved Example
• Threaded Trees

– Pointer to successor
in post-order
traversal

The Fix Procedure

Annotations
Precondition to fix

ALMOSTPOST Predicate

Hoare Triples
• {P} S {Q}
• P = pre-conditions (boolean predicate)
• Q = post-conditions (-do-)
• S = program
• Standard tools available

Verification with Hoare Logic
• Split program into Hoare triples

“property stm”
• Use PAL as assertion language
• Cut-points

– beginning/end of procedure and while bodies
– split statements
– graph types valid only at cut-points

Verification with Hoare Logic
• Hoare Triple – property stm
• stm is without loops, procedure calls
• Use transduction to simulate
statements

• Update store predicates (11 kinds)
• Interface for querying the store

Advantages over earlier tools
• Can handle temporary violations

– Overriding pointer directives
– Allow different constraints at different
points

– Use property instead of formula
• Modular and thus, scalable

MONA
• Reduces formulas to tree automata
• Deduces validity or generates counter-
examples

Evaluation
• As fast as previous tools
• Very few intractable examples in
practice

• Found a null-pointer dereference in a
bubblesort example

Evaluation

Finally
• Questions
• Comments
• Praise/Criticism
• Thank you!

