
1

CS711 Advanced Programming Languages

Topics in Program Analysis

Radu Rugina

Fall 2005

CS711 Overview 2

711?

CS711 Overview 3

Program Analysis

• Static analysis: inspect programs at compile-time

• Extract information about program execution

– Characterize dynamic program executions

• Use analysis results for:

– Optimizations and transformations

– Program verification

– Error detection

– Program understanding

CS711 Overview 4

Static vs. Dynamic

• Static analysis:

– Work done at compile-time

– Characterizes all executions

– Conservative: approximates concrete program states

• Dynamic analysis:

– Run-time overhead

– Characterizes one or a few executions

– Precise: knows the concrete program state

– Can’t “look into the future”

CS711 Overview 5

Classifying Program Analyses

• Lots of approaches to static analysis
– How do they compare to each other?

– What distinguishes them?

• Main aspects of program analyses:
– What information are we interested in?

– What program constructs?

– How does the analysis work?

– How much user interaction?

– Is the analysis sound?

CS711 Overview 6

Analysis Information

• Figure out “facts” about the program execution

• Facts typically talk about:

– The values in the memory
• Constant propagation: x = 5

• Points-to analysis: x points to y

• Types: value of x is an integer

• Verification: the result of fact(n) = n!

– Events during program execution
• Liveness: variable x never used in the future

• Temporal properties, e.g. lock-unlock property



2

CS711 Overview 7

Analysis Information

• How much information depends on the client

• E.g., program verification: show lack of errors

• What is an error?

– Type error?

– Memory error?

– Incorrect result?

increasingly difficult

CS711 Overview 8

Where Do Facts Hold?

• Facts hold:

– Either locally (e.g., at a particular program points)

– Or globally (throughout the program. E.g., types)

• Program points approximate sets of points in 
dynamic execution traces

• Can refine program points using:

– The calling stack when the execution reaches a point

– The program path that lead to a point

CS711 Overview 9

Program Constructs

pointers
recursive
structuresarrays

destructive
updates

polymorphism

objects

higher-order
functions

functions

exceptions

threads

control
constructs

inheritance
virtual
calls machine

code

CS711 Overview 10

Program Constructs

pointers
recursive
structuresarrays

destructive
updates

polymorphism

objects

higher-order
functions

functions

exceptions

threads

control
constructs

imperative
functional

inheritance
OO

virtual
calls machine

code

CS711 Overview 11

Analysis Techniques

• Dataflow analysis, Abstract interpretation
– Flow-sensitive: track facts through the control-flow

• Type systems
– Check or infer types for program expressions

– Typically flow-insensitive

• Constraint methods
– Reduce the analysis problem to a set of constraints

– Examples: set constraints, linear systems, boolean formulas, etc.

– Separates specification from implementation

• Model checking
– Check properties expressed as temporal logic formulas

• Theorem proving
– Use logical deduction to prove facts

CS711 Overview 12

Abstractions

• Analyses must use abstractions
– Model computation in the program

– Model program state

• describe unbounded sets of unbounded states

• Finite, tractable abstractions are desirable

• Examples:
– Dataflow, AI: CFGs, SSA, lattices

– Model checking: transition systems, temporal logic formulas

– Type systems: type abstraction, typing rules (type constraints)

– Constraint methods: constraints

– Theorem proving: theorems



3

CS711 Overview 13

User Interaction

• Three ways users can interact with analyses:

– Help the analysis: annotations, specifications
• Typical example: types

• Best way to help the analysis: provide information at 
procedure boundaries, loop invariants (Hoare-style)

– Help the analysis: interactive
• Provide help while the analysis runs

– Tell the analysis what to compute: parameterization 
• User tells what facts the analysis should compute/verify

• Example: finite state machine models

CS711 Overview 14

Soundness

• Soundness: analysis conservatively approximates all 
program executions

• Unsound analyses: might miss some facts
– “false negatives” = “missed facts”
– “false positives” = “facts that never occur”

• Is soundness desirable?
– Definitely for analyses, transformations, verification

– Error-detection is a different story
• Unsound analyses okay

• Unsound analyses can prove the presence of errors, not their absence

• Sources of unsoundness:
– Treatment of aliasing, loops, recursion, type-unsafe constructs

CS711 Overview 15

Proving Soundness

• How do I know that the analysis is sound?
– Define program semantics

– AI framework: show that abstract transformer yields 
conservative results

– Fairly straightforward for standard compiler analyses

– Type systems: progress + preservation

• Another approach:
– Define abstraction

– Automatically build sound analyses for that 
abstraction

CS711 Overview 16

Efficiency and Scalability

• Analyses can be expensive

– E.g., inter-procedural, flow-sensitive analyses

• Ways to make an analysis scalable:

– Reduce precision

– Request user annotations

– Be unsound

CS711 Overview 17

This Course

• Programming paradigms and constructs:
– Focus on analyses for imperative languages

– Look at: inter-procedural analysis, OO features, 
pointers, recursive structures, machine code, threads

• Analysis Techniques:
– Mainly dataflow, AI, type systems, constraint methods

• Bug-finding tools:
– Including unsound analyses

• Automatic generation of static analyses

CS711 Overview 18

Course Structure

• Read significant/recent papers in the area
– 35 minutes paper presentation

– 25 minutes discussions

• Background
– Dataflow analysis, optimizations (CS412)

– Type systems (CS411, CS611)

• Requirements
– Attend seminars

– Read all papers, engage in discussions

– Present 1-2 papers, start discussions

– Do an implementation project
• Or write a survey in a sub-area



4

CS711 Overview 19

A Flavor of Static Analysis

• Can an analysis determine that your program 
builds a tree? (not a DAG or a cyclic graph)

• Why should I care?

– Program understanding/verification

– Can parallelize programs with tree structures

– Check memory safety

CS711 Overview 20

Example

• Can the compile automatically prove that this 
code preserves the tree shape? How?

rotate(tree * t) {

tree *x = t->left;

t->left = x->right;

x->right = t;

return x;

}

CS711 Overview 21

Example

• Shape analysis

– Uses an abstraction that tracks reference counts

– Tree if all reference count are equal to 1

rotate(tree * t) {

tree *x = t->left;

t->left = x->right;

x->right = t;

return x;

}

CS711 Overview 22

Find Bugs

• Change “x->right” with “x->left”
• What goes wrong?

rotate(tree * t) {

tree *x = t->left;

t->left = x->right;

x->left = t;

return x;

}

CS711 Overview 23

Materials

• Book:

“Principles of Program Analysis”, 
by Nielson, Nielson, Hankin, Springer 1999

• Web site

http://www.cs.cornell.edu/courses/cs711

• Next time: Inter-procedural analysis

“Precise Inter-Procedural Dataflow Analysis via

Graph Reachability”
by Reps, Horwitz, Sagiv, POPL’95


