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ABSTRACT

We provide a parametric framework for verifying safety prop-
erties of concurrent Java programs. The framework com-
bines thread-scheduling information with information about
the shape of the heap. This leads to error-detection algo-
rithms that are more precise than existing techniques. The
framework also provides the most precise shape-analysis al-
gorithm for concurrent programs. In contrast to existing
verification techniques, we do not put a bound on the num-
ber of allocated objects. The framework even produces in-
teresting results when analyzing Java programs with an un-
bounded number of threads. The framework is applied to
successfully verify the following properties of a concurrent
program:

e Concurrent manipulation of linked-list based ADT pre-
serves the ADT datatype invariant [19].

e The program does not perform inconsistent updates
due to interference.

o The program does not reach a deadlock.

e The program does not produce run-time errors due to
illegal thread interactions.

We also find bugs in erroneous versions of such implemen-
tations.
A prototype of our framework has been implemented.

1. INTRODUCTION

Java provides low-level concurrency-control constructs that
enable the programmer to create complicated and powerful
synchronization schemes. The Java language provides no
means of compile-time or run-time checking for the correct-
ness of concurrent behavior. This makes concurrent pro-
gramming in Java quite error-prone (e.g., [39]).

The theme of this paper is to develop compile-time tech-
niques for verifying safety properties by detecting program
configurations that may violate desired properties.

1.1 Main Resultsand RelatedWork

In this paper, we present a framework for verifying safety
properties of concurrent Java programs. This framework
handles dynamic allocation of objects and references to ob-
jects. This allows us to analyze programs that dynami-
cally allocate thread objects, and even programs that create
an unbounded number of threads. Dynamic allocation of
threads is common when implementing services in threads
(e.g., [23], ch. 6). For these programs, we can verify prop-
erties such as the absence of interference. Handling dynam-
ically allocated objects also allows us to model concurrent
programs that manipulate linked-lists in the most precise
known way.

111 A Parametric Framework for Verifying Safety
Properties

We provide a parametric framework for verifying safety
properties of concurrent Java programs. We use different
instances of this framework (see Section 1.1.2) to obtain
static-analysis algorithms that have the ability to verify dif-
ferent safety properties.

The semantics of Java can be described using a structural
operational semantics (e.g., [22]) in terms of configurations
(or states). In our framework, the operational semantics of
Java statements (and conditions) is specified using a meta-
language based on first-order logic with transitive-closure.
The same meta-language is also used to verify that a safety
property holds in a given configuration. Our framework then
computes a safe approximation to the (usually infinite) set
of reachable configurations, i.e., configurations that can arise
during program execution. This can be formulated within
the theory of abstract interpretation [11]. The main idea
is to conservatively represent many configurations using a
single abstract configuration. The effect of every statement
(and condition) on an abstract configuration is then con-
servatively computed, yielding another abstract configura-
tion. Also, the framework conservatively verifies that all
the “reachable abstract configurations” satisfy the desired
safety property. Thus, we may falsely report that a safety
property may be violated (false alarm) but can never miss
a violation.

Our framework can be viewed as on-the-fly model-checking
[7] for verifying safety properties of programs. On-the-fly
model checking does not require a construction of a global
state graph as a prerequisite for property verification. In
order to handle dynamic creation and references to objects,
we use first-order logical structures to represent configura-
tions of the program. A state-space erploration algorithm



(see Figure 5) is used to generate the configurations reach-
able from an initial set of configurations. The effect of ev-
ery program statement is modeled by actions specified as
first-order logical formulae. Our abstract configurations are
bounded representations of logical structures. A (concrete)
configuration is automatically abstracted into an abstract
configuration.

Our framework should be contrasted with traditional model-
checking algorithms in which a bounded representation is
guaranteed by using propositional formulae for actions. More-
over, most model-checking techniques perform an abstrac-
tion when the model is extracted, and apply actions with
a fixed number of propositional variables ([6]). This could
be trivially encoded in our framework by using only nullary
predicates (and thus the number of individuals in a logical
structure is immaterial). In fact, our framework allows more
general (and natural) modeling of programs by using unary
and binary predicates. This is crucial in order to handle dy-
namically allocated objects and references to objects where
the “name” of the object is unknown at compile-time. Even
the technique of [15] (formulated for processes rather than
threads) relies on explicit process names, and thus cannot
handle dynamic allocation of processes.

JavaPathFinder [18] and Java2Spin [13] translate Java
source code to PROMELA representation. The SPIN
model-checker [20] is then used to verify properties of the
PROMELA program. Both these tools put a bound on the
number of allocated objects since it is imposed by SPIN. A
variant of SPIN named dSPIN [14] supports dynamic alloca-
tion of objects. However, since it uses no abstraction, it can
only handle bounded data-structures and bounded number
of threads.

[8] presents a method for the verification of parametric
families of systems. A network grammar is used to construct
a process invariant that simulates all systems in the family.
However, it can not handle dynamic allocation of objects.

Recent work [35] presents new abstraction predicates but
does not have the notion of summary nodes. Thus, it can
not handle programs with unbounded number of allocated
objects. Moreover, our framework presents a model checking
algorithm that recognizes abstraction as suggested there.

In our framework, rather than having a separate model-
extraction and model-checking phases, we follow the abstract-
interpretation approach [11] and cast our analysis in a syntax-
directed manner.

Technically speaking, our framework is a generalization
of [34] in the following aspects: (i) Program configurations
are used to model the global state of the program instead
of modeling only the relationships between heap-allocated
objects. This allows us to combine thread scheduling in-
formation with information about the shape of the heap.
(if) Program control-flow is not separately represented, but
instead the program location of each thread is maintained in
the configuration which allows us to handle an unbounded
number of threads in a natural way. This is naturally coded
in first-order logic as a property of a thread (in contrast
to model checking in which it is externally coded). Fur-
thermore, it does not require control-flow information to be
computed in a separate earlier phase. This is an advantage
because the imprecision in control-flow computation could
lead to imprecise results. (iii) We use the standard interleav-
ing model of concurrency. A slightly different generalization
is used in [31], which even allows the program to modify

itself to support the semantics of Mobile Ambients [4].

The FLAVERS system [29] uses trace flow graphs with
feasibility constraints represented as finite-state automata
to model the semantics of concurrent Java programs.

An important difference between our framework and
FLAVERS is that our framework has the ability to model
the dynamic creation of objects and threads. It should be
noted that FLAVERS can only detect violation of properties
represented as finite state automata in terms of observable
events in the program, and thus can not detect some of the
properties verified by our framework (e.g., deadlock). More-
over, since every finite automaton can be trivially coded in
our framework, it generalizes FLAVERS. However, the cost
of doing that in our current implementation is higher.

In [37], a framework for model checking distributed Java
programs is presented. This framework uses partial-order
methods to reduce the size of the explored state-space. How-
ever, it uses no abstraction and thus can only handle bounded
data-structures and bounded number of threads. We intend
to use similar partial-order methods in future versions of our
framework.

Bandera [10] is a framework for translating Java programs
to a program model acceptable by existing model-checking
tools. During translation, the model is reduced using slicing
and other program analyses. Currently, Bandera imposes a
bound on the number of allocated objects and does not allow
dynamic removal of objects. However, we assume that in the
future Bandera could be used in accord with our framework.

In [9], shape analysis of concurrent programs is used to
reduce finite-state models of concurrent Java programs. In
this analysis, the number of threads is bounded. The algo-
rithm presented is based on [5], which uses a single shape
graph for each program location, and uses an abstraction
which leads to overly imprecise results (e.g., in programs
that traverse data structures based on allocation sites).

In recent work [38], shape analysis of concurrent programs
is used for eliminating synchronization. As in [9], the algo-
rithm presented is an extension of [5] and suffers from the
same imprecision. It should be noted that despite the dif-
ferent goals of our work, it is significantly more precise. In
particular, it always performs strong updates.

In [1], static analysis is used to identify opportunities to
eliminate unnecessary synchronization. That work assumes
a static control-flow-graph, and ignores thread-scheduling
mechanisms.

1.1.2 Applications

We have used our framework to verify the properties listed
below.

Interference: Two threads are said to interfere when they
may both access a shared object simultaneously, and at least
one of them is performing an update of the shared object.
We use our framework to locate read-write and write-write
interference between threads (see [30]). Here, we benefit
from the fact that the analysis keeps track of both scheduling
information and information about the shape of the heap.
For example, in a two-lock-queue (see [27], also shown in the
appendix) we are able to show that write-write interference
is not possible since writing is never performed on the same
object.

Deadlock: Our framework has been used to verify the ab-
sence of a few types of deadlocks: (i) total deadlocks in
which all threads are blocked. (ii) nested monitors dead-



locks, which are very common in Java ([39]) (iii) partial
deadlocks created by threads cyclically waiting for one an-
other.

We are also able to verify that a program complies with
a resource-ordering policy, and thus cannot produce a dead-
lock (see [23], ch. 8).

Shared ADT: Our framework has been used to verify that
a shared ADT based on a linked-list preserves ADT prop-
erties under concurrent manipulation. Here, the strength
of our technique is obvious since precise information about
a scheduling queue can be used to precisely reason about
thread scheduling.

For example, Figure 1 shows a concurrent program us-
ing a queue. The implementation of the queue is given in
Figure 2 and Figure 3. This program is used as a running
example throughout this paper. Our technique is able to
show that the properties of the queue are correctly main-
tained by this program without any false alarms. Moreover,
since the analysis is conservative, it is guaranteed to report
errors when analyzing ill-synchronized version of the same
queue (not shown here).

Illegal Thread Interactions: The Java semantics allows
the programmer to introduce thread interactions that are
illegal and result in an exception during program execution.
For example - starting a thread more than once will result
with an I1legalThreadStateException being thrown. Our
framework has been used to detect such illegal interactions.

1.1.3 Prototype Implementation

‘We have implemented a prototype of our framework called
3VMC [40]. We applied the analyses to several small but
interesting programs. The results are reported in Section 6.

Currently, we do not perform interprocedural analysis and
assume that procedures are inlined. However, our frame-
work does support recursive procedures based on [32]. The
main disadvantage of our current implementation is that no
optimization is used, and thus only small programs can be
handled.

We are encouraged by the precision of our results and the
simplicity of the implementation.

1.1.4 Outline of the Paper

In Section 2, we give a brief overview of Java’s concur-
rency model. Section 3 defines our formal model which uses
logical structures to represent program configurations. Sec-
tion 4 shows how multiple program configurations can be
conservatively represented using a 3-valued logical structure.
In Section 5, we show how our method can be used to de-
tect several common concurrency errors. In Section 6, we
describe the prototype implementation and the results we
have obtained with it for a few small but interesting pro-
grams. Finally, Section 7 concludes the paper and discusses
further work.

2. JAVA CONCURRENCY MODEL

We now give a short description of the Java concurrency-
primitives used in this paper. The reader is referred to [17,
23, 25] for more details.

Java contains a few basic constructs and classes specifi-
cally designed to support concurrent programming;:

e The class java.lang.Thread, used to initiate and con-
trol new activities.

class Producer implements Runnable {
protected Queue q;

public void run() {
q.put(vall);

}
}
class Consumer implements Runnable {
protected Queue q;

public void run() {
val2 = q.take();

}

}

class Approver implements Runnable {
protected Queue q;

public void run() {
q.approveHead () ;
}
}
class Main {
public static void main(String[] args) {
Queue q = new Queue(); Im.
Thread prd = new Thread(new Producer(q)); Im
Thread cns = new Thread(new Consumer(q)); Ims

for(int i = 0; i < 3; i++) { Imy
new Thread(new Approver(q)).start(); lms
}

prd.start(); Ime

cns.start(); Imq

}

Figure 1: A simple program that uses a queue.

o The synchronized keyword, used to implement mu-
tual exclusion.

e The methods wait, notify, and notifyAll defined in
java.lang.0Object, used to coordinate activities across
threads.

The constructor for Thread class takes an object imple-
menting the Runnable interface as a parameter. The Runnable
interface requires that the object implements the run () method.

A thread is created by executing a new Thread() alloca-
tion statement. A thread is started by invoking the start ()
method and starts executing the run() method of the object
implementing the Runnable interface.

Initially, a program starts with executing themain () method
by the main thread. Java assumes that threads are sched-
uled arbitrarily.

The program shown in Figure 1 contains 3 classes imple-
menting the Runnable interface: a Producer class, which
puts items into a shared queue; a balking Consumer class,
which takes items from a shared queue and does not wait
for an item if the queue is empty; and an Approver class,



which performs some computation on a queue element to
approve it. The program starts by executing the main()
method, which creates a shared queue, a Producer thread, a
Consumer thread, and 3 Approver threads. Threads in the
example are started at labels Ims, Img, and Im7.

Each Java object has an unique implicit lock associated
with it. In addition, each object has an associated block-
set and wait-set for managing threads that are blocked on

// Queue.java

class Queue {
private Queueltem head;
private Queueltem tail;

public void put(int value) {

S;::ii;:el?z:c_ll(thize;w {QueueItem(value) ’ ;g; the object’s lock or waiting on t.he object’s lock. When a
if (tail == null) { Ips synchr.onized(exp.r) statement is executed by a threaq t,
tail = x.i; Ipa thg object expression expr is e'vah'lz_a,ted, and the resulting

head = x.i; Ips object’s lock is checked for availability. If the lock has not

} else { been acquired by any other thread, t successfully acquires
the lock. If the lock has already been acquired by another

tail.next = x.i; lps ; o .
tail = x.i; Ips thread t', the thread ¢ becomes blocked apd is inserted into
} the lock’s block-set. A thread may acquire more than one
} Ips lock, and may acquire a lock more than once. When a tl}read
} Ipo legves' the synchronized block, it unlocl.cs the lock associated
public QueueItem take() { with it. When a lock has been acquired more than once
synchronized(this) { It (by the same thread), it is released only when a matching
Queueltem x.d; number of unlock operations is performed.
if (head != null) { Its In the example shown in. Figure 2,.we gl}a:rantee th.at the
newHead = head.next; Its queue operations are atomic by putting critical code into a
x.d = head; It synchronized(this) block.
x.d.next = null; Its A thread t may become waiting on a lock [ by invoking a
head = newHead: Ite f:all to o:wait() on I’s object (0); a call to o.wait() puts ¢
if (newHead == null) { Ity in I's wait-set. . .
tail = null; Its When ¢ becomes waiting on [, it releases the lock l,‘b.ut
} does not release any other locks it acquired. A waiting
} thread ¢t can be only released by another thread invoking
} Ito o.notify(), o.notifyAl1() for the lock ! or interrupt()
return x.d; Itso on the thread ¢t.
} Invoking notify () on an object removes an arbitrary thread

from the object’s wait-set, and makes it available for schedul-

bli id Head () . . .
pubZLE voLd approvered { ing. Invoking notifyAl1() on an object, removes all threads

syncl;;ox(l;z:j(t!:zlilli) ;Z; from the wait-set, and makes them available for scheduling.
head.approve () ; las A thread t shou.ld. only %nvoke wai.t(), notify () apd
} las notifyAll() when it is holding the object’s lock, otherwise

} an exception is thrown.

A thread t; may wait for another thread t2 to complete
execution and join it, by invoking a call to t2.join(). If t2
is not yet started or t» is already dead, the call for ¢5.join()
is ignored.

We assume the identity of the lock for synchronized (exp),
and the target object of scheduling-related methods, is given

Figure 2: Simplified Java source code for a queue

implementation. _ :
as a single reference variable rather than a general reference
expression as supported by the Java language. If the pro-
gram uses a general expression, we normalize the program
// QueueItem. java by adding a temporary variable.
class Queueltem { Due to space limitations we do not present the semantics
private Queueltem next; for multiple acquisitions of a lock by the same thread.

private int value;
private boolean isApproved;

3. A PROGRAM MODEL

In this section we lay the ground to our analysis of Java

j' programs. In Section 3.1 we use logical structures to rep-

} resent the global state of a multithreaded program. Sec-

tion 3.2 uses logical formulae as meta-language to extract in-

teresting properties of a configuration such as mutual exclu-

sion. Then, in Section 3.3, we define a structural small step

operational-semantics which manipulates configurations us-

ing logical formulae. Finally, in Section 3.4, we describe the
safety properties that are verified in this paper.

public void approve() {

Figure 3: Simplified Java source code for a
Queueltem implementation.



Predicates

is_thread(t)
{at[lab](t) :
lab € Labels}
{rvalue[fld](o1,02) :
fld € Fields}

held_by(l,t)

| Intended Meaning |
t is a thread

thread ¢ is at label lab

field fld of the object o1
points to the object o2
the lock [ is held by

the thread ¢t

the thread t is blocked
on the lock [

the thread ¢ is waiting
on the lock [

the id of lock [; is

less than the id of lock I»

blocked(t,1)

waiting(t,l)

idlt(lr, 1)

Table 1: Predicates for partial Java semantics.

3.1 RepresentingProgram Configurations via
Logical Structures

A program configuration encodes a global state of a pro-
gram which consists of (i) a global store, (ii) the program-
location of every thread, and (iii) the status of locks and
threads, e.g., if a thread is waiting for a lock. Technically,
first-order logic with transitive-closure is used in this paper
to express configurations and their properties in a paramet-
ric way. Formally, we assume that there is a set of predicate
symbols P for every analyzed program each with a fixed
arity. Table 1 contains the predicates used to analyze our
running example program.

e The unary predicate i¢s_thread(t) is used to denote the
objects that are threads, i.e., instances of a subclass of
class Thread.

e For every potential program-location (program label)
lab of a thread t, there is a unary predicate at[lab](t)
which is true when ¢t is at lab.

e For every class field and function parameter £f1d, a bi-
nary predicate rvalue[fld](o1, 02) records the fact that
the £1d of the object o1 points to the object 02.

e The predicates held by(l,t), blocked(t,l) and
waiting(t,!) model possible relationships between
locks and threads.

e The predicate idlt(l1,12) is used to record a partial or-
der between objects. Each object is assumed to have
a unique id. The predicate idlt(l1,l2) is true when the
id of [, is less than the id of I>. The order between
objects can be used for deadlock prevention by break-
ing cyclic allocation requests [36]. In Section 5.1 we
show how our technique can be used to verify that a
program uses such a resource-allocation policy.

Note that predicates in Table 1 are actually written in
a generic way and can be applied to analyze different Java
programs by modifying the set of labels and fields.

A program configuration is a 2-valued logical structure
C" = (U*, 1%) where:

e U" is the universe of the 2-valued structure. Each in-
dividual in U" represents an allocated heap object.

e ! is the interpretation function mapping predicates to
their truth-value in the structure, i.e., for every pred-

icate p € P of arity k, ¢! (p): Ut o {0,1}.

Configurations are depicted as directed graphs. Each in-
dividual from the universe is displayed as a node. A unary
predicate p which holds for an individual (node) u is drawn
inside the node u. The name of a node is written inside an-
gle brackets. Node names are only used for ease of presenta-
tion and do not affect the analysis. A true binary predicate
p(ui,u2) is drawn as directed edge from ui to us labeled
with the predicate symbol. We use a natural sign (f) to
denote entities of the concrete domain (e.g., C* denotes a
concrete configuration C).

EXAMPLE 3.1. The configuration C4' shown in Figure 4
corresponds to a global state of the example program with
5 threads: a single producer thread (labeled prd) which ac-
quired the queue’s lock, a single consumer thread (labeled
cns) which is blocked on the queue’s lock, and & approving
threads (al,a2,a3) which haven’t performed any action yet.
The role of the predicate r_by[fld](o) will be explained in fu-
ture sections. For simplicity of presentation, we omit the
Runnable objects and present only thread objects.

All threads in the erample use a single shared queue
containing 5 items (u0,...,ud). The binary predicate
rvalue[next](o1,02) records for each object o1 the target ob-
ject referenced by its nezt field.

Note that the universe U? is not bounded since the ana-
lyzed program may allocate new non-thread and/or thread
individuals. We do not place a bound on number of allo-
cated objects.

3.2 Extracting Propertiesof Configurationsus-
ing Logical Formulae

Properties of a configuration can be extracted by evaluat-
ing a first-order logical formulae with transitive closure and
equality over configurations. For example, the formula

3t : is_thread(t) A held_by(l,t) (1)

describes the fact that the lock [ has been acquired by some
thread. Our experience indicates that it is quite natural to
express configuration properties using first-order logics.

Note that the program-location of each thread can be used
in a formula by using the appropriate label. For example,
consider a label I.,;+ which corresponds to a critical section.
We formalize the mutual exclusion requirement using the
following formula:

Vi1, t2 @ (81 # t2) = —(at[lerst] (E1) A at[lerit](E2))  (2)

3.3 A Structural Operational Semanticsof Con-
figurations

Figure 5 shows a depth-first search algorithm for explor-
ing a state-space. For each configuration C such that C is
not already a member of the state-space, we explore every
configuration C’ that can be produced by applying some
action to the current configuration C.

Every resulting configuration C’, is added to the state-
space using set union. The membership operator used is
set-membership, we will later use a generalized membership
operator. In the case of set membership, this algorithm is



<ud>
r_by[next]

r_by[tail]

<cns>
is _thread
atfit_1]

rvaluefthis]

rvalugfthis]

<u0> rvalue[next] rvalue[next] <u2> rvalue[next] <u3> a ]
rvaluefhead] r_by[head] % r_by[next] r_by[next] rvaluefnext]
rvalueltail]
rvaluefthis]
rvaluefthis]
rvalue[x_i]

<a3>
is_thread
afla 1]

<al>
is thread
atfla 1]

<a2>
is _thread
afla 1]

Figure 4: A concrete configuration C,%.

initialize(Cp) {
for each C € Cy
push(stack,C)

explore() {
while stack is not empty {

C = pop(stack)

if not member(C, stateSpace) {
verify(C)
stateSpace’ = stateSpace U {C}
for each action ac

for each C' such that C =,. C’
push(stack,C’)

Figure 5: State space exploration.

essentially the classic state-space exploration used in model-
checking [7]. However, in contrast to model-checking, there
is no bound on the number of objects, and therefore the
state-space explored by this algorithm is not guaranteed to
be finite. A possible solution for this problem is given in
Section 4.

Informally, an action is characterized by the following
kinds of information:

e The precondition under which the action is enabled
expressed as logical formula. This formula may also
include a designated free variable t; to denote the
“scheduled” thread on which the action is performed.
Our operational semantics is non-deterministic in the
sense that many actions can be enabled simultaneously
and one of them is chosen for execution. In particu-
lar, it selects the scheduled thread by an assignment
to ts. This implements the interleaving model of con-
currency.

e Enabled actions create a new configuration where the
interpretations of every predicate p of arity k is deter-
mined by evaluating a formula ¢, (v1,v2,. .., vr) which

may use vi,v2,...,0; and t, as well as all other pred-
icates in P.

Table 2 defines the semantics of concurrency statements
used in the running example. The table lists a precondi-
tion and an update formulae for each action. Predicates not
appearing in the update formulae are assumed to remain un-
changed by the action. The set of actions is partitioned to
blocking and non-blocking actions. Blocking actions do not
affect the program-location. Non blocking actions advance
to the next program-location by updating the at[lab](ts)
predicates for the thread.

A Java statement may be modeled by several alterna-
tive actions corresponding to the different behaviors of the
statement. A single action to be taken is determined by
evaluation of the preconditions. The actions lock(v) and
blockLock(v) correspond to the two possible behaviors on
entry to a synchronized(v) block: lock(v) is enabled when
there exists no thread (other than the current thread) that
is holding the lock referenced by v, blockLock(v) is enabled
when such thread exists. The action unlock(v) corresponds
to the release of the lock upon exit of the synchronized(v)
block. The action wait(v) corresponds to invocation of v.wait ().
The actions notify(v) and ignoredNotify(v) correspond to
the possible behaviours when calling v.notify(): notify(v)
is enabled when a there exists a thread waiting on the lock
referenced by v, ignoredNotify(v) is enabled when no such
thread exists. notifyAll(v) and ignored NotifyAll(v) model
similar behavior of v.notifyAl1(). Technically, the trans-
lation of a Java statement (and condition) to several alter-
native actions can be performed by a front-end.

Formally, the meaning of actions is defined as follows:

DEFINITION 3.2. We say that C' = (U, ) rewrites into a
configuration C¥' = (U, ) (denoted by C" =>,. CV') where
ac is an action, if there exists an assignment Z that satisfies
the precondition of ac on C*, and for every p € P of arity k

and u1,...,ux € U,
L’(p)(ul,...,Uk) =
b
o (1,2, .., vR)]S (Z[vr > w1, v 5 us, . .., vk — ug])

where @p(v1,- -+ ,vx) 18 the formula for p given in Table 2.
In addition, there is a special action that creates a

new ndwidual Unew and results with a structure o =




Action | Precondition | Predicate-update
lock(v) -3t # ts : rvalue[v](ts, 1) A held_by(l,t) held by (I1,t1) = held by(l1,t1) V(t1 = ts AL =1)
blocked' (t1,11) = blocked(t1,11) A ((t1 £ ts) V (I1 #1))

unlock(v) roaluelv](ts, 1) held by (I1,t1) = held by(l1,t1) A (t1 £ ts VI £1)
wait(v) rvalue[v](ts,1) held by (I1,t1) = held by(li, t1) A (t1 #ts VL £1)
waiting’ (t1,11) = waiting(t1,l1) V (t1 = ts Ay = 1)
notify(v) roaluelv](ts, 1) A Ity : waiting(tw, ) waiting’ (t1,11) = waiting(t1, 1) A (t1 Ztw V11 #£1)
blocked' (t1, l1) = block‘ed(tl, l1) \Y (t1 =t Al1 = l)

ignoredNotify(v) rvalue[v](ts,1) A 23ty : waiting(tw, 1)

notifyAll(v) rvaluelv](ts, 1) A Tty : waiting(tw, 1) waiting’ (t1,11) = waiting(t1,11) A (I #1)
blocked' (t1,11) = blocked(t1,11) V (waiting(t1,11) A (lh = 1))

ignoredNotifyAll(v) | rvaluelv](ts,l) A =3ty : waiting(tw,l)

| blockLock(v) | 3t # ts : rvaluev](ts, 1) A held_by(l,t) | blocked’ (t1,11) = blocked(t1,l1) V (t1 =ts ANlL =1)

Table 2: Operational semantics for concurrency statements.

non-blocking, the blockLock(v) action is blocking.

(U U {tnew},t'). A special predicate isNew holds for unew,
and thus can be used in the predicate update formulae.

We say that a configuration C! transitively rewrites into
a configuration C'' (denoted by C' =* C¥) if there es-
ists a (potentially empty) sequence of configurations Cct =
Cto,Cte,...,CY, = C" such that for each 0 < i < n ,
Chi = ChH_l.

3.4 SafetyPropertiesof Java Programs

Given a set of initial configurations C7, the set of reachable
configurations CRr is the set of configurations that can be cre-
ated by transitively rewriting a configuration from C;. More
formally, a configuration C, € Cg iff 3C; € C; : C; =" C,.

A safety property is formalized using logical formulae. We
say that a safety property of a program holds if all reachable
configurations satisfy the formula specifying the property.

Our analysis described in Section 4.1 aims at automat-
ically verifying safety properties by guaranteeing to detect
configurations where the properties are violated, if such con-
figurations exist. Moreover, we sometimes also show that a
liveness property at some reachable configuration holds by
showing that a stronger safety property holds.

Table 3 lists some of the formulae used to detect config-
urations that violate a safety property. Formulae for other
safety properties may be defined similarly.

In the Read-Write (RW) Interference formula, the first
line states that both individuals ¢, and ¢, are different
thread individuals, the second line states that thread ¢, is
at label Ir and the thread t,, is at label lw, and the third
line states that the variable z,, of thread t,, and variable z,
of thread t, reference the same object o. Note that lw is
assumed to be a label of a statement with a writing access,
and Ir a label of a statement with a reading access.

EXAMPLE 3.3. In Figure 4, the RW-Interference formula
evaluates to 0 for the labels lt3 (newHead = head.nezt) and
lpe (tail.next = z_i) of the ewample program shown in
Figure 2. This is due to the fact that synchronization pre-
vents the consumer thread < cns > from being at label lt3
when the producer thread < prd > is at label lps.

Even if synchronization was dropped, and the consumer
and producer threads were allowed to be at lts and Ilpe corre-
spondingly, RW-Interference would still evaluate to 0 since
head and tail refer to different objects.

Actions above the two horizontal lines are

The Write-Write (WW) Interference formula is similar to
the RW Interference formula.

The Total Deadlock formula requires that for each thread
t, there exists a lock ! such that ¢ is blocked on [. This is
a strict formulation of the problem that can be generalized
(e.g., allowing some thread to be in terminated state).

The Resource Ordering Criterion formula states that there
exists a thread ¢ holding a lock 5, and blocked on a lock 14
such that the ID of [y is greater than the ID of [;.

The Nested Monitors formula states that 0,,¢ iS a separa-
tion node in the configuration graph with respect to paths
over the field in. Thus, every in-path from a node in the
configuration graph reaching o;, passes through the node
0out- Therefore, a nested-monitors deadlock may be created
when a thread becomes waiting on 0;, while holding the lock
of the object 0o4t-

The Missing Ownership formula states that there exists a
thread ¢ at label I, which invokes v.wait() or v.notify()
and does not hold the lock of the object I referenced by
variable v.

4. AN ABSTRACT PROGRAM MODEL

The state-space exploration algorithm of Figure 5 may
be infeasible in programs with an unbounded number of ob-
jects. In this section we describe how to create a conservative
representation of the concrete model presented in Section 3
in a way that provides both feasibility and high precision.

In Section 4.1 we use 3-valued logical structures to conser-
vatively represent multiple configurations of a multithreaded
program. Section 4.1.1 presents the concept of embedding
which is crucial for proving the correctness of our algorithm.
Section 4.2 presents the abstract semantics derived from the
concrete semantics presented in Section 3.3. Finally, Sec-
tion 4.3 shows how to improve the precision of our analysis
by adding instrumentation predicates.

4.1 RepresentingAbstract Program Configu-
rations via 3-Valued Logical Structures

To make the analysis feasible, we conservatively represent
multiple configurations using a single logical structure but
with an extra truth-value 1/2 denoting values which may be
1 and may be 0. The values 0 and 1 are called definite values
where the value 1/2 is called indefinite value. Formally, an




Formula

| Intended Meaning

RW Interference between a thread (¢,) at label Ir

oo f{;’;’ﬁ:?&d?;\)a/;[;Z)_]t(lzre;ad(tw) A 7 t) reading x,.fld and a thread (t.) at label lw
’ bt updating .. fld, where x, and x,,
Arvalue[zo](tw, 0) A rvaluele:](tr o) are pointing to the same object o.
Tt twz, 0 isthread(tur) A is_thread(tus) A (fo1 % tus) WW Interference between a thread (t,1) at label lwi

Aat[lwi](t1) A at[lws](t2)

Arvalue[Ty1](twi, 0) A rvalue[xy2](ty2, 0)

writing z1.fld and a thread (t,2) at label lwa
updating x2.fld, where x,,1 and T2
are pointing to the same object o.

Vt : is_thread(t) — 3l : blocked(t,l)

Total Deadlock

3, 1,0
A=idlt(l2, 11)

is_thread(t) A blocked(t, 1) A held_by(l2,t)

Resource Ordering. A thread ¢ is blocked on a lock
“smaller” than a lock it is holding.

Etw, OoutyOin -
Arvalue[in]* (0out, Oin)
AYop : ((0p # 0out) A rvalue[in]* (0out, 0p)
Arvalue[in]* (0p, 0in)

— =(3(t1, t2) : rvaluefin](t1, 0p) A rvaluelin](tz, op))

isthread(tyw) A waiting(tw, oin) A held by(oout, tw)

Nested Monitors. A thread ¢, is waiting

on an object 0;, while holding the lock

of an object 0oyt Which structurally contains it,
thus preventing any other thread from notifying ¢,,.

3t : at[ls](t) A rvaluelv](t, 1) A ~held_by(l,t)

Missing Ownership. Thread invoking v.wait() or
v.notify() at label I, when not holding the lock
referenced by v.

See Section 5.2

Shared ADT

See Section 5.3

Thread Interactions

Table 3: Violations of safety properties detected in this paper.

abstract configuration is a 3-valued logical structure C' =
(U, ¢) where:

e U is the universe of the 3-valued structure. Each in-
dividual in U represents possibly many allocated heap
objects.

e ¢, is the interpretation function mapping predicates to
their truth-value in the structure, i.e., for every pred-
icate p € P of arity k, ¢(p): U¥ — {0,1/2,1}. For
example, ¢(p)(u) = 1/2 indicates that the truth value
of p may be 1 for some of the objects represented by u
and may also be 0 for some of the objects represented
by u.

An individual v € U that represents more than a single
object is called a summary node.

4.1.1 Embedding

We now formally define how configurations are represented
using abstract configurations. The idea is that each individ-
ual from the (concrete) configuration is mapped into an in-
dividual in the abstract configuration. More generally, it is
possible to map individuals from an abstract configuration
into an individual in another less precise abstract configu-
ration.

Formally, let C = (U,.) and C' = (U’, ') be abstract con-
figurations. A function f: U — U’ such that f is surjective
is said to embed C into C' if for each predicate p of arity &,
and for each wui,...,ur € U one of the following holds:

sur)) = ' (p(f(u), f(u2), ..., f(ur)))

Ll(p(f(’LL1),f(’LL2), . af(uk))) = ]‘/2

We say that C’ represents C when there exists such an
embedding f.

One way of creating an embedding function f is by using
canonical abstraction. Canonical abstraction maps concrete

t(p(u1,u2, ...

individuals to an abstract individual based on the values of
the individuals’ unary predicates. All individuals having the
same values for unary predicate symbols are mapped by f
to the same abstract individual. We use a designated unary
predicate sm to maintain summary-node information. A
summary node u has sm(u) = 1/2, indicating that it may
represent more than one node. Only nodes with sm(u) =
1/2 can have more than one node mapped to them by the
embedding function.

EXAMPLE 4.1. The abstract configuration Cs represents
concrete configuration C4P.

The summary node labeled a1 represents the threads ai,
a2, az which all have the same values for the unary pred-
icates. The summary node labeled uw represents all queue
items that are not directly referenced by the queue’s head
or tail. Note that the abstract configuration Ces represents
many configurations. For example, it represents any config-
uration with more than 8 queue items. In a similar fashion,
the abstract configuration represents configurations with one
or more threads that reside at label lay.

Note that the RW-Interference condition evaluates to 0
over the abstract configuration Cs.

4.2 An Abstract Semantics

We use the same simple algorithm from Figure 5 for
exploration of the abstract state space. Two of the
operations used by the algorithm are modified to work
for abstract configurations: (i) The membership operator
member(C, stateSpace) is modified to check if the configu-
ration C is already represented by one of the configurations
in stateSpace. This is an optimization for preventing explo-
ration of redundant configurations. (ii) The rewrites relation
is modified to conservatively model the effect of an action
on the given abstract configuration (possibly representing
multiple configurations).
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Figure 6: An abstract configuration Cs representing the configuration C;* shown in Figure 4.

In addition, the state-space exploration now starts with
Co being the abstraction of initial configurations.

Implementing an algorithm for computing the rewrite re-
lation on abstract configurations is non-trivial because one
has to consider all possible relations on the set of represented
(concrete) configurations.

The best conservative effect of an action (also known as
the induced effect of an action) [12] is defined by the follow-
ing 3-stage semantics: (i) A concretization of the abstract
configuration is performed, resulting in all possible config-
urations represented by the abstract configuration; (ii) The
action is applied to each resulting configuration; (iii) Ab-
straction of the resulting configurations is performed which
results with a set of abstract configurations representing the
results of the action.

Our prototype implementation described in Section 6 op-
erates directly on abstract configurations thereby obtaining
actions which are more conservative than the ones obtained
by the best transformers. Our experience shows that these
actions are still precise enough to detect violations of the
safety properties as listed in Table 3 without producing false
alarms on our example programs.

DEFINITION 4.2. We say that an abstract configuration
C rewrites into an abstract configuration C' (denoted by
C =4c C') where ac is an action, if for C and for C' there
ezists C' and C'' = (U, 1¥') such that: gz) C" is in the
concretization of C, i.e., C represents C*, (ii) C' is the
canonical abstraction of Ch’, (i) an assignment Z that
satisfies the precondition of ac on C*, and for every p € P
of arity k and u1,...,ur € U,

!
Fp) (- uk) =
[cpp(vl,vz,...,vk)]]g(Z[vl UL, U2 > U, ..., U > Ug))

where @p(v1,- -+ ,vk) s the formula for p given in Table 2.
We write C = C' if for some action ac C =4, C'.

EXAMPLE 4.3. The abstract configuration Cr7o shown in
Figure 7 represents an unbounded number of threads all
at label lay. The actions for label lai are lock(this) and
blockLock(this).

The infinite set of configurations {Cr,0,1, Cr7,0,2,... } is the
set of (concrete) configurations after concretization. After
concretization the preconditions of the actions are evaluated.
The precondition for lock(v) evaluates to 1 and the precondi-
tion for blockLock(v) evaluates to 0. Thus lock(v) is applied.

The infinite set of configurations {C7,1,1, Cr,1,2,... } is the
set after the application of lock(v). The set of abstract con-
figurations {C7,2,1, C7,2,2 } is the finite set of configurations
after abstraction.

4.3 Instrumentation

Instrumentation predicates record derived properties of
individuals. Instrumentation predicates are defined using
a logical formula over core predicates. Updating an instru-
mentation predicate is part of the predicate-update formulae
of an action.

The information recorded by an instrumentation predi-
cate in a configuration may be more precise than evaluating
the defining formula of the instrumentation predicate over
the configuration. This is known as the Instrumentation
Principle introduced in [34].

The mapping of individuals in a configuration into an ab-
stract individual of an abstract configuration is directed by
the values of the unary predicates. By adding unary in-
strumentation predicates, one may allow finer distinction
between individuals, and thus may improve the precision of
the analysis.

EXAMPLE 4.4. Consider an unbounded number of threads
competing to acquire a shared resource 1. Assume that a
thread t1 already acquired the lock. The configuration Csp,1
shown in Figure 8 corresponds to a state in which some
thread tried to acquire the lock | and became blocked on
the lock as a consequence. In this configuration, the for-
mula 3t : blocked(t,l) evaluates to 1/2. Configuration Cs,2
shows the same global state when the instrumentation predi-
cate is_blocked(t) is used. Now, one can check the ezistence
of a blocked thread using the stored value of the instrumen-
tation predicate is_blocked(t), which evaluates to 1. Note
that evaluation of the original formula over the configura-
tion with instrumentation also evaluates to 1 rather than to
1/2.

5. VERIFYING SAFETY PROPERTIES

We use the instrumentation predicates listed in Table 4 to
improve the precision of our analyses. The following sections
list a more precise formulation of the formulae of Table 3 by
using instrumentation predicates whenever possible.

5.1 Deadlock
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Figure 8: Instrumentation predicate is_blocked(t).

We use the wait_for(t1,t2) instrumentation predicate to
detect a cyclic wait_for dependency. We use slock(t) to
track the resource-ordering local property for each thread.
Thus, the resource ordering violation can be formulated as
3t : slock(t). The formula for nested-monitors deadlock is

given below:

Ftw, Oout, Oin : 1S thread(tw)A
waiting(tw, 0in) A held_by(Oout, tw) A rfin](0out, 0in)A
Yop i ((0p # 0out) A Tf[i"](op: 0in) A Tf[i"](oout: 0p)

— —isfin](op))

5.2 Shared Abstract Data Types

We define a set of reachability predicates similar to the
ones defined in [34]. We use the reachability information to
define invariants for ADT operations. For example:

e At the end of a put operation - the new item is reach-
able from the head of the queue.

e At the end of a take operation - the taken item is
reachable from the taking thread and no longer reach-
able from the head of the queue.




Predicate

| Intended Meaning

| Defining Formula |

is[fld](l1) l1 is referenced by the field fld of more than one object | Jt1,t2 : (t1 # t2) —
rvalue[ fld](t1,11) A rvalue[fld](t2,12)
r_by[fld](1) l is referenced by the field fld of some object Jo : rvalue[fld](o,1)

is_acquired(l) l is acquired by a thread

3t : held by(l,t)

1s_blocked(t) t is blocked on a lock

3l : blocked(t,1)

is_waiting(t) t is waiting on a lock

3l : waiting(t, 1)

slock(t)

t violates the resource ordering criterion

3l1, 1> : is_thread(t) A blocked(t,l1)A
held by(la,t) A —idlt(l2, 1)

wait_for(ti,t2) | t1 is waiting for a resource held by t»

3l : blocked(t1,ly) A held_by(ta,ly)

object o2 is reachable from object o1

rflfld)(o1, 02) using a path of fld edges

rvalue[ fld]* (01, 02)

object o is reachable from thread ¢

rt[ref, fld](t,0) | by a path starting with a single ref

edge followed by any number of fld edges

ot : rvaluelv](t, o¢) A rvalue[next]* (ot 0)

Table 4: Instrumentation predicates for partial Java semantics.
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5.3 ThreadStateErrors

We use instrumentation predicates to record thread-state
information: ts_created(t), ts-running(t), ts-blocked(t),
ts_waiting(t) and ts_dead(t). In order to identify thread-
state errors, we add preconditions identifying when an ac-
tion is illegal or suspicious, these preconditions are listed in
Table 5.

EXAMPLE 5.1. Assume an erroneous version of the run-
ning example (Figure 2) in which an unsynchronized ver-
sion of put () is used. Configuration Co shown in Figure 9
demonstrates a possible interference in the program identi-
fied by our analysis. In the configuration Cy a consumer is
trying to take() the last item, and a producer is simultane-
ously trying to put () an item.

The consumer thread reached label lts and is about to ex-
ecute the action for newHead = head.nezt. The producer
thread, having found that the queue is not empty, reached
label lps, and is about to execute the tail.next=r_1i action.
The RW-Interference formula from Table 3 evaluates to 1
for this configuration since both threads reference the same
object < u0 >. Thus RW-Interference is detected.

It is important to note that if the queue has more than one
item, RW-Interference is not introduced, and our analysis
will report that RW-Interference does not occur (since head
and tail refer to different objects).

5.4 UnboundedNumber of Threads

When a system consists of many identical threads, the
state-space can be reduced by exploiting symmetry.

In model checking, the global state of a system is usually
described as a tuple containing thread program-counters,
and value assignments for shared variables [15]. In [15], sym-
metry is found between process indices. In our framework,
thread names are canonic names, that is - only determined
by thread properties. Thus, there is no need to explicitly de-
fine permutation-equivalence. The mapping to the canonic
names eliminates symmetry in the state space.

We demonstrate the power of our abstraction by taking
the example of a critical section from [15], and verifying
that the mutual ezclusion property holds for an unbounded
number of threads.

EXAMPLE 5.2. Consider the approveHead() method of
class Queue. We would like to verify mutual exclusion over
the critical section protected by synchronized(this). For
readability of this example we define all labels inside the crit-
ical section as a single label lerit. The property we detect
8 Htl,tQ : (tl 75 tz) A at[lm«it](tl) A at[lm«it](tQ)). The ini-
tial state for the analysis contains an unbounded number of
threads represented by a summary node. Figure 10 shows
three tmportant abstract configurations arising in the analy-
sis of the example.

6. PROTOTYPE IMPLEMENT ATION

We have implemented a prototype of our framework called
3VMC [40]. Our implementation is based on the 3-valued
logic engine of TVLA [24]. We applied the analyses to sev-
eral small but interesting programs. Table 6 summarizes the
programs we tested, with number of configurations created,
and running times. Running times were measured using
Sun’s JVM1.2.2 for Windows NT, running on a 600MHZ
Pentium III.

In our prototype, the conservative effect of an action is im-
plemented in terms of the focus and coerce operations. Due
to space limitations we can not elaborate, and the reader is
referred to [34].

The swap and swap_ord programs use two threads swap-
ping items in a linked list. swap does not use resource



| Problem | Action | Precondition | Warning |
Multiple starts v.start() rvaluelv](t., dt) A ts_running(dt) IllegalT hreadState Exception
rvalue[v](t,, dt) A ts_dead(dt) Dead thread can not be re-started
Premature stop | v.stop() rvaluelv](t,, dt) A ts_created(dt) Thread stopped before started
Missing ownership | v.wat() rvaluelv](t., 1) A -held_by(l,t) Illegal M onitor State Exception
v.noti fy() rvalue[v](t., 1) A —held_by(l,t) Illegal M onitor State Exception
rvalue[v](tr,l) A 23(tw) : waiting(tw,!) | A notify was ignored
Premature join v.join() rvalue[v](t,, dt) A ts_created(dt) Thread join before started
Late setDaemon | v.setDaemon() | rvalue[v](t,,dt) A tsrunning(dt) Illegal M onitor State Exception

Table 5: Preconditions for checking illegal and suspicious thread interactions.

Cho,0 - initial

Cho,1 - thread inside critical section

Cho,2 - other threads blocked
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Figure 10: Configurations arising in mutual exclusion with an unbounded number of threads.

ordering, and thus may deadlock, swap_ord uses resource
ordering, and thus can not deadlock. stack and sStack are
non-synchronized and synchronized versions of a Stack ADT
manipulated by multiple threads. mutex is a simple pro-
gram using mutual exclusion to protect a critical section.
prodcons and sProdCons are implementations of Queue
ADT manipulated by producer and consumer threads. The
twoLock(@ is an implementation of the two-lock queue pre-
sented in [27] which is verified to preserve the invariants
described in the manual proof of correctness in [27]. The
DP program is an implementation of the dining philosophers
problem with unbound number of philosopher threads.

7. CONCLUSION AND FURTHER WORK

We have presented a parametric framework for verifying
safety properties of concurrent Java programs. Our frame-
work is a generalization of existing model-checking tech-
niques. The framework allows verification of multithreaded
programs manipulating heap-allocated objects, and does not
put a bound on the number of allocated objects.

We intend to exploit partial order reduction techniques
such as [21] in order to improve scalability of our analysis.

Additional improvement may be gained by using symbolic
representation of configurations using OBDDs [2, 3].

We believe that our framework can be extended to al-
low verification of general temporal specification other than
safety properties.
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| Program [ Description [ Config. | Time (sec) |
swap swapping list 16 10
elements
swap-ord | swapping 1 12
list elements
with resource
ordering
stack interference 184 304
on a non-
synchronized
stack
sStack synchronized 104 330
stack
mutex mutual ex- 33 2
clusion with
unbound
threads
nestedMon | nested moni- 42 7
tors
prodCons | producer con- 416 68
sumer
sProdCons | synchronized 195 48
producer
consumer
twoLockQ | two-lock 74 14
queue
DP dining 514 23
philosophers
unbound
threads

Table 6: Number of configurations,
times for the programs analyzed.

and running
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APPENDIX

A. SOME OF THE ANALYZED JAVA PRO-

GRAMS

public void swapContents(QueueItem other) {
if ( this.hashCode() < other.hashCode()) {
synchronized(this) {
syncronized (other) {
tempValue = other.value;
other.value = value;
value = tempValue;

}

} else {
synchronized (other) {
syncronized(this) {
tempValue = other.value;
other.value = value;
value = tempValue;

}
}
}
}

Figure 12: Swapping the contents of queue items

with resource ordering.

// TwolLockQueue. java

public class TwoLockQueue {
private Queueltem head;
private Queueltem tail;
private Object headLock;
private Object tailLock;

public void put(Object value) {
Queueltem x_i = new Queueltem(value);
synchronize(tailLock) {
tail.next = x_i;
tail = x_.i;
}
}
public Object take() {
synchronized (headLock) {
Object x.d = null;
Queueltem first=head.next;
if (first != null) {
x_.d = first.value;
head = first;
head.value = null;
}
}

return x._d;

——

Figure 13: Simplified Java source code for a two-

lock-queue implementation.



