
Parametric Shape Analysis via 3-Valued LogicMooly Sagiv�Tel-Aviv Univ. Thomas RepsyUniv. of Wisconsin Reinhard WilhelmzUniv. des SaarlandesAbstractWe present a family of abstract-interpretation algorithms thatare capable of determining \shape invariants" of programsthat perform destructive updating on dynamically allocatedstorage. The main idea is to represent the stores that can pos-sibly arise during execution using three-valued logical struc-tures.Questions about properties of stores can be answered byevaluating predicate-logic formulae using Kleene's semanticsof three-valued logic:� If a formula evaluates to true, then the formula holds inevery store represented by the three-valued structure.� If a formula evaluates to false, then the formula doesnot hold in any store represented by the three-valuedstructure.� If a formula evaluates to unknown, then we do not knowif this formula always holds, never holds, or sometimesholds and sometimes does not hold in the stores repre-sented by the three-valued structure.Three-valued logical structures are thus a conservative repre-sentation of memory stores.The approach described is a parametric framework: It pro-vides the basis for generating a family of shape-analysis al-gorithms by varying the vocabulary used in the three-valuedlogic.1 IntroductionData structures built using pointers can be characterized byinvariants describing their \shape" at stable states, i.e., in be-tween operations on them. These invariants are usually notpreserved by the execution of individual program statements,and it is challenging to prove that invariants are reestab-lished once a sequence of operations is �nished [9]. Inthe past two decades, many \shape-analysis" algorithms havebeen developed that can automatically identify shape invari-ants in some programs that manipulate heap-allocated stor-age [11, 12, 15, 10, 2, 21, 1, 16, 22, 19]. A common feature ofthese algorithms is that they represent heap cells by \shape-nodes" and sets of \indistinguishable" run-time locations bya single shape-node, often called a summary-node [2]. One�Supported in part by the U.S.-Israel BSF under grant 96-00337.Address: Dept. of Comp. Sci.; Tel-Aviv Univ.; Tel-Aviv 69978; Israel.E-mail: sagiv@math.tau.ac.il.ySupported in part by the NSF under grants CCR-9625667 and CCR-9619219, by the U.S.-Israel BSF under grant 96-00337, by grants fromRockwell and IBM, and by a Vilas Associate Award from the Univ. ofWisconsin. Address: Comp. Sci. Dept.; Univ. of Wisconsin; 1210 W.Dayton St.; Madison, WI 53706; USA. E-mail: reps@cs.wisc.edu.zSupported in part by a DAAD-NSF Collaborative Research Grant.Address: Fachbereich 14 Informatik; Univ. des Saarlandes; 66123Saarbr�ucken; Germany. E-mail: wilhelm@cs.uni-sb.de.To appear in the Proceedings of the Twenty-Sixth ACMSymposium on Principles of Programming Languages, SanAntonio, TX, Jan., 1999.

way of looking at these algorithms is that \shape graphs" areindirect representations of store invariants.1.1 Main ResultsThis paper presents a parametric framework for shape analy-sis. Di�erent instantiations of the framework allow the usagepatterns of di�erent kinds of data structures in a program tobe observed, or allow the usage patterns of data structuresto be observed with di�erent levels of precision and e�ciency.The ideal is to have a fully automatic method|a yacc forshape analysis, so to speak. The \designer" of a shape-analysisalgorithm would supply only the speci�cation, and the shape-analysis algorithm would be created automatically from thisspeci�cation. This can be achieved by means of the methodspresented in this paper.Moreover, the framework allows us to create algorithmsthat are more precise than the above-cited algorithms. Inparticular, by tracking which run-time locations are reachablefrom which program variables, it is often possible to deter-mine precise shape information for programs that manipulateseveral (possibly cyclic) data structures. Other static-analysistechniques (including ones that are not based on shape graphs[14, 6, 8, 4, 5]) yield very imprecise information on these pro-grams.1.1.1 The Use of Logic for Shape AnalysisIn our shape-analysis framework, predicate-logic formulae playmany roles: expressing both the concrete and abstract seman-tics of the programming language, expressing properties ofstore elements (e.g., may-aliases, must-aliases), and express-ing properties of stores (e.g., data-structure invariants). Forinstance, the predicate x(v) expresses whether pointer variablex points to heap cell v; the binary predicate n(v1; v2) expresswhether the n-component of heap cell v1 points to heap cell v2;to specify the e�ect of the statement \x = x->n" on variablex (part of the concrete semantics), we write the formulax0(v) = 9v1 : x(v1) ^ n(v1; v): (1)This indicates that after this statement, variable x points toa heap cell that was formerly pointed to by x->n. To expressthe property \program variables x and y are not may-aliases",we write the formula8v : :(x(v) ^ y(v)): (2)1.1.2 Shape Analysis via Three-Valued LogicWe use Kleene's three-valued logic [13] (which has a thirdtruth value that signi�es \unknown") to create a shape-analysisalgorithm automatically from a speci�cation. Kleene's logic isuseful for shape analysis because we only have partial infor-mation about summary nodes: For these nodes, predicatesmay have the value unknown. One of the nice properties ofKleene's three-valued logic is that the interpretations of for-mulae in two-valued and three-valued logic coincide on trueand false. This comes in handy for shape analysis, where wewish to relate the concrete (two-valued) world and the ab-stract (three-valued) world: The advantage of using logic isthat it allows us to make a statement about both the concrete1



and abstract worlds via the same formula|the same syntac-tic expression can be interpreted either as statement aboutthe two-valued world or the three-valued world.In this paper, shape graphs are represented as \three-valuedlogical structures" that provide truth values for every formula.Therefore, by evaluating formulae, one obtains simple algo-rithms for: (i) executing statements abstractly, and (ii) (con-servatively) extracting store properties from a shape graph.For example, formula (2) evaluates to true for an abstractstore in which x and y do not point to the same shape-node.In this case, we know that x and y cannot be aliases. For-mula (2) evaluates to false for an abstract store in which xand y point to the same non-summary node. In this case,we know that x and y are aliases. However, the formula canevaluate to unknown when both x and y point to a summary-node. In this case, the analysis does not know if x and y canbe aliases.In Sections 2 and 4, we show how these mechanisms can beexploited to create a parametric framework for shape-analysis.This technique su�ces to explain the algorithms of [11, 10, 2,21].1.1.3 Materialization of New Nodes from Summary NodesOne of the magical aspects of [19] is \materialization", inwhich a transfer function splits a summary-node into two sep-arate nodes. (This operation is also discussed in [2, 16].) Thisturns out to be important for maintaining accuracy in theanalysis of loops that advance pointers through data struc-tures. The parametric framework provides insight into theworkings of materialization. It shows that the essence of ma-terialization involves a step (called focus , discussed in Sec-tion 5.1) that forces the values of certain formulae from un-known to true or false. This has the e�ect of converting ashape graph into one with �ner distinctions.In [19], it was observed that node materialization is com-plicated because various kinds of shape-graph properties areinterdependent. For instance, the connections between heapcells constrain the sets of potential aliases, and vice versa. Inthis paper, we introduce a mechanism for expressing (three-valued) constraints on shape graphs, which we use to capturesuch dependences between properties.1.2 LimitationsThe results reported in the paper are limited in the followingways:� The framework creates intraprocedural shape-analysisalgorithms, not interprocedural ones. Methods for han-dling procedures are presented in [2, 1, 19]. Becausethese are instances of the framework, their methods forhandling procedures should generalize to the parametriccase.� The number of possible shape-nodes that may arise dur-ing abstract interpretation is potentially exponential inthe size of the speci�cation. We do not know how severethis problem is in practice. However, it is possible to de-�ne a widening operator that converts a shape graph intoa more compact, but possibly less precise, shape graphby collapsing more nodes into summary nodes. This canbe used to make a shape-analysis algorithm polynomial,at the cost of making the results less accurate.� The number of shape graphs may be quite large (asin [11, 10]). This problem was avoided in [15, 2, 16, 19]by keeping a single merged shape graph at every point.

/* list.h */typedef struct node fstruct node *n;int data;g *List;
/* reverse.c */#include ``list.h''List reverse(List x) fList y, t;assert(acyclic list(x));y = NULL;while (x != NULL) ft = y;y = x;x = x->n;y->n = t;greturn y;g(a) (b)Figure 1: (a) Declaration of a linked-list data type in C. (b) AC function that uses destructive updating to reverse the listpointed to by parameter x.This measure has not been employed in this paper inorder to simplify the presentation.1.3 Organization of the PaperWe explain our work by presenting two versions of the shape-analysis framework. The �rst version is used to introducemany of the key ideas, but in a simpli�ed setting: Section 2provides an overview of the simpli�ed version and presents anexample of it in action; Section 4 gives the technical details.Section 3 presents technical details of how three-valued logic isused to de�ne abstractions of concrete stores (which is neededfor Section 4 and subsequent sections). Section 5 de�nes themore elaborate version of the shape-analysis framework. Dueto space constraints, some aspects of the abstract semanticsare omitted (see [18]). Section 6 contains a short account ofrelated work.2 An Overview of the Parametric FrameworkFigure 1(a) shows the declaration of a linked-list data type inC, and Figure 1(b) shows a C program that reverses a list viadestructive updating. The analysis of the shapes of the datastructures that arise at the di�erent points in the reverseprogram will serve as the subject of the examples given in theremainder of the paper. The reverse program allows us todemonstrate many aspects of the shape-analysis framework ina nontrivial, but still relatively digestible, fashion.2.1 Representing Stores via Three-Valued StructuresIn Section 1, we couched the discussion in terms of shape-graphs for the convenience of readers who are familiar withprevious work. Formally, we do not work with shape-graphs;instead, the abstractions of stores will be what logicians callthree-valued logical structures, denoted by hU; �i. There is avocabulary of predicate symbols (with given arities); each log-ical structure has a universe of individuals U , and � maps eachpossible tuple p(u1; : : : ; uk) of an arity-k predicate symbol p,where ui 2 U , to the value 0, 1, or 1=2, (i.e., false, true, andunknown, respectively). Logical structures are used to pro-vide a uniform representation of stores: Individuals representabstractions of memory locations; pointers from the stack intothe heap are represented by unary \pointed-to-by-variable-x"predicates; and pointer-valued �elds of data structures are rep-resented by binary \pointer-component-points-to" predicates.2



S Structure GraphicalRepresentationS0 unary predicates:indiv. x y t sm isbinary predicates:nS1 unary predicates:indiv. x y t sm isu1 1 0 0 0 0binary predicates:n u1u1 0 x // ? > = < 8 9 : ;u1
S2 unary predicates:indiv. x y t sm isu1 1 0 0 0 0u 0 0 0 1=2 0binary predicates:n u1 uu1 0 1=2u 0 1=2 x // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un��Figure 2: The three-valued logical structures that describe allpossible acyclic inputs to reverse.Assuming that reverse is invoked on acyclic lists, thethree-valued structures that describe all possible inputs toreverse are shown in Figure 2. The following graphical no-tation is used for three-valued logical structures: Individualsof the universe are represented by circles with names inside.Summary nodes (i.e., nodes for which the value of predicatesm is 1=2) are represented by double circles. Other unarypredicates with value 1 (1=2) and binary pointer-component-points-to predicates are represented by solid (dotted) arrows.Thus, in structure S2, pointer variable x points to element u1,whose n �eld may point to a location represented by elementu. u is a summary node, i.e., it may represent more than onelocation. Possibly there is an n �eld in one of these locationsthat points to another location represented by u.S2 corresponds to stores in which program variable x pointsto an acyclic list of two or more elements:� The abstract element u1 represents the head of the list,and u represents all the tail elements.� The unary predicates x, y, and t are used to characterizethe list elements pointed to by program variables x, y,and t, respectively.� The unary predicate sm indicates whether abstract el-ements are \summary elements", i.e., represent morethan one concrete list element in a given store. Thus,sm(u1) = 0 because u1 represents a unique list element,the list head. In contrast, sm(u) = 1=2, because u repre-sents a single list element when the input list has exactlytwo elements, and more than one list element when theinput list is of length three or more.� The unary predicate is is explained in Section 2.2.� The binary predicate n represents the n �elds of list el-ements. The value of n(u1; u) is 1=2 because there arelist elements represented by u that are not immediaten{successors of u1.The structures S0 and S1 represent the simpler cases of listsof length zero and one, respectively.

2.2 Conservative Extraction of Store PropertiesThree-valued structures o�er a systematic way to answer ques-tions about properties of stores:Observation 2.1 [Property-Extraction Principle]. Ques-tions about properties of stores can be answered by evaluatingformulae using Kleene's semantics of three-valued logic:� If a formula evaluates to 1, then the formula holds inevery store represented by the three-valued structure.� If a formula evaluates to 0, then the formula never holdsin any store represented by the three-valued structure.� If a formula evaluates to 1=2, then we do not know if thisformula always holds, never holds, or sometimes holdsand sometimes does not hold.2 In Section 3.3, we give the Embedding Theorem (Theo-rem 3.7), which states that the three-valued Kleene interpre-tation in S of every formula is consistent with the formula'stwo-valued interpretation in every concrete store that S rep-resents.Now consider the formula'(v) def= 9v1; v2 : n(v1; v) ^ n(v2; v) ^ v1 6= v2; (3)which expresses the property \Do two or more di�erent cellspoint to v?" Formula '(v) evaluates to 1=2 in S2 for v 7! u,v1 7! u, and v2 7! u1, because n(u; u) ^ n(u1; u) ^ u 6= u1 =1=2^ 1=2^ 1, which equals 1=2. The intuition is that becausethe values of n(u; u) and n(u1; u) are unknown, we do notknow whether or not two di�erent cells point to u.This uncertainty implies that the tail of the list pointed toby x might be shared (and the list could be cyclic, as well).In fact, neither of these conditions ever holds in the concretestores that arise in the reverse program.To avoid this imprecision, our abstract structures have anextra \instrumentation predicate", is(v), that represents thetruth values of formula (3) for the elements of concrete struc-tures that v represents. In particular, is(u) = 0 in S2. Thisfact implies that S2 can only represent acyclic, unshared listseven though formula (3) evaluates to 1=2 on u.The preceding discussion illustrates the following principle:Observation 2.2 [Instrumentation Principle]. SupposeS is a three-valued structure that represents concrete store S\.By explicitly \storing" in S the values that a formula ' hasin S\, we can maintain �ner distinctions in S than can beobtained by evaluating ' in S. 22.3 Simple Abstract Interpretation of Program StatementsOur main tool for expressing the semantics of program state-ments is based on the Property-Extraction Principle:Observation 2.3 [Expressing Semantics of Statementsvia Logical Formulae]. Suppose a structure S represents aset of stores that arise before statement st. A structure thatrepresents the corresponding set of stores that arise after stcan be obtained by extracting a suitable collection of propertiesfrom S (i.e., by evaluating a suitable collection of formulaethat capture the semantics of st). 2Figure 3 illustrates the �rst two iterations of an abstractinterpretation of reverse on the structure S2 from Figure 2.The value of a predicate p(v) after a statement executes isobtained by evaluating a predicate-update formula p0(v). Theappropriate predicate-update formulae for each statement areshown in the second column of Figure 3. Figure 3 lists apredicate-update formula p0(v) only if predicate p is a�ected3



statement formula structure that arises just after statementst1: y = NULL; y0(v) = 0 x // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un�� S3st2: t = y; t0(v) = y(v) x // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un�� S4st3: y = x; y0(v) = x(v) x; y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un�� S5st4: x = x->n; x0(v) = 9v1 : x(v1) ^ n(v1; v) y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un�� xoo S6st5: y->n = t; n0(v1; v2) = (n(v1; v2) ^ :y(v1)) _ (y(v1) ^ t(v2))is0(v) = is(v) ^ 9v1; v2 : � v1 6= v2 ^ n(v1; v) ^ n(v2; v)^:y(v1) ^ :y(v2) �_ (t(v) ^ 9v1 : n(v1; v) ^ :y(v1)) y // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� xoo S7st2: t = y; t0(v) = y(v) y; t // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� xoo S8st3: y = x; y0(v) = x(v) t // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� x; yoo S9st4: x = x->n; x0(v) = 9v1 : x(v1) ^ n(v1; v) t // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� x; yoo S10st5: y->n = t; n0(v1; v2) = (n(v1; v2) ^ :y(v1)) _ (y(v1) ^ t(v2))is0(v) = is(v) ^ 9v1; v2 : � v1 6= v2 ^ n(v1; v) ^ n(v2; v)^:y(v1) ^ :y(v2) �_ (t(v) ^ 9v1 : n(v1; v) ^ :y(v1)) t // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +unoo

n
�� x; yoo S11st2: t = y; t0(v) = y(v) ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +unoo

n
�� x; y; too S12st3: y = x; y0(v) = x(v) ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +unoo

n
�� x; y; too S13st4: x = x->n; x0(v) = 9v1 : x(v1) ^ n(v1; v) x // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +unoo

n
�� x; y; too S14st5: y->n = t; n0(v1; v2) = (n(v1; v2) ^ :y(v1)) _ (y(v1) ^ t(v2))is0(v) = is(v) ^ 9v1; v2 : � v1 6= v2 ^ n(v1; v) ^ n(v2; v)^:y(v1) ^ :y(v2) �_ (t(v) ^ 9v1 : n(v1; v) ^ :y(v1)) x // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +unoo

n
�� x; y; too S15isOOFigure 3: The �rst three iterations of the abstract interpretation of reverse (via the simpli�ed framework described in Section 4).In this example, reverse is applied to structure S2 from Figure 2, which represents lists of length two or more.by the execution of the statement. The shape-analysis al-gorithm illustrated in Figure 3 is essentially that of Chase etal. [2].Unfortunately, there is also bad news: The method de-scribed above and illustrated in Figure 3 can be very impre-cise. For instance, statement st4 sets x to x->n; i.e., it makesx point to the next element in the list. In the abstract inter-pretation, the following things occur:� In the �rst abstract execution of st4, x0(u) is set to 1=2because x(u1) ^ n(u1; u) = 1 ^ 1=2 = 1=2. In otherwords, x may point to one of the cells represented by thesummary node u (see the structure S6).� This eventually leads to the situation that occurs afterthe third abstract execution of st5, which produces struc-ture S15. Structure S15 indicates that \x, y, and t mayall point to the same (possibly shared) list".In Section 5, we show how it is possible to go beyond thesimpli�ed approach described above by \materializing" newnon-summary nodes from summary nodes as data structures

are traversed. As we will see, this allows us to determine thecorrect shape descriptors for the data structures used in thereverse program.3 Three-Valued Logic and EmbeddingThis section de�nes a three-valued �rst-order logic with equal-ity and transitive closure.We say that the values 0 and 1 are de�nite values and that1=2 is an inde�nite value, and de�ne a partial order v on truthvalues to re
ect information content: l1 v l2 denotes that l1has more de�nite information than l2:De�nition 3.1 For l1; l2 2 f0; 1=2; 1g, we de�ne the infor-mation order on truth values as follows: l1 v l2 if l1 = l2 orl2 = 1=2. The symbol t denotes the least-upper bound opera-tion with respect to v. 2Kleene's semantics of three-valued logic is monotonic in theinformation order (see De�nition 3.4).4



Predicate Intended Meaningx(v) Does pointer variable x point to element v?sm(v) Does element v represent more than oneconcrete element?n(v1; v2) Does the n �eld of v1 point to v2?Table 1: The core predicates that correspond to the List data-type declaration from Figure 1(a).3.1 First-Order Formulae with Transitive ClosureLet P = fp1; : : : ; png be a �nite set of predicate symbols.We write �rst-order formulae over P using the logical con-nectives ^, _, :, and the quanti�ers 8 and 9. The sym-bol = denotes the equality predicate. The operator `TC 'denotes transitive closure on formulae. We also use severalshorthand notations: For a binary predicate p, p+(v3; v4) isa shorthand for (TC v1; v2 : p(v1; v2))(v3; v4); '1 ) '2 is ashorthand for (:'1 _ '2); and '1 , '2 is a shorthand for('1 ) '2) ^ ('2 ) '1).Formally, the syntax of �rst-order formulae with equalityand transitive closure is de�ned as follows:De�nition 3.2 A formula over a vocabularyP = fp1; : : : ; png is de�ned inductively, as follows:Atomic Formulae The logical-literals 0, 1, and 1=2 areatomic formulae with no free variables.For every predicate symbol p 2 P of arity k, p(v1; : : : ; vk)is an atomic formula with free variables v1; : : : ; vk.The formula (v1 = v2) is an atomic formula with freevariables v1 and v2.Logical Connectives If '1 and '2 are formulae whose setsof free variables are V1 and V2, respectively, then ('1 ^'2), ('1_'2), and (:'1) are formulae with free variablesV1 [ V2, V1 [ V2, and V1, respectively.Quanti�ers If ' is a formula with free variables v1; v2; : : : ; vk,then (9v1 : ') and (8v1 : ') are both formulae with freevariables v2; v3; : : : ; vk.Transitive Closure If ' is a formula with free variables Vsuch that v1; v2 2 V and v3; v4 62 V , then (TC v1; v2 :')(v3; v4) is a formula with free variables (V �fv1; v2g)[fv3; v4g.A formula is closed when it has no free variables. 2In our application, the set of predicates P is partitionedinto two disjoint sets: the \core-predicates", C, and the\instrumentation-predicates", I. The core-predicates are partof the programming-language semantics. In contrast, the in-strumentation predicates are introduced in order to improvethe precision of the analysis (as described by Observation 2.2).Example 3.3 Table 1 contains the core-predicates for theList data-type declaration from Figure 1(a) and the reverseprogram of Figure 1(b). 2Table 2 lists some interesting instrumentation predicates,and Table 3 lists their de�ning formulae.� The sharing predicate is was introduced in [2] and alsoused in [19] to capture list and tree data structures.� The reachability-from-x predicate rx was mentioned in [19,p.38]. It drastically improves the precision of shape anal-ysis, even for programs that manipulate simple list andtree data structures, since it keeps separate the abstractrepresentations of data structures that are disjoint in theconcrete world.

Pred. Intended Meaning Purpose Ref.is(v) Do two or more �elds of lists and [2],heap elements point to v? trees [19]rx(v) Is v (transitively) separating [19]reachable from disjoint datapointer variable x? structuresr(v) Is v reachable from some compile-timepointer variable (i.e., is v garbagea non-garbage element)? collectionc(v) Is v on a directed cycle? ref. counting [11]cf:b(v) Does a �eld-f dereference doubly-linked [7],from v, followed by a lists [16]�eld-b dereference, yield v?cb:f (v) Does a �eld-b dereference doubly-linked [7],from v, followed by a lists [16]�eld-f dereference, yield v?Table 2: Examples of instrumentation predicates.'is(v) def= 9v1; v2 : n(v1; v) ^ n(v2; v) ^ v1 6= v2 (4)'rx(v) def= x(v) _ 9v1 : x(v1) ^ n+(v1; v) (5)'r(v) def= _x2PVar(x(v) _ 9v1 : x(v1) ^ n+(v1; v)) (6)'c(v) def= n+(v; v) (7)'cf:b (v) def= 8v1; v2 : f(v; v1) ^ b(v1; v2)) v2 = v (8)'cb:f (v) def= 8v1; v2 : b(v; v1) ^ f(v1; v2)) v2 = v (9)Table 3: Formulae that de�ne the meaning of the instrumen-tation predicates listed in Table 2.� The reachability predicate r identi�es non-garbage cells.This is useful for determining when compile-time garbagecollection can be performed.� The cyclicity predicate c was introduced by Jones andMuchnick [11] to aid in determining when reference count-ing would be su�cient.� The special cyclicity predicates cf:b and cb:f are used tocapture doubly-linked lists, in which forward and back-ward �eld dereferences cancel each other. This idea wasintroduced in [7] and also used in [16].3.2 Kleene's Three-Valued SemanticsIn this section, we de�ne Kleene's three-valued semantics for�rst-order formulae with transitive closure.De�nition 3.4 A three-valued interpretation of the lan-guage of formulae over P is a three-valued logical struc-ture S = hUS ; �Si, where US is a set of individuals and�S maps each predicate symbol p of arity k to a truth-valuedfunction:�S : P ! (US)k ! f0; 1; 1=2g:An assignment Z is a function that maps free variables toindividuals (i.e., an assignment has the functionalityZ : fv1; v2; : : : g ! US). An assignment that is de�ned onall free variables of a formula ' is called complete for '. Inthe sequel, we assume that every assignment Z that arises inconnection with the discussion of some formula ' is completefor '.The meaning of a formula ', denoted by [[']]S3 (Z), yieldsa truth value in f0; 1; 1=2g. The meaning of ' is de�ned in-ductively as follows:5



Atomic For a logical-literal l 2 f0; 1;1=2g, [[l]]S3 (Z) = l(where l 2 f0; 1; 1=2g).For an atomic formula p(v1; : : : ; vk),[[p(v1; : : : ; vk)]]S3 (Z) = �S(p)(Z(v1); : : : ; Z(vk))For an atomic formula (v1 = v2),[[v1 = v2]]S3 (Z) = 8><>: 0 Z(v1) 6= Z(v2)1 Z(v1) = Z(v2)^ �S(sm)(Z(v1)) = 01=2 otherwiseLogical Connectives For logical formulae '1 and '2[['1 ^ '2]]S3 (Z) = min([['1]]S3 (Z); [['2]]S3 (Z))[['1 _ '2]]S3 (Z) = max([['1]]S3 (Z); [['2]]S3 (Z))[[:'1]]S3 (Z) = 1� [['1]]S3 (Z)Quanti�ers If ' is a logical formula,[[8v1 : ']]S3 (Z) = minu2US [['1]]S3 (Z[v1 7! u])[[9v1 : ']]S3 (Z) = maxu2US [['1]]S3 (Z[v1 7! u])Transitive Closure For (TC v1; v2 : ')(v3; v4),[[(TC v1; v2 : ')(v3; v4)]]S3 (Z) =maxu1; : : : ; un 2 U;Z(v3) = u1; Z(v4) = un n�1mini=1 [[']]S3 (Z[v1 7! ui; v2 7! ui+1])We say that S and Z potentially satisfy ' (denoted byS; Z j= ') if [[']]S3 (Z) = 1=2 or [[']]S3 (Z) = 1. Finally, we writeS j= ' if for every Z: S; Z j= '. 2The only nonstandard part of De�nition 3.4 is the meaningof equality (denoted by the symbol `='). The predicate =is de�ned in terms of the sm predicate and the \identically-equal" relation on individuals (denoted by the symbol `='):1� Non-identical individuals u1 and u2 are unequal (i.e., ifu1 6= u2 then u1 6= u2 ).� A non-summary individual must be equal to itself (i.e.,if sm(u) = 0, then u = u).� In all other cases, we throw up our hands and return1=2.Three-valued logic retains a number of properties that arefamiliar from two-valued logic, such as commutativity and as-sociativity of ^ and _, distributivity of ^ over _ and viceversa, De Morgan laws, etc.3.3 The Embedding TheoremIn this section, we formulate the Embedding Theorem, whichgives us a tool to relate two- and three-valued interpretations.We de�ne the embedding ordering on structures as follows:De�nition 3.5 Let S = hUS; �Si and S0 = hUS0 ; �S0i be twostructures. Let f : US ! US0 be surjective. We say that fembeds S in S0 (denoted by S vf S0) if (i) for every predicatesymbol p of arity k and all u1; : : : ; uk 2 US,�S(p)(u1; : : : ; uk) v �S0(p)(f(u1); : : : ; f(uk)) (10)1Note the typographical distinction between the syntactic symbol forequality, namely `=', and the symbol for the \identically-equal" relationon individuals, namely `='.

and (ii) for all u0 2 US0 ;(jfu j f(u) = u0gj > 1) v �S0(sm)(u0) (11)We say that S can be embedded in S0 (denoted by S vS0) if there exists a function f such that S vf S0. 2Note that inequality (10) applies to the summary predi-cate, sm, as well.A special kind of embedding is a tight embedding , in whichinformation loss is minimized when multiple individuals of Sare mapped to the same individual in S0:De�nition 3.6 A structure S0 = hUS0 ; �S0i is a tight em-bedding of S = hUS; �Si if there exists a surjective functiont embed : US ! US0 such that, for every p 2 P � fsmg ofarity k,�S0(p)(u01; : : : ; u0k) = Gt embed(ui)=u0i;1�i�k �S(p)(u1; : : : ; uk)(12)and for every u0 2 US0 ,�S0(sm)(u0) = (jfujt embed(u) = u0gj > 1)tGt embed(u)=u0 �S(sm)(u) (13)Because t embed is surjective, equations (12) and (13)uniquely determine S0 (up to isomorphism); therefore, we saythat S0 = t embed(S). 2It is immediately apparent from De�nition 3.6 that thetight embedding of a structure S by a function t embed pos-sessing properties (12) and (13) embeds S in t embed(S), i.e.,S vt embed t embed(S).If f : US ! US0 is a function and Z : V ar ! US is anassignment, f � Z denotes the assignment f � Z : V ar! US0such that (f � Z)(v) = f(Z(v)).We are now ready to state the embedding theorem. Intu-itively, it says:If S vf S0, then every piece of information ex-tracted from S0 via a formula ' is a conservativeapproximation of the information extracted fromS via '.Theorem 3.7 [Embedding Theorem]. Let S = hUS ; �Siand S0 = hUS0 ; �S0i be two structures and f : US ! US0 suchthat S vf S0. Then, for every formula ' and complete assign-ment Z for ', [[']]S3 (Z) v [[']]S03 (f � Z). 23.4 Compatible StructuresWe use 3-STRUCT[P] to denote the set of general three-valued structures over vocabulary P, and 2-STRUCT[P] todenote the normal two-valued structures over P. (Note that2-STRUCT[P] � 3-STRUCT[P].)Suppose that P is a C program that operates on the Listdata-type of Figure 1(a), and that S\ 2 2-STRUCT[P] is atwo-valued structure over the appropriate vocabulary. As de-scribed in Table 1, our intention is that S\ capture a List-valued store in the following manner:� Each cell in heap-allocated storage corresponds to anindividual in US\ .� For every individual u, �S\(x)(u) = 1 if and only if theheap cell that u represents is pointed to by program vari-able x.� For every pair of individuals u1 and u2, �S\(n)(u1; u2) =1 if and only if the n �eld of u1 points to u2.6



for each x 2 PVar ; 8v1; v2 : x(v1) ^ x(v2) ) v1 = v2 (14)8v1; v2 : (9v3 : n(v3; v1) ^ n(v3; v2)) ) v1 = v2 (15)8v : (9v1; v2 : v1 6= v2 ^ n(v1; v) ^ n(v2; v)) ) is(v) (16)8v : :(9v1; v2 : v1 6= v2 ^ n(v1; v) ^ n(v2; v)) ) :is(v) (17)8v2; v : (9v1 : :is(v) ^ v1 6= v2 ^ n(v1; v)) ) :n(v2; v) (18)8v1; v : (9v2 : :is(v) ^ v1 6= v2 ^ n(v2; v)) ) :n(v1; v) (19)8v1; v2 : (9v : :is(v) ^ n(v1; v) ^ n(v2; v)) ) v1 = v2 (20)Table 4: Compatibility formulae F for structures that repre-sent a store of the reverse program, which operates on theList data-type declaration from Figure 1(a). The rules belowthe line are logical consequences of the rules above the line,and are generated systematically from the rules above the line,as explained in Section 5.2.1.(Similar statements hold for the instrumentation predicates,as indicated in Table 2.)However, not all structures S\ 2 2-STRUCT[P] representstores that are compatible with the semantics of C. For exam-ple, stores have the property that each pointer variable pointsto at most one element in heap-allocated storage. Conse-quently, we are not interested in all structures in 2-STRUCT[P],but only in ones compatible with the semantics of C. Table 4lists a set of compatibility formulae F (or \hygiene condi-tions") that must be satis�ed for a structure to represent astore of a C program that operates on the List data-type fromFigure 1(a). Formula (14) captures the fact that every pro-gram variable points to at most one list element. Formula (15)captures a similar invariant on the n �elds of List structures:Whenever the n �eld of a list element is non-NULL, it points toat most one list element.In addition, for every instrumentation predicate p 2 I de-�ned by a formula 'p(v1; : : : ; vk), we generate a compatibilityformula of the following form:8v1; : : : ; vk : 'p(v1; : : : ; vk) , p(v1; : : : ; vk) (21)This is then broken into two formulae of the form:8v1; : : : ; vk : 'p(v1; : : : ; vk) ) p(v1; : : : ; vk)8v1; : : : ; vk : :'p(v1; : : : ; vk) ) :p(v1; : : : ; vk)For instance, for the instrumentation predicate is, we useformula (4) for 'is to generate compatibility formulae (16)and (17).In the remainder of the paper, 2-CSTRUCT[P; F ] denotesthe set of two-valued structures that satisfy a set of compati-bility formulae F .Compatibility constraints for three-valued structures arediscussed in Section 5.2.1.4 A Simple Abstract SemanticsIn this section, we formally work out the abstract-interpretationalgorithm that was sketched in Section 2.3. In Section 4.1, wede�ne how (a potentially in�nite number of) concrete struc-tures can be represented conservatively using a single three-valued structure. In Section 4.2, the meaning functions of theprogram statements are de�ned. To guarantee that the analy-sis of a program containing a loop terminates, we require thatthe number of potential structures for a given program be �-nite. For this reason, in Section 4.3 we introduce the set ofbounded structures, and show how every three-valued struc-ture can be mapped into a bounded structure. Section 4.4states the abstract interpretation in terms of a least �xed pointof a set of equations.

4.1 The Concrete Stores Represented by a Three-ValuedStructureDe�nition 4.1 (Concretization of Three-Valued Struc-tures) For a structure S 2 3-STRUCT[P], we denote by 
(S)the set of two-valued structures that S represents, i.e.,
(S) = fS\ j S\ v S; S\ 2 2-CSTRUCT[P; F ]g (22)2Example 4.2 The structure S2 shown in Figure 2 representslists of length two or more. 24.2 The Meaning of Program StatementsIn this subsection, we present a simple algorithm that, given aprogram, computes for every point in the program a conserva-tive approximation of the set of concrete structures that ariseat that point during execution. (This algorithm is re�ned inSection 5 to obtain a more precise solution.)We now formalize the abstract semantics that was dis-cussed in Section 2.3. The main idea is that for every state-ment st, the new values of every predicate p are de�ned via apredicate-update formula 'stp (referred to as p0 in Section 2.3).De�nition 4.3 Let st be a program statement, and for everyarity-k predicate p in vocabulary P, let 'stp be the formula overfree variables v1; : : : ; vk that de�nes the new value of p afterst. Then the P transformer associated with st, denotedby [[st]], is de�ned as follows:[[st]](S) = �US;�p:�u1; : : : ; uk:[['stp ]]S3 ([v1 7! u1; : : : ; vk 7! uk])�2Example 4.4 Table 5 lists the predicate-update formulae thatde�ne the abstract semantics of the �ve kinds of statementsthat manipulate data structures de�ned by the List data typegiven in Figure 1(a). (For the moment, ignore the case forstatements of the form x = malloc().) 2De�nition 4.3 does not handle statements of the form x =malloc() because the universe of S does not change. Instead,for statements of this form, we use the modi�ed de�nitionof [[st]](S) given in De�nition 4.5, which �rst allocates a newindividual unew , and then invokes predicate-update formulaein a manner similar to De�nition 4.3.De�nition 4.5 Let st � x = malloc() and let new 62 P bea unary predicate. For every p 2 P, let 'stp be a predicate-update formula over vocabulary P[fnewg. Then the P trans-former associated with st � x = malloc(), denoted by [[x =malloc()]], is de�ned as follows:[[x = malloc()]](S) =let U 0 = US [ funewg; where unew is an individual not in USand �0 = �p:�u1; : : : ; uk:8>>><>>>: 1 p = new ^ u1 = unew0 p = new ^ u1 6= unew1=2 p 6= new ^ _1�i�k ui = unew�S(p)(u1; : : : ; uk) otherwisein �U 0;�p:�u1; : : : ; uk:[['stp ]]hU0 ;�0i3 ([v1 7! u1; : : : ; vk 7! uk])�2 In De�nition 4.5, �0 is created from � as follows: (i) new(unew)is set to 1, (ii) new(u1) is set to 0 for all other individualsu1 6= unew , and (iii) all predicates are set to 1=2 when any7



st 'stpx = NULL 'stx (v) def= 0'stz (v) def= z(v), for each z 2 (PVar � fxg)'stn (v1; v2) def= n(v1; v2)'stsm(v) def= sm(v)x = t 'stx (v) def= t(v)'stz (v) def= z(v), for each z 2 (PVar � fxg)'stn (v1; v2) def= n(v1; v2)'stsm(v) def= sm(v)x = t->n 'stx (v) def= 9v1 : t(v1) ^ n(v1; v)'stz (v) def= z(v), for each z 2 (PVar � fxg)'stn (v1; v2) def= n(v1; v2)'stsm(v) def= sm(v)x->n = t 'stz (v) def= z(v), for each z 2 PVar'stn (v1; v2) def= (n(v1; v2) ^ :x(v1))_ (x(v1) ^ t(v2))'stsm(v) def= sm(v)x = malloc() 'stx (v) def= new(v)'stz (v) def= z(v) ^ :new(v),for each z 2 (PVar � fxg)'stn (v1; v2) def= n(v1; v2)^ :new(v1) ^ :new(v2)'stsm(v) def= sm(v) ^ :new(v)Table 5: Predicate-update formulae for the core predicates forList and reverse.argument is unew . The predicate-update operation in De�-nition 4.5 is very similar to the one in De�nition 4.3 after �0has been set. (Note that the p in \�0 = �p: : : : " ranges overP [ fnewg, whereas the p in \�p: : : : " appearing in the lastline of De�nition 4.5 ranges over P.)The Embedding Theorem immediately implies that thethree-valued interpretation is conservative with respect to ev-ery store that can possibly occur at run-time.The above two de�nitions are not the complete story. Inthe case of the instrumentation predicates, the statementsneed to maintain \correct instrumentation". This is formallyde�ned as follows:De�nition 4.6 A predicate-update formula 'stp maintains acorrect instrumentation for predicate p 2 I if, for allS\ 2 2-CSTRUCT[P; F ] and for all Z,[['stp ]]S\3 (Z) = [['p]][[st]](S\)3 (Z): (23)2Example 4.7 Table 6 gives the de�nitions of the predicate-update formulae for the instrumentation predicate is. It isnot hard to see that, for each kind of assignment statement,equation (23) holds. 2Henceforth, when discussing the general case (i.e., the para-metric framework), we assume that all predicate-update for-mulae maintain correct instrumentations.4.3 Bounded StructuresTo guarantee that shape analysis terminates for a programthat contains a loop, we require that the number of potential

st 'stisx = NULL 'stis(v) def= is(v)x = t 'stis(v) def= is(v)x = t->n 'stis(v) def= is(v)x->n = t 'stis(v) def= 0@ is(v) ^ 9v1; v2 : v1 6= v2^ n(v1; v) ^ n(v2; v)^ :x(v1) ^ :x(v2) 1A_ (t(v) ^ 9v1 : n(v1; v) ^ :x(v1))x = malloc() 'stis(v) def= is(v) ^ :new(v)Table 6: Predicate-update formulae for the instrumentationpredicate is.structures for a given program be �nite. Toward this end, wemake the following de�nition:De�nition 4.8 A bounded structure over vocabulary P isa structure S = hUS ; �Si such that for every u1; u2 2 US,where u1 6= u2, there exists a unary predicate symbol p 2 Psuch that (i) �S(p)(u1) 6= 1=2, (ii) �S(p)(u2) 6= 1=2, and(iii) �S(p)(u1) 6= �S(p)(u2).In the sequel, B-STRUCT[P] denotes the set of such struc-tures. 2There are two consequences of De�nition 4.8:� For every �xed set of predicate symbols P containingunary predicate symbolsA � P, there is an upper boundon the size of structures S 2 B-STRUCT[P], i.e., jUS j �2jAj.� The embedding of any structure into a bounded struc-ture S is unique.Example 4.9 Consider the class of bounded structures asso-ciated with the List data-type declaration from Figure 1(a).Here the predicate symbols are C = fsm; ng [ fx j x 2 PVargand I = fisg.2For the reverse program from Figure 1(b), the programvariables are x, y, and t, yielding unary core predicates x, y,and t; the other unary predicates are is and sm. Therefore,the maximum number of individuals in a structure is 25 = 32;however, a consequence of equation (13) is that sm cannothave the value 1, and thus the maximumnumber of individualsin a structure is really only 16. On the other hand, Figure 3shows that each structure that arises in the analysis of reversehas at most two individuals. 2One way to obtain a bounded structure is to map individ-uals into abstract individuals named by the de�nite values ofthe unary predicate symbols. That is, to embed unbounded-size structures into bounded-size ones, we exploit the followingabstraction principle, in which the mapping is controlledby a �xed set of unary \abstraction predicates"|the unarypredicates of the vocabulary:Individuals are partitioned into equivalence classesaccording to their sets of unary-predicate values.Every structure S\ is then represented (conserva-tively) by a condensed structure in which each in-dividual of S represents an equivalence class of S\.This is formalized in the following de�nition:2The predicate sm has a slightly di�erent status than the other corepredicates. It captures the essence of \summary-nodes", and thus hashas a �xed meaning in all concrete structures, namely, sm(u) = 0 forall u 2 US . Including sm in the concrete structures allows us to workwith the same vocabularies at the concrete and abstract levels.8



De�nition 4.10 The canonical abstraction of a structureS, denoted by t embed c(S), is the tight embedding induced bythe following mapping:t embed c(u) = ufp2A�fsmgj�S(p)(u)=1g;fp2A�fsmgj�S(p)(u)=0g:2 Note that t embed c can be applied to any three-valuedstructure, not just two-valued structures, and that t embed cis idempotent (i.e., t embedc(t embed c(S)) = t embed c(S)).The name \ufp2A�fsmgj�S(p)(u)=1g;fp2A�fsmgj�S(p)(u)=0g"is known as the canonical name of individual u.Example 4.11 In structure S2 from Figure 2, the canonicalname of individual u1 is ufxg;fy;t;isg, and the canonical nameof u is u;;fx;y;t;isg. In structure S5, which arises after the�rst abstract interpretation of statement st3 in Figure 3, thecanonical name of u1 is ufx;yg;ft;isg, and the canonical nameof u is u;;fx;y;t;isg. 2It is straightforward to generalize De�nition 4.10 to usejust a subset of the unary predicate symbols, rather than allof the unary predicate symbols A � P. This alternative yieldsbounded structures that have a smaller number of individu-als, but may decrease the precision of the shape-analysis al-gorithm. For instance, De�nition 4.10 is a generalization ofthe abstraction function used in [19].3 The only abstractionpredicates used in [19] are the \pointed-to-by-x" predicates;the predicate is is used only as an instrumentation predicatein [19], but not as an abstraction predicate (i.e., is does notcontribute to the canonical name of an individual in [19]).Consequently, the algorithm from [19] loses precision for storesthat contain both shared and unshared heap cells that are notdirectly pointed to by any variable. Adopting is as an addi-tional abstraction predicate improves the accuracy of shapeanalysis: In this case, shared heap cells and unshared heapcells are represented by abstract individuals that have di�er-ent canonical names.4.4 The Shape-Analysis AlgorithmIn this section, we de�ne the actual shape-analysis algorithm.De�nition 4.12 For structure sets XS1; XS1 � 3-STRUCT[P],we de�ne: XS1 v XS2 , 8S1 2 XS2 : 9S2 2 XS2 : S1 v S2.2 The shape-analysis algorithm itself is an iterative proce-dure that computes a set of structures, StructSet [v], for eachvertex v of control-
ow graph G, as a least �xed point of thefollowing system of equations over the variables StructSet [v]:StructSet [v] = 8><>: [w!v2Gft embedc[[st(w)]](S) j S 2 StructSet [w]gif v 6= startfh;; �p:�u1; : : : ; uk:1=2ig if v = startThe iteration starts from the initial assignment StructSet [v] =; for each control-
ow-graph vertex v. Because of the t embed coperation, it is possible to check e�ciently if two structuresare isomorphic.5 Improved Abstract SemanticsIn this section, we formulate the improved abstract interpre-tation referred to in Section 2. This analysis recovers preciseshape information for many list-manipulation programs, in-cluding ones that manipulate cyclic lists.3The shape-analysis algorithm presented in [19] is described in termsof Storage Shape Graphs (SSGs), not bounded structures. Our compar-ison is couched in terms of the terminology of the present paper.

fS5g focus����! fS5;f;0; S5;f;1; S5;f;2g[[st3]]??y ??y[[st3]]fS6g w fS6;0; S6;1; S6;2g  ����coerce fS5;o;0; S5;o;1; S5;o;2gFigure 4: One- vs. three-stage abstract semantics of statementst3. The operation [[st]] was already de�ned in Section 4. Thefocus and the coerce operations are introduced in Sections 5.1and 5.2, respectively. (This example will be discussed in fur-ther detail in Sections 5.1 and 5.2.)In contrast to the abstract meaning function for a state-ment st given in De�nition 4.3, in this section we decomposethe transformer for st into a composition of three functions,as depicted in Figure 4 and explained below:1. The operation focus, de�ned in Section 5.1, re�nes three-valued structures such that the formulae that de�ne themeaning of st evaluate to de�nite values. The focus op-eration thus brings these formulae \into focus".2. The transformer [[st]], de�ned in Section 4, is then ap-plied (see De�nitions 4.3 and 4.5).3. The operation coerce , de�ned in Section 5.2, converts athree-valued structure into a more precise three-valuedstructure by removing incompatibilities. In contrast tothe other two operations, coerce does not depend on theparticular statement st; it can be applied at any step(e.g., right after focus and before [[st]]) and may improveprecision.It is worthwhile noting that both focus and coerce aresemantic-reduction operations (originally de�ned in [3]). Thatis, they convert a set of three-valued structures into a moreprecise set of structures that describe the same set of stores.This property, together with the correctness of the structuretransformer [[st]], guarantees that the overall three-stage se-mantics is correct.5.1 Bringing Formulae Into FocusTo improve the precision of the simple abstract semantics ofSection 4 we de�ne an operation, called focus, that forces agiven formula ' to a de�nite value.5.1.1 The Focus OperationFirst, we de�ne an auxiliary operation, maximal , that returnsthe set of maximal structures in a given set of structures:De�nition 5.1 For a set of structures XS � 3-STRUCT[P],maximal(XS) def=XS � fX 2 XS j 9X 0 2 XS : X v X 0 and X 0 6v Xg2De�nition 5.2 Given a formula ', the operation focus' yieldsthe (potentially in�nite) set of structures in which ' evaluatesto a de�nite value, i.e.,focus'(S) = maximal0@8<:S0 ������S0 2 3-STRUCT[P]S0 v Sfor all Z : [[']]S03 (Z) 6= 1=2 9=;1A2Example 5.3 The upper part of Figure 5 illustrates the ap-plication of focus to the formula 'st4x (v) and the structure S5that we have in reverse between the �rst application of state-ment st3: y = x and the �rst application of statement st4: x= x->n in Figure 3. This results in three structures:9



� The structure S5;f;0, in which 'st4x (v) evaluates to 0 forall individuals. This structure represents a situation inwhich the concrete list that x and y point to has onlyone element, but the store also contains garbage cells,represented by summary node u.� The structure S5;f;1, in which [['st4x (v)]]S5;f;13 ([v 7! u])equals 1. This covers the case where the list that x andy point to is a list of exactly two elements: In all of theconcrete cells that summary node u represents, 'st4x (v)must evaluate to 1, and so u must represent just a singlelist node.� The structure S5;f;2, in which [['st4x (v)]]S5;f;23 ([v 7! u:0])equals 0 and [['st4x (v)]]S5;f;23 ([v 7! u:1]) equals 1. Thiscovers the case where the list that x and y point to is alist of three or more elements: In all of the concrete cellsthat u:0 represents, 'st4x (v) must evaluate to 0, and inall of the cells that u:1 represents, 'st4x (v) must evaluateto 1.This case captures the essence of node materializationas described in [19]: individual u is bifurcated into twoindividuals.Notice how focus'st4x (v) is e�ectively constructed from S5by considering the reasons why [['st4x (v)]]S53 (Z) evaluates to1=2 for a possible assignment Z: [['st4x (v)]]S53 ([v 7! u1]) equals0, and therefore 'st4x (v) is already in focus at u1; in contrast,[['st4x (v)]]S53 ([v 7! u]) equals 1=2. There are three (maximal)structures in which [['st4x (v)]]3([v 7! u]) has a de�nite value:� S5;f;0, in which n(u1; u) was forced to 0, and thus[['st4x (v)]]S5;f;03 ([v 7! u]) equals 0.� S5;f;1, in which n(u1; u) was forced to 1, and thus[['st4x (v)]]S5;f;13 ([v 7! u]) equals 1.� S5;f;2, in which u was bifurcated into two di�erent in-dividuals, u:0 and u:1. In S5;f;2, n(u1; u:0) was set to0, and thus [['st4x (v)]]S5;f;23 ([v 7! u:0]) equals 0, whereasn(u1; u:1) was set to 1, and thus [['st4x (v)]]S5;f;23 ([v 7! u:1])equals 1.Of course, there are other structures that can be embeddedinto S5 that would assign a de�nite value to 'st4x (v), but theseare not maximal (according to De�nition 5.1) because each ofthem can be embedded into one of S5;f;0, S5;f;1, or S5;f;2. 2In this paper, we simplify the analysis algorithm by onlyapplying focus with respect to 'stx formulae, which ensuresthat the number of resulting structures is �nite:Lemma 5.4 For every program variable x 2 PVar, statementst, and structure S, jfocus'stx (S)j � 3jUS j. 25.1.2 An Algorithm for FocusIn this section, we present an algorithm that implements focus'stx (v)by generating structures in which 'stx (v) has a de�nite value.A key aspect of the algorithm is the ability to identify themaximal structures in which 'stx (v) has a de�nite value. Recallthat the Hoare order on sets of structures is only a pre-partialorder (see De�nition 4.12). The following de�nition providesa way to compute a least upper bound and a greatest lowerbound on sets of structures sharing the same universe U .De�nition 5.5 Let XS1; XS2 � 3-STRUCT[P] such that forall S 2 XS1 [XS2, US = U . We de�ne the following opera-tions on XS1 and XS2:XS1 tXS2 def= maximal(XS1 [XS2)

XS1 uXS2 def=� hU; �p:�u1; : : : uk:�S1 (p)(u1; : : : ; uk) u �S2(p)(u1; : : : ; uk)ij S1 2 XS1 and S2 2 XS2 and comparable(S1 ; S2 )�where:comparable(S1 ; S2 ) =for all p 2 P; for all u1; : : : ; uk 2 U :�S1 (p)(u1; : : : ; uk) v �S2(p)(u1; : : : ; uk)or �S2 (p)(u1; : : : ; uk) v �S1(p)(u1; : : : ; uk)2 We are now ready to de�ne the operations z and o thatassure that a given formula evaluates to 0 and 1, respectively,in a given assignment.De�nition 5.6 Let S = hU; �i 2 3-STRUCT[P] be a three-valued structure. Let �[p(u1; : : : ; uk) l] denote the map ob-tained from � by updating �(p)(u1; : : : ; uk) to have the valuel. For a formula ' and assignment Z, we de�ne z(')(S;Z) 223-STRUCT[P] and o(')(S; Z) 2 23-STRUCT[P] inductively, asfollows: z(l)(S; Z) = � fSg if l = 0; otherwisez(v1 = v2)(S; Z) = � fSg if Z(v1) 6= Z(v2); otherwisez(p(v1; : : : ; vk))(S; Z) = 8<: fhU; �[p(Z(v1); : : : ; Z(vk)) 0]igif 0 v �(p(Z(v1); : : : ; Z(vk))); otherwisez('1 ^ '2)(S; Z) = z('1)(S; Z) t z('2)(S; Z)z('1 _ '2)(S; Z) = z('1)(S; Z) u z('2)(S; Z)z(:')(S; Z) = o(')(S; Z)z(8v : ')(S; Z) = Gu2U z(')(S; Z[v 7! u])z(9v : ')(S; Z) = u2U z(')(S; Z[v 7! u])o(l)(S; Z) = � fSg if l = 1; otherwiseo(v1 = v2)(S; Z) = � z(sm(v1))(S; Z) if Z(v1) = Z(v2); otherwiseo(p(v1; : : : ; vk))(S; Z) = 8<: fhU; �[p(Z(v1); : : : ; Z(vk)) 1]igif 1 v �(p(Z(v1); : : : ; Z(vk))); otherwiseo('1 ^ '2)(S; Z) = o('1)(S;Z) u o('2)(S; Z)o('1 _ '2)(S; Z) = o('1)(S;Z) t o('2)(S; Z)o(:')(S; Z) = z(')(S; Z)o(8v : ')(S; Z) = u2U o(')(S; Z[v 7! u])o(9v : ')(S; Z) = Gu2U o(')(S; Z[v 7! u])2Example 5.7 For the formula 'st4x (v), structure S5 from Fig-
10



inputstruct. S5 x; y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un��focusformulae f'st4x (v) = 9v1 : x(v1) ^ n(v1; v); 'st4y (v) = y(v); 'st4t (v) = t(v)gfocusedstruct. S5;f;0 'st4x (u) = 0x; y // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� S5;f;1 'st4x (u) = 1x; y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un�� S5;f;2 'st4x (u) = 1 'st4x (u) = 0x; y // ? > = < 8 9 : ;u1 n // G F E D @ A B C? > = < 8 9 : ;u:1n�� n // G F E D@ A B C? > = < 8 9 : ;u:0n��nkkupdateformulae 'st4x (v) 'st4y (v) 'st4t (v) 'st4is (v) 'st4sm(v) 'st4n (v1; v2)9v1 : x(v1) ^ n(v1; v) y(v) t(v) is(v) sm(v) n(v1; v2)outputstruct. S5;o;0y // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� S5;o;1 x
��y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;/ . - ,( ) * +un WW

S5;o;2 x
��y // ? > = < 8 9 : ;u1 n // G F E D @ A B C? > = < 8 9 : ;u:1n VV

n // G F E D @ A B C? > = < 8 9 : ;u:0n��nkkcoercedstruct. S6;0y // ? > = < 8 9 : ;u1 ? > = < 8 9 : ;/ . - ,( ) * +un�� S6;1 x
��y // ? > = < 8 9 : ;u1 n // ? > = < 8 9 : ;u S6;2 x

��y // ? > = < 8 9 : ;u1 n // G F E D @ A B Cu:1 n // G F E D @ A B C? > = < 8 9 : ;u:0n��Figure 5: The �rst application of the improved transformer for statement st4: x = x->n in reverse.ure 5, and individual u 2 US5 , we have:z('st4x )(S5; [v ! u])= z(9v1 : x(v1) ^ n(v1; v))(S5; [v ! u])= u02fu;u1g z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u0])= z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u])u z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u1])= � z(x(v1)(S5; [v ! u; v1 ! u])t z(n(v1; v))(S5; [v ! u; v1 ! u]))�u z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u1])= (fS5g t hfu; u1g; �S5 [n(u; u) 7! 0]i)u z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u1])= fS5g u z(x(v1) ^ n(v1; v))(S5; [v ! u; v1 ! u1])= fS5g u� (z(x(v1))(S5; [v ! u; v1 ! u1])t z(n(v1; v))(S5; [v ! u; v1 ! u1]))�= fS5g u z(n(v1; v))(S5; [v ! u; v1 ! u1])= fS5g u hfu; u1g; �S5 [n(u1; u) 7! 0]i= fhfu; u1g; �S5 [n(u1; u) 7! 0]ig= fS5;f;0gSimilarly, o('st4x )(S5; [v ! u]) = fS5;f;1g. 2Remark. In De�nition 5.6 we have ignored the case of for-mulae that include the transitive-closure operator. This wasdone both for notational simplicity, and because such formu-lae are not useful in the various predicate-update formulae 'stxemployed by the abstract semantics. It is possible to handlesuch formulae by enumerating structures in which formulaeevaluate to de�nite values. 2The algorithm for focus , called Focus, is shown in Figure 6.When all of structure S's individuals have de�nite values for'stx (v), Focus returns fSg; when S has an individual u that hasan inde�nite value for 'stx (v), Focus applies z and o to gener-ate structures in which the inde�niteness is removed, and thenrecursively applies Focus to each of the structures generated.The call on auxiliary function Expand creates a structure in

function Focus(S : 3-STRUCT[P], 'stx (v): Formula)returns 23-CSTRUCT[P;R(F )]beginif there exists u 2 US s.t. [['stx ]]S3 ([v 7! u]) = 1=2 thenlet u:0 and u:1 be individuals not in USand S0 = o('stx (v))(z('stx (v))(Expand(S; u; u:0; u:1);[v 7! u:0]);[v 7! u:1])and XS = z('stx (v))(S; [v 7! u])[ o('stx (v))(S; [v 7! u])[ S0in return [S002XS Focus(S00; 'stx (v))else return fSgendfunction Expand(S : 3-STRUCT[P], u; u:0; u:1: elements)returns 3-STRUCT[P]let m = �u0:�u if u0 = u:0 _ u0 = u:1u0 otherwise inreturn � (US � fug) [ fu:0; u:1g�p:�u1; : : : ; uk:�S(p)(m(u1); : : : ;m(uk))�Figure 6: An algorithm for focus'stx (v).which individual u is bifurcated into two individuals; this cap-tures the essence of shape-node materialization (cf. [19]).Example 5.8 Consider the application of Focus to the struc-ture S5 from Figure 5 and the formula 'st4x . By Example 5.7,z('st4x )(S5; Z) yields the singleton set fS5;f;0g and o('st4x )(S5; Z)yields the singleton set fS5;f;1g. By a similar derivation,o('st4x (v))(z('st4x (v))(Expand(S; u; u:0; u:1); [v 7! u:0]); [v 7!u:1]) yields the singleton set fS5;f;2g. Thus, the result ofFocus(S5; 'st4x ) is the set fS5;f;0; S5;f;1; S5;f;2g. 211



5.2 Coercing into More Precise StructuresAfter focus, we apply the simple transformer [[st]] that wasde�ned in De�nitions 4.3 and 4.5. In the example discussedin Section 5.1, we apply [[st4]] to the structures S5;f;0, S5;f;1,and S5;f;2. We see that S5;o;0 is obtained from S5;f;0, S5;o;1from S5;f;1, and S5;o;2 from S5;f;2.Applying focus and then [[st]] can produce structures thatare not as precise as we would like. The intuitive reason forthis state of a�airs is that there can be interdependences be-tween di�erent properties stored in a structure, and these in-terdependences are not necessarily incorporated in the de�ni-tions of the predicate-update formulae. This is demonstratedin the following example:Example 5.9 Consider structure S5;o;2 from Figure 5. Inthis structure, the n �eld of u:0 can point to u:1, which sug-gests that x may be pointing to a cyclic data structure. How-ever, this is incompatible with the fact that is(u:1) = 0|i.e.,u:1 cannot represent a heap-shared cell|and the fact thatn(u1; u:1) = 1|i.e., it is known that u:1 de�nitely has anincoming selector edge from a cell other than u:0. 2In this subsection, we show that in many cases we cansharpen the structures by removing inde�nite values that vi-olate certain compatibility rules. In particular, it allows us toremedy the imprecision illustrated in Example 5.9. Further-more, the shape-analysis actually yields precise information inthe analysis of reverse.5.2.1 Compatibility ConstraintsWe can, in many cases, sharpen some of the stored predicatevalues of three-valued structures:Example 5.10 Consider a two-valued structure S\ that canbe embedded in a three-valued structure S. By the Property-Extraction Principle (Observation 2.1), we know that if theformula 'is for \inferring" whether an individual u is sharedevaluates to, e.g., 1 in S, then in S\; is(u\) must be 1 for anyindividual u\ that maps to u. The de�nition of embedding(De�nition 3.5) would allow the value of is(u) in S to be 1=2;however, in this case a tighter embedding|in the sense ofDe�nition 3.6|is also possible, in which is(u) has the value1. In other words, it is needlessly imprecise to let is(u) retainthe value 1=2: The \stored property" is should be at leastas precise as its inferred value. Thus, in some cases, the factthat 'is evaluates to 1 in a three-valued structure allows usto sharpen the stored predicate is.Similar reasoning allows us to determine, in some cases,that a structure is inconsistent. For instance, if 'is evaluatesto 1 for an individual u and is(u) is 0, then S is a three-valuedstructure that does not represent any concrete structures atall! When this situation arises, the structure can be eliminatedfrom further consideration by the abstract-interpretation al-gorithm.This reasoning applies to all instrumentation predicates,not just is, and to both of the de�nite values, 0 and 1. 2The reasoning used in Example 5.10 can be summarized asthe following principle:Observation 5.11 [The Sharpening Principle]. In anystructure S, the valued stored for p(u1; : : : ; uk) should be atleast as precise as the value of p's de�ning formula, 'p, evalu-ated at u1; : : : ; uk (i.e., [['p]]S3 ([v1 7! u1; : : : ; vk 7! uk])). Fur-thermore, if p(u1; : : : ; uk) has a de�nite value and 'p evalu-ates to an incomparable de�nite value, then S is a three-valuedstructure that does not represent any concrete structures at all.2

for each x 2 PVar ; x(v1) ^ x(v2) � v1 = v2 (27)(9v3 : n(v3; v1) ^ n(v3; v2)) � v1 = v2 (28)(9v1; v2 : v1 6= v2 ^ n(v1; v) ^ n(v2; v)) � is(v) (29):(9v1; v2 : v1 6= v2 ^ n(v1; v) ^ n(v2; v)) � :is(v) (30)(9v1 : :is(v) ^ v1 6= v2 ^ n(v1; v)) � :n(v2; v) (31)(9v2 : :is(v) ^ v1 6= v2 ^ n(v2; v)) � :n(v1; v) (32)(9v : :is(v) ^ n(v1; v) ^ n(v2; v)) � v1 = v2 (33)Table 7: The compatibility constraints R( dclosure(F )) gener-ated using De�nition 5.13 from the formulae F given abovethe line in Table 4. The constraints below the line come fromapplying r to the formulae listed below the line in Table 4.This observation motivates the subject of the remainder ofthis subsection|an investigation of compatibility constraintsexpressed in terms of a new logical connective, `�'.De�nition 5.12 Let � be a �nite set of compatibility con-straints of the form '1 � '2, where '1 is an arbitrary three-valued formula, and '2 is either an atomic formula or a nega-tion of an atomic formula. We say that a structure S satis�es� (denoted by S j= �) if for every constraint '1 � '2 in �,and for every assignment Z such that [['1]]S3 (Z) = 1, we have[['2]]S3 (Z) = 1. 2For a two-valued structure, � has the same meaning as).However, for a three-valued structure � is stronger than): if'1 evaluates to 1 and '2 evaluates to 1=2, the constraint '1�'2 is not satis�ed. More precisely, suppose that [['1]]S3 (Z) = 1and [['2]]S3 (Z) = 1=2; the implication '1 ) '2 is satis�ed (i.e.,S; Z j= '1 ) '2), but the constraint '1 � '2 is not satis�ed(i.e., S; Z 6j= '1 � '2).The constraint that captures the reasoning used in Exam-ple 5.10 is 'is(v)� is(v). That is, when 'is evaluates to 1 atu, then is must evaluate to 1 at u.Such constraints formalize the Sharpening Principle. Theywill be used to improve the precision of the shape-analysisalgorithm by (i) sharpening the values of stored predicates,and (ii) eliminating structures that violate the constraints.The following de�nition converts formulae into constraintsin a natural way:De�nition 5.13 For formula ' and atomic formula a, de�ner(') as follows.r(8v1; : : : vk : (') a)) def= '� a (24)r(8v1; : : : vk : (') :a)) def= '� :a (25)r(8v1; : : : vk : ') def= :'� 0 (26)For a set of formulae F , we de�ne R(F ) to be the set of con-straints obtained by applying r to each of the formulae in F .2 Rule (26) was added to enable an arbitrary formula to beconverted to a constraint.Example 5.14 The constraints generated for the formulaethat appear above the line in Table 4 are listed above the linein Table 7. 2In [18], we de�ne a closure operator dclosure(F ) that gen-erates certain logical consequences of a set F of compatibilityformulae. For instance, the three formulae below the line inTable 4 are generated by dclosure(F ), where F is the set of for-mulae given above the line in Table 4. The corresponding com-patibility constraints that are obtained fromR( dclosure(F )) arelisted below the line in Table 7.12



Example 5.15 As we will see in Section 5.2.3, compatibil-ity constraints play a crucial role in the shape-analysis algo-rithm. Without them the algorithm would often be unableto determine that the data structure being manipulated bya list-manipulation program is actually a list. In particular,constraint (31) allows us to do a more accurate job of ma-terialization: When is(u) evaluates to 0 and one incomingn edge is 1, to satisfy constraint (31) a second incoming nedge cannot have the value 1=2|it must have the value 0,i.e., no such edge exists (cf. Examples 5.9 and 5.19). Thisallows edges to be removed (safely) that a more naive materi-alization process would retain (cf. structures S5;o;2 and S6;2 inFigure 5), and permits the improved shape-analysis algorithmto generate more precise structures for reverse than the onesgenerated by the simple shape-analysis algorithm described inSections 2.3 and 4. 2Henceforth, we assume that dclosure has been applied to allsets of hygiene conditions.De�nition 5.16 (Compatible Three-Valued Structures).The set of compatible three-valued structures3-CSTRUCT[P; R(F )] � 3-STRUCT[P] is de�ned by S 23-CSTRUCT[P; R(F )] i� S j= R(F ). 25.2.2 The Coerce OperationWe are now ready to show how the coerce operation works.Example 5.17 Consider structure S5;o;2 from Figure 5 again.The structure S5;o;2 violates constraint (31) under the assign-ment [v 7! u:1; v1 7! u1; v2 7! u:0]. Because �(is)(u:1) = 0,u1 6= u:0, and �(n)(u1; u:1) = 1, yet �(n)(u:0; u:1) = 1=2, con-straint (31) is not satis�ed: The left-hand side evaluates to 1,whereas the right-hand side evaluates to 1=2. 2This example motivates the following de�nition:De�nition 5.18 The operationcoerce : 3-STRUCT[P]! 3-CSTRUCT[P; R(F )] [ f?gis de�ned as follows: coerce(S) def= the maximal S0 such thatS0 v S, US0 = US, and S0 2 3-CSTRUCT[P; R(F )], or ? ifno such S0 exists. 2Example 5.19 The application of coerce to the structuresS5;o;0; S5;o;1, and S5;o;2 is shown in the bottom block of Fig-ure 5. It yields S6;0; S6;1, and S6;2, respectively.There are important di�erences between the structuresS6;0; S6;1, and S6;2 that result from the improved transformerfor statement st4 : x = x->n, and the structure S6 that is theresult of the simple version of the transformer (see the fourthentry of Figure 3): x points to a summary node in S6, whereasin none of S6;0; S6;1, and S6;2 does x point to a summary node.25.2.3 The Coerce AlgorithmIn this subsection, we describe an algorithm, Coerce, that im-plements the operation coerce de�ned in Section 5.2. Thisalgorithm actually �nds a maximal solution to a system ofconstraints of the form de�ned in De�nition 5.12. It is conve-nient to partition these constraints into the following types:'(v1; v2; : : : ; vk) � b (34)'(v1; v2; : : : ; vk) � (v1 = v2)b (35)'(v1; v2; : : : ; vk) � pb(v1; v2; : : : ; vk) (36)where b 2 f0;1;1=2g and the superscript notation means thefollowing: '1 � ' and '0 � :'. We say that constraints in

function Coerce(S: 3-STRUCT[P], R(F ): Constraint set)returns 3-CSTRUCT[P; R(F )] [ f?gbeginS0 := Swhile there exists a constraint c � '1 � '2 2 R(F ) and anassignment Z : freeVars(c)! US such that S0; Z 6j= c doswitch '2case '2 � b /* Type I */return ?case '2 � (v1 = v2)b /* Type II */if b = 1 and Z(v1) = Z(v2) and�S0(sm)(Z(v1)) = 1=2 then �S0(sm)(Z(v1)) := 0else return ?case '2 � pb(v1; : : : ; vk) /* Type III */if �S0(p)(Z(v1); : : : ; Z(vk)) = 1=2 then�S0(p)(Z(v1); : : : ; Z(vk)) := belse return ?end switchodreturn S0endFigure 7: An iterative algorithm for solving three-valued con-straints.the forms (34), (35), and (36) are Type I , Type II , and TypeIII constraints, respectively.The algorithm for coerce is shown in Figure 7. The inputis a three-valued structure S 2 3-STRUCT[P] and a set ofconstraints R(F ). It initializes S0 to the input structure Sand then repeatedly re�nes S0 by lowering predicate values in�S0 from 1=2 into a de�nite value, until either: (i) a constraintis irreparably violated, i.e., the left-hand and the right-handside have di�erent de�nite values, in which case the algorithmreturns ?, or (ii) no constraint is violated, in which case thealgorithm successfully returns S0. The main loop is a caseswitch on the type of the constraint considered:� A violation of a Type I constraint is irreparable since theright-hand side is a literal.� A violation of a Type II constraint can be �xed onlywhen the right-hand side is an equality (as opposed to anegated equality) that evaluates to 1=2. This can happenwhen there is an individual u that is a summary node:[[v1 = v2]]S03 ([v1 7! u; v2 7! u]) = �S0(sm)(u) = 1=2:In this case, �S0(sm)(u) is set to 0.� A violation of a Type III constraint can be �xed whenthe predicate entry is inde�nite.The correctness of algorithm Coerce stems from the fol-lowing lemma:Lemma 5.20 For every S; S1 2 3-STRUCT[P], such thatS1 v S and S1 j= R(F ), and for every structure S0 duringeach iteration of Coerce, S1 v S0.Proof: By induction on the number of iterations. 2Coerce must terminate after at most n steps, where nis the number of de�nite values in S0, which is bounded byPp2P jU jarity(p).6 Related WorkThe following previous shape-analysis algorithms, which allmake use of some kind of shape-graph formalism, can be viewed13



as instances of our framework:� The algorithm of [11], which collapses individuals thatare not reachable from a pointer variable in k or fewersteps, for some �xed k. This algorithm can be capturedin our framework by using instrumentation predicates ofthe form \reachable-from-x-via-access-path-�", for j�j �k.� The algorithms of [12, 2], which can be incorporated intothe framework by introducing unary core predicates thatrecord the allocation sites of heap cells.� The algorithm of [16], which can be captured in theframework using the predicates cf:b(v) and cb:f (v) (seeTables 2 and 3).� The algorithms of [22, 19]. These map unbounded-sizestores into bounded-size abstractions by collapsing con-crete cells that are not directly pointed to by programvariables into one abstract cell, whereas concrete cellsthat are pointed to by di�erent sets of variables are keptapart in di�erent abstract cells. (See also the discussionin Section 4.3.)Throughout this paper, we have focused on precision andignored e�ciency. The above-cited algorithms are more ef-�cient than the one presented in this paper; however, Sec-tion 1.2 discusses reasons why it should be possible to incor-porate well-known techniques for improving e�ciency into ourapproach. In addition, the techniques presented in this papermay also provide a new basis for improving the e�ciency ofshape-analysis algorithms. In particular, the machinery wehave introduced provides a way both to collapse individualsof 3-valued structures, via embedding, as well as to materializethem when necessary, via focus .Roughly speaking, the chief alternative to the use of shapegraphs involves representing may-aliases between pointer-accesspaths [8, 14, 4, 5, 20]. Compared with shape graphs, thesemethods have certain drawbacks. In particular, shape graphsrepresent the topological properties of the store directly, whichallows certain operations, such as destructive updates, to betracked more precisely. In addition, shape graphs are a moreintuitive mechanism for reporting information back to a hu-man, and thus may be more useful in program-understandingtools. On the other hand, representations of may-aliases canbe more compact than shape graphs, and some may-alias al-gorithms are capable of representing information that goesbeyond the capabilities of bounded structures [4, 5].AcknowledgementsWe are grateful for the helpful comments of A. Avron, T. Ball, M.Benedikt, N. Dor, M. Gitik, K. Kunen, V. Lifschitz, H.R. Nielson,M. O'Donnell, A. Rabinovich, and K. Sieber. We thank K.H. Rosefor the Xy-pic LATEXpackage.References[1] U. Assmann and M. Weinhardt. Interprocedural heap anal-ysis for parallelizing imperative programs. In W. K. Giloi,S. J�ahnichen, and B. D. Shriver, editors, Programming ModelsFor Massively Parallel Computers, pages 74{82, Washington,DC, September 1993. IEEE Press.[2] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointersand structures. In SIGPLAN Conf. on Prog. Lang. Design andImpl., pages 296{310, New York, NY, 1990. ACM Press.[3] P. Cousot and R. Cousot. Systematic design of program anal-ysis frameworks. In Symp. on Princ. of Prog. Lang., pages269{282, New York, NY, 1979. ACM Press.

[4] A. Deutsch. A storeless model for aliasing and its abstractionsusing �nite representations of right-regular equivalence rela-tions. In IEEE International Conference on Computer Lan-guages, pages 2{13, Washington, DC, 1992. IEEE Press.[5] A. Deutsch. Interprocedural may-alias analysis for pointers:Beyond k-limiting. In SIGPLAN Conf. on Prog. Lang. Designand Impl., pages 230{241, New York, NY, 1994. ACM Press.[6] L. Hendren. Parallelizing Programs with Recursive Data Struc-tures. PhD thesis, Cornell Univ., Ithaca, NY, Jan 1990.[7] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for re-cursive pointer data structures: Improving the analysis and thetransformation of imperative programs. In SIGPLAN Conf. onProg. Lang. Design and Impl., pages 249{260, New York, NY,June 1992. ACM Press.[8] L. Hendren and A. Nicolau. Parallelizing programs with re-cursive data structures. IEEE Trans. on Par. and Dist. Syst.,1(1):35{47, January 1990.[9] C.A.R. Hoare. Recursive data structures. Int. J. of Comp. andInf. Sci., 4(2):105{132, 1975.[10] S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis forpointer variables. In SIGPLAN Conf. on Prog. Lang. Designand Impl., pages 28{40, New York, NY, 1989. ACM Press.[11] N.D. Jones and S.S. Muchnick. Flow analysis and optimiza-tion of Lisp-like structures. In S.S. Muchnick and N.D. Jones,editors, Program Flow Analysis: Theory and Applications,chapter 4, pages 102{131. Prentice-Hall, Englewood Cli�s, NJ,1981.[12] N.D. Jones and S.S. Muchnick. A 
exible approach to inter-procedural data 
ow analysis and programs with recursive datastructures. In Symp. on Princ. of Prog. Lang., pages 66{74,New York, NY, 1982. ACM Press.[13] S.C. Kleene. Introduction to Metamathematics. North-Holland, second edition, 1987.[14] W. Landi and B.G. Ryder. Pointer induced aliasing: A problemclassi�cation. In Symp. on Princ. of Prog. Lang., pages 93{103,New York, NY, January 1991. ACM Press.[15] J.R. Larus and P.N. Hil�nger. Detecting con
icts betweenstructure accesses. In SIGPLAN Conf. on Prog. Lang. Designand Impl., pages 21{34, New York, NY, 1988. ACM Press.[16] J. Plevyak, A.A. Chien, and V. Karamcheti. Analysis of dy-namic structures for e�cient parallel execution. In U. Baner-jee, D. Gelernter, A. Nicolau, and D. Padua, editors, Lan-guages and Compilers for Parallel Computing, volume 768 ofLec. Notes in Comp. Sci., pages 37{57, Portland, OR, August1993. Springer-Verlag.[17] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysisproblems in languages with destructive updating. In Symp.on Princ. of Prog. Lang., New York, NY, January 1996. ACMPress.[18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysisvia 3-valued logic. Tech. Rep. TR-1383, Comp. Sci. Dept.,Univ. of Wisconsin, Madison, WI, July 1998. Available at\http://www.cs.wisc.edu/wpis/papers/parametric.ps".[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysisproblems in languages with destructive updating. Trans. onProg. Lang. and Syst., 20(1):1{50, January 1998.[20] S. Sagiv, N. Francez, M. Rodeh, and R. Wilhelm. A logic-basedapproach to data 
ow analysis problems. Acta Inf., 35(6):457{504, June 1998.[21] J. Stransky. A lattice for abstract interpretation of dynamic(Lisp-like) structures. Inf. and Comp., 101(1):70{102, Nov.1992.[22] E. Y.-B. Wang. Analysis of Recursive Types in an ImperativeLanguage. PhD thesis, Univ. of Calif., Berkeley, CA, 1994.14


