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A b s t r a c t  

We present a new framework for verifying partial specifica- 
tions of programs in order to catch type and memory errors 
and check data structure invariants. Our technique can ver- 
ify a large class of data  structures, namely all those that can 
be expressed as graph types. Earlier versions were restricted 
to simple special cases such as lists or trees. Even so, our 
current implementation is as fast as the previous specialized 
tools. 

Programs are annotated with partial specifications ex- 
pressed in Pointer Assertion Logic, a new notation for ex- 
pressing properties of the program store. We work in the 
logical tradit ion by encoding the programs and partial speci- 
fications as formulas in monadic second-order logic. Validity 
of these formulas is checked by the MONA tool, which also 
can provide explicit counterexamples to invalid formulas. 

To make verification decidable, the technique requires ex- 
plicit loop and function call invariants. In return, the tech- 
nique is highly modular: every statement of a given program 
is analyzed only once. 

The main target applications are safety-critical data-type 
algorithms, where the cost of annotating a program with in- 
variants is justified by the value of being able to automati- 
cally verify complex properties of the program. 

1 I n t r o d u c t i o n  

We present a new contribution to the area of pointer verifica- 
tion, which is concerned with verifying partial specifications 
of programs that make explicit use of pointers. In practice, 
there is an emphasis on catching type and memory errors 
and checking data  structure invariants. 

For data-type implementations, standard type-checking 
systems, as in C or Java, are not sufficiently expressive. For 
example, the type of binary trees is identical to the one 
for doubly-linked lists. Both are just  records with pairs of 
pointers, which makes the type checker fail to catch many 
common bugs. In contrast, pointer verification can vali- 
date the underlying data structure invariants, for instance, 
to guarantee that  doubly-linked lists maintain their shapes 
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after pointer manipulations. Memory errors, such as deref- 
erence of n u l l  pointers or dangling references, and creation 
of memory leaks are also beyond the scope of standard type 
checking. 

There have been several different approaches to pointer 
verification, but not many that are as expressive as the one 
we propose in this paper. Clearly there is a trade-off between 
expressiveness and complexity, since less detailed analyses 
will be able to handle larger programs. Our approach is 
designed to verify a single abstract data type at a time. 
Since such implementations often contain intricate pointer 
manipulations and are trusted implicitly by programmers, 
they are a fair target for detailed scrutiny. 

We work in the logical tradition by encoding pro- 
grams and partial specifications as formulas in monadic 
second-order logic. Formulas are processed by the MONA 
tool [26, 34] which reduces them to equivalent tree automata  
from which it is simple to conclude validity or to extract 
concrete counterexamples. Translated back into the under- 
lying programming language, a counterexample is an initial 
store that causes the given program to fail. Program anno- 
tations, in the form of assertions and invariants, are allowed 
and may prove necessary to obtain the desired degree of 
precision. This approach can be viewed both as lightweight 
program verification, since the full behavior of the program 
is not considered, and as heavyweight type checking, since 
properties well beyond the expressiveness of s tandard type 
systems can be checked. 

We have reported on our approach in two earlier works. 
In the first we introduce the basic technique applied to lin- 
ear lists [24]. In the second we provide a generalization to 
tree-shaped data structures and introduce a new encoding 
to make the analysis feasible [14]. The current paper takes a 
leap forward in generalizing the class of data structures that 
can be considered, without sacrificing precision or efficiency. 
Our new framework can handle all da ta  structures tha t  can 
be described as graph types [28]. These include data  struc- 
tures that are well-known from folklore or literature, such 
as doubly-linked lists, trees with parent pointers, threaded 
trees, two-dimensional range trees, and endless customized 
versions such as trees in which all leaves are linked in a 
cyclic list. Our framework is also designed to handle the 
common situation where a data structure invariant must be 
temporarily violated at some program points. 

Our contributions are: 

• An extension of the results in [24, 14] to the whole class 
of graph types; 
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• a language Ibr expressing data structures and opera- 
tions along with correctness specifications; 

® a full implementation exploiting intricate parts of the 
MONA tool to obtain an efficient decision procedure, 
together with a range of non-trivial examples. 

To verify a data type implementation, the desired data 
structure is specified in an abstract notation, and the pro- 
gram is annotated with assumptions and assertions. It is 
not necessary to customize or optimize the implementation, 
and no proof obligations are left to be dealt with manually. 

We rely on a new formal notation, Pointer Assertion 
Logic (PAL) to specify the structural invariants of graph 
types, to state pre- and post-conditions for procedures, and 
to fbrmulate invariants and assertions that  are given as hints 
to the system. The PAL notat ion is essentially a monadic 
second-order logic in which the universe of discourse con- 
tains records, pointers, and booleans. Programs with PAL 
annotat ions are verified with the tool PALE, the Pointer 
Assertion Logic Engine. The "secret" behind the PALE im- 
plementation is using the MONA tool to decide validity of 
Hoare triples based on PAL over loop-free code. Code with 
loops or recursion is handled by splitting it into loop-free 
fragments using invariants, as in classical Hoare logic. While 
the MONA logic has an inherent non-elementary complex- 
ity [33], we demonstrate tha t  it can efficiently handle many 
real programs. Furthermore, the ability to insert assertions 
to break larger triples into smaller ones suggests that  the 
overall approach is modular and thus can scale reasonably. 

A framework for pointer verification, such as ours, should 
be evaluated on four different criteria. First, how precise 
is the analysis? Second, it is fast and scalable? Third, 
does it allow or require programs to be annotated? Fourth, 
which data structures can be considered and how are they 
described? In the following sections, we will describe a pro- 
gramming language that uses Pointer Assertion Logic for ex- 
pression of store properties, describe the decision procedure 
based on Hoare logic and MONA, and through a number 
of experiments argue that  the Pointer Assertion Logic ap- 
proach provides a productive compromise between express- 
ibility and efficiency. 

A T i n y  E x a m p l e  

Consider the type of linked lists with tail pointers, which as 
a graph type is expressed as: 

type Head = { 

data first: Node; 
pointer last: 

Node[this.first<next*.[pos.next=null]>last]; 
} 

type Node = { 
data next: Node; 

} 

The notat ion is explained in the following section, bu t  in- 
tuitively the l a s t  pointer is annotated with a formula that 
constrains its destination to be the last Node in the list. A 
candidate for verification is the following procedure which 
concatenates two such structures: 

proc concat(data 11,12: Head): Head 
{ 

if (ll.last!=null) { ll.last.next = 12.first; } 
else { ll.first = 12.first; } 

if (12.first!=null) { li.last = 12,1ast; } 
12.first = null; 
12.1ast = null; 
return li; 

These are tedious pointer manipulat ions tha t  are easy to 
get wrong. However, if we annotate  the procedure with the 
pre-condition that 11 and 12 are not n u l l  and run PALE, it 
will in half a second report that  no memory errors occur and, 
importantly, that the data structure invariant is maintained. 

R e l a t e d  W o r k  

General theorem provers, such as HOL [5], may consider 
the full behavior of programs but  are often slow and not 
fully automated. Tools such as ESC [12] and LCLint [15} 
consider memory errors among other undesirable behaviors 
but  usually ignore data structure invariants or only support 
a few predefined properties. Also, they trade soundness or 
completeness for efficiency and hence may flag false errors 
or miss actual errors. 

Model checkers such as Bebop [2] and Bandera [9] ab- 
stract away the heap and only verify properties of control 
flow. The JPF  [20] model checker verifies simple assertions 
for a subset of Java, but does not consider s t ructural  invari- 
ants. 

The constraint solver Alloy has been used to verify prop- 
erties about bounded initial segments of computat ion se- 
quences [23]. While this is not a complete decision proce- 
dure even for straight-line code, it finds many errors and 
can produce counterexamples. Wi th  this technique, data 
structure invariants can be expressed in first-order logic with 
transitive closure. However, since it assumes computation 
bounds, absence of error reports does not imply a guarantee 
of correctness, and the technique does not appear to scale. 

The symbolic executor PREfix [7] simulates unannotated 
code through possible executions paths and detects a large 
class of errors. Again, this is not a complete or sound deci- 
sion procedure, and data structure invariants are not consid- 
ered. However, PREfix gives useful results on huge source 
programs. 

Verification based on static analysis has culminated 
with shape analysis. The goals of the shape analyzer 
TVLA [32, 38, 31] are closest to ours but  its approach is 
radically different. Rather than  encoding programs in logic, 
TVLA performs fixpoint iterations on abstract descriptions 
of the store. Regarding precision and speed, PALE and 
TVLA seem to be at the same level. TVLA can han- 
dle some data  abstractions and hence reason about  sort- 
ing algorithms; we show in Section 6 that  we can do the 
same. TVLA analyzes programs with only pre- and post- 
conditions, where PALE often uses loop invariants and asser- 
tions. This seems like an undisputed advantage for TVLA; 
however, not having invariants can cause a loss in precision 
making TVLA falsely reject a program. Regarding the spec- 
ification of new data structures we claim an advantage. Once 
a graph type has been abstractly described with PAL, the 
PALE tool is ready to analyze programs. In TVLA it is nec- 
essary to specify in three-valued logic an operational seman- 
tics for a collection of primitive actions specific to the data 
structure in question. Furthermore, to guarantee soundness 
of the analysis, this semantics should be proven correct by 
hand. TVLA is applicable also to data  structures tha t  are 
not graph types, but  so far all their examples have been in 
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that  class. Unlike PALE, TVLA cannot produce explicit 
counterexamples when programs fail to verify. 

There exists a variety of assertion languages designed to 
express properties of data structures, such as ADDS [21], 
Lr [3], and Shape Types [18]. We rely on PAL since it 
provides a high degree of expressiveness while still having a 
decision procedure that works in practice. 

A drawback of our approach is that detailed, explicitly 
stated loop invariants often are required. The overhead 
of adding such annotations can be significant, so the ap- 
proach is not applicable for verifying large programs. How- 
ever, the most complex pointer operations often occur in 
data-type implementations, which usually have a manage- 
able size and appear in central libraries. Thus, we primarily 
aim for the niche of safety-critical data-type implementa- 
tions. For such programs, it is well known that the effort 
of constructing loop invariants is comparable to the effort 
of designing the data-type [19]. Once the program anno- 
tations have been added, the PALE tool can automatically 
decide validity. PALE works by splitting the program into 
disjoint fragments that  are verified separately by analyzing 
every statement exactly once. That  is, verification depends 
only on locally specified properties mad there is no fixpoint 
iteration involved. In this sense, the approach is highly scal- 
able. On the other hand, the approach relies on a decision 
procedure with a non-elementary complexity, so there are 
programs that  cannot be verified in practice. The experi- 
ments described in Section 7 indicate that the annotation 
overhead is manageable, that  the theoretical complexity is 
not necessarily a problem in practice, and that quite intri- 
cate properties can be expressed and verified. 

2 P o i n t e r  A s s e r t i o n  Logic 

In this section, we informally present the components of our 
framework. First, we describe the underlying store model. 
Second, we use the notion of graph types to describe data 
structures. Third, we employ a simple programming lan- 
guage to express data  structure operations. And, finally, 
we use program annotations in the form of Pointer Asser- 
tion Logic formulas, for expressing properties of the program 
store. 

The programming language and the aanotations have 
been designed to be simple but  at the same time as expres- 
sive as the verification technique allows. In the following, 
we present the framework informally and refer the reader to 
[35] for formal definitions. To make the expressive power of 
the framework lucid, we show the complete syntax instead 
of only describing the main ideas. 

S to re  M o d e l  

In our model, the store consists of a heap and some program 
variables. The heap contains records whose fields are either 
pointers or boolean values. A pointer either has the value 
n u l l  or points to a record. Program variables are either data 
variables or pointer variables. A data  variable is the root of 
a data  structure, whereas a pointer variable may point to 
any record in the heap. 

This is a very concrete representation. We only abstract 
away arithmetic values and the actual addresses of records. 
Memory management  is not automatically represented, but 
as in [24, 14], allocation and deallocation primitives could 
easily be added along with automatic checks for memory 
leaks and dangling references. 

G r a p h  T y p e s  

Collections of records and pointers can form any number 
of interesting data structures, which are generMly expressed 
through an invariant on the allowed shapes. We wish to 
explicitly declare such data structures so that  their invari- 
ants can be verified by our system. For this purpose, we use 
graph types [28] which is an intuitive notation that makes it 
feasible to describe complex structures. Invariants of graph 
type structures can be expressed in monadic second-order 
logic on finite trees, which allows us to use the MONA tool 
to verify correctness. 

A graph type is a tree-shaped data  structure with ex- 
tra pointers. The underlying tree is called the backbone. 
The constituent records have two kinds of fields: data fields 
which define the backbone, and pointer fields which may 
point anywhere in the backbone. To describe a structural 
invariant, a pointer field is annotated with a routing expres- 
sion which restricts its destination. In the current work, we 
have generalized the annotations to be arbitrary formulas 
that  may contain routing expressions as basic predicates. 
Another difference to [28] is that instead of building types 
from unions and records, we only use records and nullable 
pointers. Clearly, the two variations can encode each other; 
we choose the more primitive version, since it turns out to 
lead to a more efficient decision procedure. Our syntax and 
semantics of graph type declarations is described in the next 
section. 

Surprisingly many data structures can be described as 
graph types. As a simple example, consider the type of 
binary trees where all nodes contain pointers to the root. In 
our notation, it looks like: 

type Tree = { 
data l e f t , r i g h t  :Tree; 
pointer root :Tree [root<(left+right)*>this 

empty(root^Tree.left union 
root "Tree. r ight)  ] ; 

} 

The syntax for formulas is presented below, but the re- 
striction on the source, t h i s ,  and destination, root ,  of the 
pointer is read as follows: t h i s  must be reachable from root  
by following a sequence of l e f t  or r i g h t  pointers, and the 
set of Tree records having l e f t  or r i g h t  pointers to the roo t  
must be empty. Another example is doubly-linked lists with 
boolean values: 

type Node = { 
bool value; 
data next : Node ; 
pointer prev:Node[this'Node.next={prev}] ; 

} 

Here, the set of of nodes that can reach the this node 
through a next pointer must only contain the prey node. 
The convention that  {nul l}  is interpreted as the empty set 
handles the first node in the list. 

Our benchmark programs cover a variety of data  struc- 
tures expressed as graph types, including singly-linked lists, 
doubly-linked lists with tail pointers, red-black search trees, 
and post-order threaded trees with parent pointers. Addi- 
tional examples are presented in [28]. 

The Programming Language 

A program consists of a set of declarations of types, vari- 
ables, and procedures, specified by the following grammar: 
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typedect ~ type T = { ( field ; )* } 

field ~ data p@ : T 
1 pointer pO : T [ form ] 
I bool b 0 

progw~r --+ data p@ : T 
I pointer p0 : T 
[ bool b @ 

procedure --+ proc n ( progvar ® ) : ( T I void ) 
( logicvar ; )* 
property  
( { ( progvar ; )* stm } )? 
property  

We use the notation @ and ® Ibr comma-separated lists 
with one-or-more elements and zero-or-more elements, re- 
spectively. T, p, b, and n range over names of types, pointer 
variables or fields, boolean variables or fields, and proce- 
dures, respectively. Ignore for now all oecurences of logicvar 
and property; they are introduced later. A type consists of 
a number of fields of kind data, pointer, or bool. The data 
fields span the tree value and the pointer fields define extra 
pointers whose destinations are constrained by a formula. 
The bool fields are used to model finite values. A procedure 
has a name, formal parameters, a return type, and a body 
consisting of local variable declarations and statements. If 
the body is omitted, the declaration is considered a proto- 
type. 

A statement  is one of the following constructs; the 
assert and split statements are described later: 

stm ~ stm stm 
asn 0 ; 
procca11 ; 
if ( condexp ) { stm } ( else { stm } )? 
while property ( condexp ) { stm } 
return progexp ; 
assert property ; 
split property property ; 

ash -~ Ibexp = ( condexp [ proccall ) 
I Iptrexp = ( ptrexp [ procca11 ) 

The language permits multiple-assignment statements 
where all r ight-hand sides are evaluated before assigning--  
these are useful for certain program transformations. 
Expressions have the following form: 

condexp 
bexp 

lbexp 

ptrexp 

lptrexp 

proccM1 

bexp [ ? 
"-~ ( bexp ) 
] bexp ~ bexp 
[ bexp => bexp 
[ bexp = bexp 
[ bexp != bexp 
t true [ false 

b ] p t r e x p ,  b 
--~ null [ Iptrexp 

--~ p p t r e x p ,  p 

[ form ] 

! bexp 
bexp I bexp 
bexp <=> bexp 
ptrexp = ptrexp 
ptrexp ! = ptrexp 
Ibexp 

--~ n ( ( eondexp I ptrexp )® ) [ formula ] 

The "?" operator stands for nondeterministic boolean 
choice, which is used to model arithmetic conditions that 
we cannot capture precisely. The operator "." dereferences 
a pointer, and the other constructs have the expected mean- 
ings. 

The language does not contain arithmetic, since our ap- 
proach focuses on the structural  aspects of data  types. How- 

ever, as described in a later section, the technique does per- 
mit abstractions of arithmetic properties, for instance for 
specifying certain ordered data  structures, 

P r o g r a m  A n n o t a t i o n s  

Pointer Assertion Logic is a m o n a d i c  second-order  logic 
on graph types. It  allows quantification over heap records, 
both of individual elements and of sets of elements, and 
uses generalized routing expressions [28] for convenient 
navigation in the heap. Formulas are used in pointer 
fields to constrain their destinations, in whi le  loops and 
procedure calls as invariants, in procedure declarations 
as pre- and post-conditions, and in a s s e r t  and s p l i t  
statements. The syntax of formulas is as follows: 

form -~ ( existpos [ allpos ) p0 of T : form 
( existset [ allset ) s e of T : form 
( existptr [ allptr ) p0 of T : form 
( existbool [ allbool ) s 0 : form 
( form ) ] ! form 
form ~ form I form I form 
form => form [ form <=> form 
ptrexp in  setexp [ setexp sub setexp 
setexp = setexp I setexp != setexp 
empty ( setexp ) I bexp 
return [ n .  b 
m ( ( f o r m  [ ptrexp I s e t e x p ) ®  ) 
ptrexp < routingexp > p trexp  

predicate ~ pred m ( logicvar ® ) = form 

The identifiers m and s denote predicates and set variables, 
respectively. The poe and p t r  quantifiers differ in that  the 
former range over heap records while the latter also includes 
the n u l l  value. A routing expression formula pl  <r>p2 is sat- 
isfied by a given model if there is a path from pl to p2 satis- 
fying r, as defined below. For reuse of formulas, predicates 
can be defined as top-level declarations. 

Logical variables can be associated to procedures 
to allow the pre- and post-conditions to be related, as 
commonly seen in the literature [19, 11]. A logical variable 
is a universally quantified variable tha t  may occur in the 
pre- and post-conditions of a procedure but  not in the 
procedure body: 

logicvar --~ pointer p~ : T 
[ b o o l  b 0 
[ s e t  s 0 : T 

In formulas, p t r e x p  has two additional forms allowing 
access in procedure post-condition to the returned value 
and in procedure call formulas to the logical variables of 
the called procedure: 

ptrexp --~ . . .  I r e t u r n  [ n .  p 

Set expressions can contain the usual set operators, along 
with the up operation x ^ T . p  which denotes the set of 
records of type T having a p successor to x: 

setexp S 

[ ptrexp ~ T . p 
I { p trexp 0 } 
1 setexp union setexp 
[ setexp inter setexp 
[ setexp minus setexp 
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The syntax of routing expressions is a slightly generalized 
version of tha t  in [28]. A routing expression is a regular 
expression over routing directives, each being a step down 
or up a pointer or da ta  field, or a formula with the extra 
free variable pos filtering away those records that  cause the 
formula to evaluate to false when poe denotes one of them: 

routingexp ~ p [ " T . p I [ form ] 
[ routingexp, routingexp 
I routingexp + routingexp 
I ( routingexp ) ] routingexp * 

By default, a pointer  field must satisfy the formula given in 
its type declaration. This can be overridden with pointer 
directives of the form: 

ptrdirs ~ { ( T . p [ form ] )® } 

They allows pointer  fields to be constrained differently at 
different program points. This is important  because tem- 
porary  but  intentional invalidation of da ta  structure invari- 
ants  often occurs in imperative programs, as noted for in- 
stance in [21]. Pointer  directives, both  default and overrid- 
ing, are required to be well-formed. This means tha t  in any 
store and for any record, the directives associated to the 
pointer  fields must  denote exactly one record. Fortunately, 
as proved in [28] this is decidable. 

A pair consisting of a formula and a set of pointer 
directives: 

property ~ [ form ptrdirs ] 

is called a property and denotes the set of stores where 

• the formula form is satisfied; 

• the d a t a  variables denote disjoint acyclic backbones 
spanning the heap; and 

• each p o i n t e r  field satisfies its pointer directive (which 
is either the  default from the type declaration or the 
overriding from the ptrdirs). 

Propert ies  occur as procedure pre- aad post-conditions, as 
whi le  loop invariants, as s p l i t  assertions and assumptions 
( s p l i t  contains two properties),  and as a s s e r t  assertions. 

S e m a n t i c s  o f  A n n o t a t i o n s  

The program annotat ions are invariants of the program that  
must be interpreted as follows: 

• The pre-condition of a procedure may be assumed to 
hold when evaluating the procedure body; 

• the  post-condit ion must  hold upon termination of the 
procedure body; 

• every whi le  loop invariaat must hold upon entry and 
after each iteration, and may be assumed to hold when 
the loop terminates; 

• assertions specified with a s s e r t  must hold at  those pro- 
gram points; 

• for s p l i t  s tatements,  the assertion properties must 
hold, and the assumption properties may be assumed 
to hold (the reason for introducing these statements is 
explained in Section 4); and 

® at every procedure call, the invariant conjoined with 
the pre-condition of the called procedure must  hold for 
some valuation of its logical variables, and the invari- 
ant conjoined with the post-condition may be assumed 
upon return, also for some valuation of the logical vari- 
ables. 

In later sections, we show tha t  the  requirements imposed by 
the annotations can be verified automatically,  provided that  
valid and sufficiently detailed invariants are given. 

3 E x a m p l e :  T h r e a d e d  T r e e s  

Before describing our decision procedure, we show a larger 
example of using PAL. A threaded tree is a binary tree in 
which all nodes contain a pointer to its cyclic successor in 
a post-order traversal. As a further complication, we equip 
all nodes with a parent  pointer as well. This corresponds to 
the following graph type: 

type Node = { 
data left,right:Node; 
pointer post:Node[POST(this,post)]; 
pointer parent:Node[PARENT(this,parent)]; 

} 

where POST and PARENT are predicates tha t  spell out  these 
relationships. For example, PARENT(a,b) abbreviates  the 
formula: 

a'Node.left union a'Node.right={b} 

The POST predicate is more involved and makes use of aux- 
iliary predicates LEAF, ROOT, and LESSEQ. 

We consider a procedure : f ix(x)  tha t  assigns the correct 
value to x . p o s t  assuming tha t  this  field initially contains 
the  value n u l l  and that  x is non-nul l .  This is a non-trivial  
operation tha t  looks like: 

proc fix(pointer x: Node): void 
{ 

if (x.left=null ~ x.right=null) { 
if (x.parent=null) { x.post = x; } 
else { 

if (x.parent.right=null I x.parent.right=x) { 
x.post = x.parent; 

} 
else { 

x.post = findsmallest(x.parent.right); 
} 

} 
} 
else { x.post = findsmallest(x); } 

where the auxiliary procedure findsmallest is: 

proc findsmallest(pointer t: Node): Node 
pointer T: Node; 

{ 

while (t.left!=null I t.right!=null) { 
if (t.left!=null) { t = t.left; } 
else { t = t.right; } 

} 
return t; 
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The question is: Does this code verify? Does the resulting 
tree always satisfy the data structure invariant? Can type or 
memory errors ever occur? PALE can provide the answers 
with some help from us. First, since the argument to f i x  
is not a proper threaded tree, we must state a suitable pre- 
condition as the property: 

[x!=null {Node.post[ALMOSTPOST(this,post,x)]}] 

Here we require that the argument is not null and that the 
data structure invariant can be temporarily violated. The 
ALMOSTPOST predicate is: 

(this!=x => POST(this,post)) ~ (this=x => post=null) 

which simply states the exception that  we allow. Second, 
the while  loop in f i n d s m a l l e s t  needs an invariant, which 
is the property: 

[INV {Node.post[ALMOSTPOST(this,post,x)]}] 

where the pointer directive states that  the threaded tree is 
still messed up, and the proper invariant INV equals: 

T<(left+right)*>t 
allpos c of Node: LESSEQ(c,t,T) => t<(left+right)*>c 

which states that  t is a descendant of T and all its post- 
order successors are further descendants. See [35] for the 
full code with all post-conditions. In total, six annotations 
are required. In less that 4 seconds PALE verifies that  the 
code contains no errors. 

4 H o a r e  Logic  R e v i s i t e d  

Given an annotated program, we wish to decide whether 
the program is correct with respect to the annotations. 
The first step in our decision procedure is to split the given 
program into Hoare triples [22, 1, 11]. The idea of modeling 
transformations of the heap with Hoare logic has been 
studied before [37, 17]. The main novelty of our approach 
is the choice of PAL as assertion language. Our Hoare 
"triples" have a nonstandard form: 

triple -~ property s~m 

The statement  stm is not allowed to contain while loops, 
s p l i t  statements,  or procedure calls. A triple is valid if 

• executing stm in a store where property is satisfied 
cannot violate any assertions specified by a s s e r t  state- 
ments occurring in stm; and 

• the execution always terminates in a store consisting of 
disjoint, acyclic backbones spanning the heap in which 
all pointer directives hold. 

As opposed to normal Hoare triples, these have no explicit 
post-condition, but  the stm part  may contain a s s e r t  sub- 
statements. This simple generalization allows many asser- 
tions to be made without always breaking triples into smaller 
parts, as was often the case in [24] and [14]. For instance, an 
if statement where both branches end in assert statements 
does not necessarily need to be broken into two parts. Also, 
using this form of Hoare triples simplifies the encoding in 
monadie second-order logic described in Section 5. 

We define the cut-points of a program (according to [16]) 
as the following set of program points: the beginning and 
end of procedure bodies and while  bodies, the s p l i t  state- 
ments (these do not affect the computat ion and are con- 
sidered single program points), and before each procedure 
call. 

For each cut-point in the given program, we generate a 
Hoare triple from the property associated with that  point 
and the code that  follows until  reaching other cut-points. 
Extra a s s e r t  statements are automatically inserted for 
these other cut-points, reflecting the assertions they define. 
In case of s p l i t  statements, we here use the assertion prop- 
erty. For procedure calls, we use the pre-condition property 
of the called procedure conjoined with the call invariant for- 
mula. Recall that  we do allow i f  s tatements in the Hoare 
triples. However, if one branch contains a cut-point,  we 
require syntactically that  the other branch also contains a 
cut-point or that  the i f  s tatement is immediately followed 
by one. Typically, s p l i t  s tatements are used to fulfill this 
requirement. As a result, the statement par t  of a Hoare 
triple in general has a tree shape with one cut-point  in the 
root and one in each leaf'. See [35] for more details. 

We claim without proof that  this reduction is semanti- 
cally sound, with two exceptions: 

For split statements, the assertion property may not 
be implied by the assumption property, thereby causing 
a "gap" between the Hoare triples. This is intentional, 
because it allows to recover from situations where the 
required properties are beyond what is expressible in 
Pointer Assertion Logic, such as arithmetical proper- 
ties. Using split statements at a few selected places, 
one can then still verify properties of the remaining 
parts of the code. However, none of the examples 
shown in Section 7 require this feature. 

Procedure calls are known to cause complications for 
Hoare logic [II]. In our ease, there is in general no 
guarantee that the call invariant is actually a valid in- 
variant. However, in most situations, simple syntactic 
requirements suffice, since recursive calls in data type 
operations typically follow the recursive structure of the 
graph type backbones. A sufficient condition is that the 
call invariant only accesses variables and record fields 
that are not assigned to in the procedure. Such require- 
ments ensure that the invariant and the procedure's 
pre- and post-conditions express properties of disjoint 
parts of the store, reminiscent of the "independent con- 
junctions" in [37]. All the examples shown in Section 7 
can be handled by simple rules, which we plan to build 
into PALE. 

In PALE, this phase is implemented as a desugaring process 
reducing all procedures, whi le  loops, s p l i t  statements,  and 
procedure calls to transduction declarations having the form 
"t ransduce triple". In the following section we describe 
how validity of these simpler t r a n sduc e  constructs can be 
decided. 

In contrast to techniques based on generating the weak- 
est preconditions for all procedures, each program or pro- 
cedure is not turned into one single verification condition; 
instead we use the annotat ions to split the program into 
Hoare triples that  are verified independently. Also, as op- 
posed to [17], we will not rely on fixpoint iterations. This 
means that  detailed invariants may be required; however, it 
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has the advantage that  the technique becomes highly mod- 
ular and hence scalable. 

5 D e c i d i n g  H o a r e  T r ip l e s  in  M O N A  

We need to decide validity of a Hoare triple of the form 

property stm 

where the s tatement  s tm is without loops and procedure 
calls. The question is whether every execution of stm start- 
ing from a store satisfying property is guaranteed to satisfy 
the assertions given by a s s e r t  statements and to result in 
stores with disjoint, acyclic backbones spanning the heap in 
which all relevant pointer directives hold. A result in [29] 
shows in a very general setting that  this is a decidable ques- 
tion. In essence, we encode each Hoare triple in the logic 
weah monadic second-order theory of 2 successors, which is 
decidable using the MONA tool [26, 25, 34]. 

Similarly to the previous implementations [24, 14] we 
use a particular transduction technique. This idea allows us 
to avoid an explicit construction of weakest pre-conditions 
working backwards through the statement sequence. In- 
stead, we directly simulate (transduce) the statements and 
mirror their effect by updating a fixed collection of store 
predicates which abstractly describes a set of stores. It is 
shown in [29] that  any question about the resulting set of 
stores can be answered by phrasing it in terms of the trans- 
duced store predicates and checking for validity of the re- 
sulting formula. 

The store predicates describe a set of stores in MONA 
logic. They can be thought of as an interface for asking 
questions about a store. There are 11 kinds of predicates: 

® bool_T_b(v) gives the value of the bool field b in a 
record v of type T; 

• succ_T_d(v,w) holds if the record w is reachable from 
the record v of type T along a data field named d; 

Q nu l l_T_d  (v) holds if the data  field d in the record v of 
type T is null; 

• succ_T_p(v,w) holds if the record w is reachable from 
the record v of type T along a pointer field named p; 

• nu l l_T_p(v )  holds if the pointer field p in the record 
v of type T is n u l l ;  

• p t r_d  (v) holds if the record v is the value of the data 
variable d; 

• n u l l _ d ( )  holds if the data variable d is n u l l ;  

• p t r_p(v)  holds if the record v is the destination of the 
pointer variable p; 

• null_p() holds if the pointer variable p is null; 

• bool_bO gives the value of the boolean variable b; 

• memfailed()  holds if a null-pointer dereference has oc- 
cured. 

All properties of a store can be expressed using these pred- 
icates in MONA logic. The transduction process generates 
a collection of such store predicates for each program point. 
For convenience, we describe this by indexing the predi- 
cates with program points; for example, for each program 

point i there is a version of the bool_T_b(v) predicate called 
bool_T_b_i (v). 

An initial collection of store predicates is defined to re- 
flect the formula and pointer directives that  constitute the 
pre-condition of the Hoare triple. In the encoding into 
MONA code, the program variables are modeled as free vari- 
ables, which are universally quantified in the final validity 
formula that  is given to MONA. For example, a bool  vari- 
able is modeled as a boolean variable _bool_b in MONA and 
the corresponding initial store predicate is: 

bool_b_00 = _bool_b 

Similarly, a pointer variable p is modeled as a first-order 
MONA variable _ptr_p and the corresponding initial store 
predicate is: 

ptr_p_0(v) = v = _ptr_p 

A bool field b in a record of type T is modeled as a second- 
order variable _bool_T_b containing the set of records in 
which b is true. Consequently, the corresponding initiM 
store predicate is: 

bool_T_b_0(v) -- v in _bool_T_b 

As a final example, we consider pointer fields whose initiM 
store predicate is: 

succ_T_p_0(this,p) = f 

where f is the encoding of the formula associated with the 
p field of T. If the pre-condition of the Hoare triple contains 
the pointer directive T.  p [form], then that  formula is form, 
otherwise the default formula from the type definition is 
used. 

Across a simple statement, two collections of store pred- 
icates are related in a manner that  reflects the semantics of 
that statement. Consider for example a type of linked lists: 

type Node = { data next: Node; } 

and a simple statement involving two pointer variables of 
type Node: 

p = q.next; 

If this statement is enclosed by program points i and j, then 
the store predicates are updated as follows in MONA code: 

memfailed_jO = memfailed_i() ~ null-q_i 0 
ptr_p_j(v) = ex2 ptr_q_i(w) ~ w: succ.Node_next_i(w,v) 
null.p-jO = ex2 w: p1~r_q_i(w)~ null_Node_next(w) 

while the other store predicates remain unchanged. The 
PALE tool generates such store predicate updates for all 
Hoare triples and subsequently generates formulas to check 
the required properties. Between conditionals, routing ex- 
pressions, and various primitive statements this is a com- 
plex translation reminiscent of generating machine code in 
a compiler. The details can be studied in [35]. The way as- 
signments are handled without losing aliasing information, 
as in the example above, is essentially the same as in [36]. 

Checking that  an assertion property at a given progrean 
point cannot be violated can be expressed by encoding the 
property using the store predicates associated with the pro- 
gram point together with the pre-condition property en- 
coded with the initial store predicates. There is a strong con- 
nection between this transduction technique and the more 
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traditional weakest-precondition technique: if the predicate 
invocations in the MONA formulas are "unfolded", one es- 
sentially gets the weakest pre-condition. The main advan- 
tage of using the "forward" transduction technique instead 
of a "backward" weakest-precondition technique is an im- 
plicit reuse of intermediate results. 

Checking that  the resulting backbones are disjoint, 
acyclic, and span the heap is based on formulas for express- 
ing transitive closure. Checking that  a pointer directive 
holds is in [281 shown to be decidable in monadic second- 
order logic. This result generalizes easily to our extension 
of graph types, where arbitrary formulas rather than only 
routing expressions can be used as pointer directives. 

' The MONA tool transforms the resulting formulas, 
which can be quite large, into equivalent minimal Guided 
Tree Automata  [4] represented as BDD structures [6], and 
from that either deduces validity or generates counterex- 
ample models. In the latter case, the PALE tool decompiles 
that  model into a program store which causes the program to 
fail. The use of Guided Tree Automata  rather than ordinary 
tree automata  yields an exponential saving by, factorizing the 
state space according to the recursive structure of the graph 
type backbones. Compared to the WSRT technique used 
in [14], our choice of describing the backbones as records 
with pointers rather than as recursive types allow a simpler 
and more efficient automaton guide to be constructed. Also 
for efficiency reasons, we compile directly into MONA logic 
rather than use a more high-level logic, such as FIDO [30]. 

Note tha t  a collection of store predicates is vaguely sim- 
ilar to the abstract store descriptions employed by TVLA. 
Consequently, it might seem that we could follow their ap- 
proach and use a fixpoint process to transduce a while  loop. 
However, this is in general not possible, since such fixpoints 
may require transfinite induction. Hence, we resort to using 
invariants to break up loops. 

This t ransduct ion approach introduces no imprecision; it 
is both sound and complete for individual Hoare triples. 

6 D a t a  A b s t r a c t i o n s  

In [38, 31], abstractions of the data contained in the heap 
records can be tracked by specifying suitable instrumenta- 
tion predicates. As an example, a predicate dle(x, y) is used 
to represent "the data  in x is less than or equal to the data 
in y ' .  To illustrate the power of PAL, we show that  a similar 
approach works for our technique. 

As an example, we instrument  the ubiquitous linked-list 
reverse  example to verify tha t  reversal of a list ordered in 
increasing order results in a list ordered in decreasing order: 

• We associate two boolean fields, next_die  and 
next_dge, to the next  field in the linked-list type, with 
the intended meaning: next_dle is true in a given 
record if the data  in the record denoted by the next  
pointer is certain to be less than or equal to the data 
in the given record - and likewise for next_dge with 
greater than or equal. 

• Similarly, for each pair of program pointer variables, 
two boolean variables are added to keep track of the 
relative order of the records being pointed to. With 
a subsequent dead-code elimination, a total of three 
boolean variables suffice. 

® For each pointer assignment, the new boolean fields and 
variables are updated accordingly. For instance, 

list.next = res; 

is replaced by the multiple-assignment statement:  

list.next = res, list.next die = res_dle_list; 

reflecting the change of the n e x t  field. 

If arbitrary PAL formulas are allowed as r ight-hand sides of 
tile new assignments, even complex teachability properties 
can be captured. For this example, simple assignments suf- 
fice, though. As in [31t, this is also sufficient to verify for 
instance that  b u b b l e s o r t  actually sorts the elements. 

The intellectuM effort needed to update  the data  abstrac- 
tion bits seems to be the same as to define the required oper- 
ational semantics in TVLA. As hinted in the example, some 
degree of automation is possible for our technique; however, 
we leave that  for future work. 

Note that  many data  structures, in particular variations 
of search trees, can be abstractly described by associating to 
every node a t~w of bits of information summarizing prop- 
erties of the tree. Those data  structures can also be verified 
using techniques like these. 

7 I m p l e m e n t a t i o n  a n d  E v a l u a t i o n  

Our verification technique is implemented in a tool called 
PALE, the Pointer Assertion Logic Engine. Given an anno- 
tated program, PALE checks that: 

- the pointer directives are well-formed; 

® n u l l  pointer dereferences cannot occur; 

• at each cut-l~oint that  the da ta  variables contain dis- 
joint, acyclic backbones spanning the heap and that 
the assertions and pointer directives are satisfied; 

. all a s s e r t  assertions are valid; and 

• all cut-point properties are satisfiable. 

There is not necessarily an error in the program if a cut- 
point property is unsatisfiable, but  it usually indicates an 
error in the specification. As previously mentioned, memory 
allocation can easily be expressed such that  the tool would 
also check for memory leaks and dangling references. 

Using PALE, we have evaluated the technique on a num- 
ber of examples dealing with a variety of data  structures. In 
all cases, we check for memory errors and possible violations 
of the data  structure invariants: 

• Singly-linked lists with the operations r eve r se ,  search, 
zip, delete, insert, and rotate. These examples 

have been scrutinized before [8, 24, 32]. We also in- 
elude the concat  operation on lists with tail pointers 
from Section 1. We have tried b u b b l e s o r t  as in [31] 
but with various degrees of abstraction of the data: In 
bubblesor t_s imple ,  the record values are abstracted 
away so only n u l l  pointer dereferenees are checked for; 
in bubblesor t_boolean ,  the values are abstracted to 
booleans which in the post-condition are checked to be 
properly sorted; and in b u b b l e s o r t _ f u l l ,  the data  ab- 
straction technique from Section 6 is used as in [31] 
to conclude that  the resulting lists are sorted. We 
also use data abstractions in o rde red reve r se  to show 
that r eve r se  switches the order of a sorted list. Fi- 
nally, we try r e c r e ve r se ,  which is a recursive version 
of reverse. 
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E x a m p l e  / Lines  o f  
n a m e  l code  

reverse 
search 
zip 
delete 
insert 

rotate 

concat 
bubblesort_simple 

16 

rightrotate 

12 
33 
22 
33 
11 
24 
43 

bubblesort_boolean 43 2 
bubblesort_full 43 2 
orderedreverse 24 i 
recreverse 15 2 
doublylinked 72 1 
leftrotate 30 0 

0 30 
36 treeinsert I 

redblackinsert 57 7 
threaded 54 4 

G T A  I La rges t  G T A  
ope ra t ions  [ S ta tes  I B D D  nodes  

1,109 35 ] 142 

853 27 t 85 
1,753 174 730 

973 73 , 349 
1,005 103 I 443 

590 44 213 
1,056 48 177 
1,477 373 3,289 
1,737 357 3,922 
2,069 373 3,291 
1,091 29 100 
1,019 42 176 
4,163 230 796 
1,489 165 1,550 
1,489 165 1,550 
1,989 137 844 
4,279 297 2,419 
3,5{J5 50 248 

lnvariants 
( formulas)  

T i m e  
(seconds)  

0.52 
0.25 
4.58 
1.36 

2.66 

M e m o r y  
(MB) 

2 
11 
5 
7 

0.22 1 
0.47 3 
2.s6 iS 
3.37 12 
4.13 19 
0.46 3 
0.34 
9.43 13 
4.62 7 
4.68 7 
8.27 31 

35.04 44 
7 3.38 

Figure 1: Statistics from PALE experiments. 

* Doubly-linked lists with tail pointers [28] with the op- 
erations de le te ,  search, in se r t ,  and concat. 

* Red-black search trees [10] with the standard oper- 
ations leftrotate, rightrotate, treeinsert, and 
redblackinsert. We include the non-arithmetic part 
of the red-black search tree invariant, that is, that  the 
root is black and red nodes have black children: 

BLACK(root) 
allpos q of Node: KOOT<(left+right)*>q => 
(RED(q) => BLACK(q.left) a BLACK(q.right)); 

® Threaded trees [28], as shown in Section 3, where every 
node has a pointer to its post-order cyclic successor 
and a pointer to its parent, with a f i x  operation for 
reestablishing the correct pos t  pointer for a given node. 

The resources for translation into MONA code and for the 
automaton analysis are negligible. Figure 1 shows the time 
and space consumptions of the MONA automaton opera- 
tions (on a 466MHz Celeron PC) for the examples, along 
with the number of GTA operations (here we count only the 
essential operations: minimization, projection, and prod- 
uct), the size of the largest intermediate minimized automa- 
ton (in number of states and in number of BDD nodes). 
Note that  some examples implement individual operations 
while others implement whole data  types. The lines of code 
measure the underlying program only, thus disregarding the 
PAL annotations. "Invariants" is the total number of s p l i t  
statements, while statements, and procedure calls that  re- 
quire explicitly stated invariants. This number is an indica- 
tion of the effort required by the programmer to make PALE 
work, in addition to writing the program and its specifica- 
tion. The invaxiants for r e d b l a c k i n s e r t  were admittedly 
hard to get right. However, the programs that  require the 
most complicated invariants axe also those that  have the 
most complicated pointer operations and hence are the ones 
in most need of verification. The table shows that  the ex- 
amples typically run in seconds despite requiring a quite 

large number of automaton operations. Since the complex- 
ity is non-elementary in the size of the program, intractable 
examples do exist but they do not seem to occur often in 
practice. The verification time seems insignificant compared 
to the time required to design a given data  type and specify 
the invariants, however, it is useful in the design cycle that  
verification is efficient. 

The code for the bubblesor t  examples (excluding anno- 
tations) is taken from [31]. Interestingly, PALE discovered a 
minor bug (a null-pointer dereference) even though the code 
had allegedly been verified by TVLA, which spent 245 sec- 
onds compared to 4 seconds for PALE. This huge speedup 
shows an instance where using invariants is much faster than 
performing a fixpoint iteration. This suggests tha t  PALE 
may be quite scalable. Another noteworthy point discov- 
ered by PALE is that  in [10], the authors forget to require 
the root to be initially black in r edb l ack in se r t .  (More 
precisely, they mention the requirement in the proof of cor- 
rectness, but not in the specification.) 

Versions with plausible bugs planted typically take 
roughly the same time to process as the correct programs. 
For such buggy versions, counterexamples are generated, 
which is crucial for determining whether the error is in the 
program, the assumptions, or the assertions. As an exam- 
ple, if a conditional in r e d b l a c k i n s e r t  erroneously tests for 
a specific node to be black rather than red, PALE produces 
the following counterexample store for the Hoare triple con- 
taining the conditional: 

root 

Here, the root node is black and the others are red, and we 
omit field names and all pointer fields. Such a eounterexam- 
pie is clearly useful for locating the bug. Notice tha t  for this 
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bug, the approach in [23] would not find the bug for heap 
bounds of less than four records. 

The experiments show that  our approach does work in 
practice for non-trivial data  structures, and with time and 
space requirements which are as good as or better than those 
fbr the previous more specialized versions [24, 14] and re- 
lated approaches with similar goals [31, 23, 13, 17]. 

8 C o n c l u s i o n  

It is well known that  developing formal program specifica- 
tions is expensive, but for some safety critical applications 
a guarantee of partial correctness of data type implementa- 
tions can be worth the effort. A tool such as PALE can be 
used to verify specifications expressible in Pointer Assertion 
Logic, and also to guide the programmer by the generation 
of counterexamples. With verification techniques based on 
undecidable logics, either the programmer may have to guide 
a theorem prover to the proofY, not even being certain that 
they exist, or accept that  the reply may be "don't-know". 
With less expressive techniques, important  aspects of the 
data  types may not be expressible and hence not verifiable. 
In contrast to traditional program analyses, our technique 
is highly modular: each statement in the given program is 
analyzed only once. To verify complex properties, the tech- 
nique often requires detailed invariants to be provided. How- 
ever, since we primarily aim for data-type implementations, 
we believe that  this annotation overhead is reasonable com- 
pared to the effort of creating the program. In conclusion, 
Pointer Assertion Logic may provide a fruitful compromise 
between expressibility and usability. 

Although facing a non-elementary theoretical complex- 
ity, the examples we provide show that  logic and automaton 
based program verification is feasible. Furthermore, we be- 
lieve that  the efficiency of the implementation can be im- 
proved by at least an order of magnitude by tuning the 
MONA tool using heuristics as proposed in [27]. As also 
suggested in [23, 20] we may benefit from an initial sim- 
plification phase that  performs program slicing or partial 
evaluation of the source programs. 

Future work will also examine the possibility of incor- 
porating simple arithmetic into the language. The MONA 
tool can also be used as an efficient decision procedure for 
Presburger arithmetic [39, 26], which is sufficient for many 
properties. In [21], abstract data structure descriptions are 
used to improve program analyses in optimizing compilers. 
Pointer aliasing, for instance, can be expressed in PAL, so 
the detailed knowledge of the heap structure provided by 
PALE might also be useful for optimization. Another idea 
is to build a translator from C, C + + ,  or Java to PALE 
to make the tool more practically useful. Finally, it might 
be interesting to integrate the "independent conjunctions" 
from [37] into PAL to support  local reasoning and make the 
tool easier to use. 

The full source code for the PALE tool, the examples, 
and a detailed description of the desugaring and code gen- 
eration to MONA are available from the PALE site at 
http ://www. brics, dk/PALE/. 
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