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ABSTRACT

This paper proposes a novel approach to shape analysis: using local
reasoning about individual heap locations instead of global reason-
ing about entire heap abstractions. We present an inter-procedural
shape analysis algorithm for languages with destructive updates.
The key feature is a novel memory abstraction that differs from
traditional abstractions in two ways. First, we build the shape ab-
straction and analysis on top of a pointer analysis. Second, we
decompose the shape abstraction into a set of independent configu-
rations, each of which characterizes one single heap location. Our
approach: 1) leads to simpler algorithm specifications, because of
local reasoning about the single location; 2) leads to efficient algo-
rithms, because of the smaller granularity of the abstraction; and
3) makes it easier to develop context-sensitive, demand-driven, and
incremental shape analyses.

We also show that the analysis can be used to enable the static
detection of memory errors in programs with explicit deallocation.
We have built a prototype tool that detects memory leaks and ac-
cesses through dangling pointers in C programs. The experiments
indicate that the analysis is sufficiently precise to detect errors with
low false positive rates; and is sufficiently lightweight to scale to
larger programs. For a set of three popular C programs, the tool
has analyzed about 70K lines of code in less than 2 minutes and
has produced 97 warnings, 38 of which were actual errors.
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gramming Languages—Program Analysis; D.2.4 [Software En-
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1. INTRODUCTION

Dynamic data structures are fundamental to virtually all pro-
gramming languages. To check or enforce the correctness of pro-
grams that manipulate such structures, the compiler must automat-
ically extract invariants that describe their shapes; for instance, that
heap cells are not shared, i.e., not referenced by more than one
other memory location. This invariant provides critical information
to check high-level properties, for instance that a program builds a
tree or an acyclic list; or to check low-level safety properties, for
instance that there are no accesses through dangling pointers. For
imperative programs with destructive updates, the task of identify-
ing shape invariants is difficult because destructive operations tem-
porarily invalidate them. Examples include even simple operations,
such as inserting or removing elements from a list. The challenge
is to show that the invariants are restored as the operations finish.

There has been significant research in the area of shape analysis
in the past decades, and numerous shape analysis algorithms have
been proposed [34]. At the heart of each algorithm stands a sophis-
ticated heap abstraction that captures enough information to show
that invariants are being preserved. Examples of heap abstractions
include matrices of path expressions and other reachability matri-
ces [18, 17, 11], shape graphs [29, 21], and, more recently, three-
valued logic structures [31]; all of these characterize the entire heap
at once. Although shape analyses have been successful at verify-
ing complex heap manipulations, they have had limited success at
being practical for larger programs. We believe that their mono-
lithic, heavyweight abstraction is the main reason for their lack of
scalability.

This paper presents an inter-procedural shape analysis algorithm
based on a novel memory abstraction. The main idea of this paper is
to break down the entire shape abstraction into smaller components
and analyze those components separately. As shown in Figure 1,
we propose a decomposition of the memory abstraction along two
directions:

e \ertical decomposition: First, we build the fine-grained shape
abstraction and analysis on top of a points-to analysis that pro-
vides a coarse-grained partition of the memory (both heap and
stack) into regions, and identifies points-to relations between re-
gions;

e Horizontal decomposition: Second, we decompose the shape
abstraction itself into individual configurations; each configura-
tion characterizes the state of one single heap location, called
the tracked location. A configuration includes reference counts
from each region, and indicates whether certain program expres-
sions reference the tracked location or not. The set of all config-
urations provides the entire shape abstraction; however, config-
urations are independent and can be analyzed separately. This is
the key property that enables local reasoning.
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Figure 1: Decomposition of the memory abstraction

The vertical decomposition frees the shape analysis of the burden
of reasoning about aliases in unrelated program structures. Fur-
ther, the horizontal decomposition into independent configurations
provides a range of advantages. First, it enables local reasoning
about the single tracked location, as opposed to global reasoning
about the entire heap. This makes the analysis simpler and more
modular. Second, the finer level of abstraction granularity reduces
the amount of work required by the analysis: efficient worklist al-
gorithms can process individual configurations rather than entire
abstractions. Third, it does not require keeping multiple abstrac-
tions of the entire heap at each point [30], nor any complex mech-
anisms to merge entire abstractions for a more compact represen-
tation [29]. The decomposition into configurations automatically
yields a compact representation that is able to model many con-
crete heaps. Fourth, it makes it easier to formulate inter-procedural
context-sensitive analyses where procedure contexts are individual
configurations. Fifth, it makes it easy to build on-demand and in-
cremental shape analysis algorithms. Minor modifications allow
the algorithm to explore from only a few selected allocation sites,
giving a complete shape abstraction for all cells created at those
sites, and to reuse previous results when new allocation sites are
being explored.

We also present extensions of the analysis that enable the static
detection of memory errors in languages with explicit deallocation.
Our algorithm can identify memory leaks and accesses to deallo-
cated data through dangling pointers. We have built a prototype
system for C programs that implements the ideas in this paper and
is aimed at detecting memory errors. Our experiments show that
local reasoning leads to scalable implementations; that it can cor-
rectly model shape for standard list manipulations; and that it can
enable the detection of memory errors with low false positive rates.

This paper makes the following contributions:

e Memory Abstraction: It proposes a novel memory abstrac-
tion that builds the precise shape abstraction on top of a re-
gion points-to abstraction; it further decomposes the shape ab-
straction into independent configurations that describe individ-
ual heap locations;

e Analysis Algorithm and Applications: It gives a precise spec-
ification of an inter-procedural, context-sensitive analysis algo-
rithm for this abstraction; and shows how to use the analysis
results to detect memory errors;

e On-demand and Incremental Shape Analysis: It shows that
our approach can be applied to the demand-driven and incremen-
tal computation of shapes;

e Theoretical Framework: It presents the analysis algorithm in
a formal setting and shows that the key parts of the algorithm are
sound;

e Experimental Results: It presents experimental results col-
lected from a prototype implementation of the proposed analysis
for C programs.

The rest of the paper is organized as follows. Section 2 presents
an example. Section 3 introduces a simple language, and Sections 4
and 5 describe the algorithm in the context of this simple language.
Next, Section 6 presents extensions to the algorithm. Section 7
discusses limitations. We present experimental results in Section 8,
discuss related work in Section 9, and conclude in Section 10.

2. EXAMPLE

We use the example from Figure 2 to illustrate the key features of
our analysis. This example is written in C and shows a procedure
spl i ce that takes two argument lists x and y, splices x into y,
and returns the resulting list. The code assumes that input list x is
not longer than y. The goal of shape analysis is to statically verify
that, if the input lists x and y are disjoint and acyclic, then the list
returned by spl i ce is acyclic.

The execution of splice works as follows. First, it stores a pointer
to the second list into a local variable z. Then, the program uses
a loop to traverse the two lists with parameters x and y. At each
iteration, it sets a pointer from the first list into the second, and vice-
versa, using a temporary variable t . When the traversal reaches the
end of list x, it terminates and the procedure returns the list pointed
to by z.

2.1 Memory Abstraction

Figure 3 shows two possible concrete stores that can occur dur-
ing the execution of spl i ce. The one on the left is a possible
concrete store at the beginning of the procedure, where x and y
point to acyclic lists; and the store on the right is the corresponding
memory state when the loop terminates. Boxes labeled with x, v,
z,and t represent the memory locations of those variables. The re-
maining unlabeled boxes are heap cells and represent list elements.

Figure 4 presents the memory abstraction that our analysis uses
for these two concrete stores. The left part of this figure shows the
region component of the abstraction, which consists of a points-
to graph of regions. Each region models a set of memory loca-
tions; and different regions model disjoint sets of locations. For
this program, our analysis uses a separate region to model the lo-
cation of each variable!: X, Y, Z, and T are the regions containing
variables x, y, z, and t , respectively. Region L models all list el-
ements. The points-to graph Figure 4 shows the points-to relations
between abstract regions for the whole procedure, as given by a
flow-insensitive pointer analysis. Hence, this graph applies to both
the input and output abstractions discussed here.

The right part of Figure 4 shows the shape component for each
of the concrete stores. Each abstraction consists of a set of con-
figurations: the input abstraction has 3 configurations and the out-
put abstraction has 4. Each configuration characterizes the state of
the tracked location and consist of: a) reference counts from each
region to the tracked location, shown in superscripts; b) program
expressions that definitely reference the tracked location (hit ex-
pressions); and c) program expressions that definitely do not (miss
expressions). For instance, configuration (T*L*, {t }, @) shows
that the tracked location has one incoming reference from region T,

L Although not the case in this example, it may happen that multiple
variables get placed into the same region.



1: typedef struct list {
2: struct list *n;

3: int data;

4: } List;

5:

6: List *splice(List *x, List *y) {
7: List *t = NULL;

8: List *z = vy;

9: while(x !'= NULL) {
10: t = X;

11: X = t->n;

12: t->n = y->n

13: y->n = t;

14 y = y->n->n;

15: }

16: return z;

17: }

Figure 2: Example program: splicing lists

one incoming reference from region L, and is referenced by t , but
any expression originating from L (i.e., next pointers) may either
reference it or fail to reference it. Although we could have used
richer sets of miss expressions, these abstractions are sufficient for
our algorithm to prove the shape property.

These abstractions are complete: the set of all configurations in
each abstraction provides a characterization of the entire heap. In-
deed, if the tracked location is any of the five heap cells, there is a
configuration that characterizes it. But although their sum collec-
tively describes the entire heap, configurations are independent: the
state described by any particular configuration is not related to the
other configurations; it characterizes one heap location and has no
knowledge about the state of the rest of the heap (beyond what is
given by the points-to graph). This is the key property that enables
local reasoning.

2.2 Analysis of Splice

Figure 5 shows the analysis result that our algorithm computes
at each point in the program. This shape abstraction builds on the
region points-to abstraction from the previous section. Boxes in the
figure represent individual configurations; each row represents the
entire heap abstraction at a program point; and edges correlate the
state of the tracked location before and after each statement. There-
fore, each path shows how the state of the tracked location changes
during program execution. For readability, we omit wrap-around
edges that connect configurations from the end to the beginning of
the loop. Also, we omit individual variables from hit and miss sets,
and show just the field accesses expressions. We use the abbrevia-
tions: th=t - >n and yn= y- >n, and indicate miss expressions us-
ing overlines. Our algorithm efficiently computes this result using
a worklist algorithm that processes individual configurations (i.e.,
individual nodes), rather full heap abstractions (i.e., entire rows).

The top row shows three configurations, Y*, L', and X*, that
describe the memory for any input where x and y point to acyclic
lists. The bottom row consists of configurations Z* and L*, and
shows that at the end of the procedure the returned value z points to
an acyclic list. Hence, the analysis successfully verifies the desired
shape property.

We discuss the analysis of several configurations to illustrate
how the analysis performs local reasoning. Consider the configura-
tion Y'Z! before the statement at line 11, x=t - >n. The compiler
inspects this assignment and tries to determine whether or not the
expressions in the left- and right-hand side reference the tracked lo-
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Figure 4: Memory abstraction

cation: if the right side references the location, the assignment may
add a new reference to it; and if the left side points to the tracked lo-
cation, the assignment may remove a reference to it. For x=t - >n,
the analysis determines that x represents a location in region X, and
t - >n is a location in region L, as indicated by the points-to graph.
But the reference counts in the current configuration show that the
tracked location has no references from regions X or L; hence, it
concludes that neither x, nor t - >n reference the tracked location
and this assignment doesn’t affect its reference counts.

Consider now the configuration L' at the same program point,
before line 11. The compiler can use the same judgment as above to
determine that x does not reference the tracked location. However,
it is not able to determine whether or not t - >n references it. At
this point, the compiler bifurcates the current configuration into two
configurations where this fact is precisely known: one wheret - >n
references the location and one where it doesn’t. In each case, it
adds t - >n to the corresponding hit or miss set, and analyzes the
assignment. The resulting two configurations L' and X'L! after
line 11 are the successors of the analyzed configuration L*.

Keeping track of hit and miss sets provides invaluable informa-
tion to the analysis. Consider configuration L' before statement
t - >n=y- >n. The analysis of this statement yields a configuration
L2, where the tracked location has two incoming references from
L and violates the desired shape property. However, the analysis
identifies that the reference y- >n is being copied, so it adds y- >n
to the hit set of configuration L2. At the next assignment, y- >n=t ,
the analysis identifies that the same expression y- >n is being over-
written. The presence of y- >n in the hit set enables the analysis to
accurately decrease the reference count from L back to 1.

2.3 Cyclic and Shared Inputs

Analyzing the behavior of spl i ce for cyclic or shared input
lists provides key insights about why the local reasoning about the
single location works. The left part of Figure 6 shows an input
store where the list pointed to by y contains a cycle; the right part
shows the resulting memory after running spl i ce with this input.
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Figure 5: Shape analysis results for spl i ce. Boxes represent configurations and edges show how the state of the tracked location
changes during the execution. We only show field access expressions in the hit and miss sets. We use the abbreviations: th=1t - >n
and yn= y- >n, and we indicate miss expressions using overlines. For readability, back edges from configurations at the end of the
loop to the corresponding configurations at the beginning of the loop are omitted.

A closer look at the input structure reveals that the cycle is caused
by the presence of one shared cell with two incoming references,
the shaded cell. If we inspect the output structure we see that it is
also a cyclic list. The interesting fact is not that spl i ce yields a
cyclic output given a cyclic input; but rather that the shaded cell that
causes the input cycle is exactly the same cell that causes the cycle
in the output. Therefore, reasoning about cycles requires reasoning
just about this particular cell. All of the other cells in this structure
behave as in the acyclic case.

To build the abstraction for the cyclic input from Figure 6, we
can use the previous abstraction, and augment it with one additional
configuration L2 to describe the cell in question. The analysis of
the abstraction for the cyclic input will yield a configuration graph
similar to the one from Figure 5, but augmented with additional
paths that originate at the L? configuration. These paths describe
the state of the shared cell through the program. One can examine
the input-output relationships in the result graph, and identify that
the shared cell in the input (L?) may remain shared, but all of the
non-shared cells in the input (X!, Y*, and L") will remain non-
shared in the output.

In fact, the analysis of the cyclic case can reuse all of the analysis
result from the acyclic case. This is possible because the analysis
of each configuration in Figure 5 reasons only about one location,
and makes no assumption about the presence or absence of cycles
in the rest of the structure. Hence, those results directly apply to
cyclic inputs; they characterize the “acyclic portion” of the cyclic
input. Similar situations arise for inputs that have shared sublists,
or inputs where one list is a sublist of the other.

This discussion brings us to the inter-procedural analysis, the
main obstacle in building scalable analyses. The example shows
that our abstraction allows us to efficiently build an inter-procedural
context-sensitive analysis, where the analysis of each calling con-
text can reuse results from other contexts. In our example, the anal-
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ysis of spl i ce for a cyclic context can reuse the result from an
acyclic context, and do little additional work. And if the cyclic
context is being analyzed first, the result for the acyclic one is al-
ready available. This is possible because we can break down the
entire heap context into finer-grain contexts that are just individual
configurations.

3. ASIMPLE LANGUAGE

To formalize the description of the algorithm, we use the simple
language shown in Figure 7. This is a typeless C-like imperative
language with procedures, dynamic allocation, and explicit deallo-
cation. A program prog maps each procedure to a pair containing
its formal parameters and its body. The only possible values are
pointers to memory locations and null pointers. Dynamic alloca-
tions create structures that contain one memory location for each
field. There is a distinguished first field f; in each structure; dy-
namic allocations return a pointer to the first field in the newly al-
located structure. The language supports pointers to variables and
pointers into the middle of structures. An expression e. f requires
e to be an I-value representing the first field of a structure; then
e.f isthe f field of that structure. A dereference expression xe al-



programs: prog € Prog = P — (V" x S)
procedures: p € P
statements: s €S, s:= ey e1

| e — malloc | free(e)

| call p(e,..,en) | so; s1

| if (e) so else s1 | while (e) s
expressions: e€ E, ex= null | z | & | xe | e.f
variables: z €V
fields: feF ={fi,....fm}

Figure 7: Source language

ways represents the memory location pointed to by e (not the whole
structure when e points to a structure). C expressions of the form
e- >f are represented in our language as ( *e) . f. Deallocation
statements free all of the locations in a structure and yield dangling
pointers.

We formally model concrete stores that can arise during program
execution using a set of memory locations L that contains the stack
locations for variables, and all of the heap locations created during
program execution. Let V' be the set of variables in the program. A
concrete store is a triple o = (04, 07, 0¢), consisting of:

Variablemap: o, : V =1L
Location map: oy L — (L + {null})
Field map: oy (LxF)—=1L

The map o, assigns a location to each variable. The partial map
o1 models points-to relations between locations. We require that
range(o.) C dom(o;). The set range (o, ) represents stack-allocated
memory locations. The set L, = dom(o;) — range(c,) represents
the currently allocated heap locations. A stack or heap location [
contains a dangling pointer if o;(I) ¢ dom(o;) U {null}. Finally,
the partial map o captures the organization of fields in allocated
structures. For a location I € L that represents the first field in a
heap structure, o (I, f) represents the f field of that structure. We
require that all locations in the domain and range of o ¢ be allocated.
The Appendix describes the formal semantics of the language us-
ing a relation (e, o) — [ that evaluates expression e to its l-value;
a relation (e,o) —, v that evaluates e to its r-value; a relation
(s,0) —5 o for statements. In this paper, we refer to the l-value
of an expression ¢ as the location of e, and to the r-value of e as the
value of e.

We formulate the proposed analysis algorithm in the context of
this language. The overall algorithm first performs a region anal-
ysis, and then runs the shape analysis. The following two sections
describe each of these analyses in turn.

4. REGION ANALYSIS

The goal of region analysis is to provide a partitioning of the
memory into disjoint regions, and to identify points-to relations be-
tween regions. In general, this can be achieved using any pointer
analysis algorithm; our shape analysis is independent of the partic-
ular pointer analysis being used. However, we use a flow-insensitive
and context-sensitive pointer analysis similar to [24] and [10]. Such
algorithms seem a good match for our problem because of two rea-
sons. First, they are efficient in practice, due to flow-insensitivity.
Second, they are precise enough to distinguish between different
heap structures allocated at the same site, due to context-sensitivity.
Using such an algorithm, the analysis result is a points-to graph for
each procedure; nodes in these graphs represent memory regions,

and edges model points-to relations between regions. Most impor-

tant in our system is to characterize the computed region result, thus

describing the interface between region and shape analysis. Given

a program, a region abstraction consists of the following:

o for each procedure p, a set of regions R that models the loca-
tions that p may access;

o for each procedure f, a region abstract store: p” = (o, p7, p%),
where p? : V' — RP maps variables to their regions; the partial
map p? : R? — RP models points-to relations between regions;
and p’} : (RP x F') — RP maps pairs of base regions and fields
to field regions;

o for each call site cs, with caller p and callee ¢, a one-to-one
mapping s : R? — RP that maps all (parameter) regions in ¢
to actual regions in p.

A region abstraction is sound if regions describe disjoint sets of
memory locations, and points-to relations in the abstraction accu-
rately describe points-to relations in the concrete heap. We give a
formal definition of soundness in Section 5.3. Key to the algorithm
is that regions are disjoint, so the subsequent shape analysis can
safely conclude that an update in one region will not change the
values of locations in other regions.

We briefly sketch the flow-insensitive and context-sensitive anal-
ysis that computes the region points-to abstraction. First, the algo-
rithm performs an intra-procedural, unification-based analysis [32]
to build a points-to graph for each function. Then, it performs an
inter-procedural analysis and propagates the aliasing information
between different functions at each call site. The algorithm uses a
two-phase approach similar to [24]: a bottom-up pass through the
functions in the call graph propagates the aliasing information from
callees to callers; and, a top-down phase propagates the information
from callers to callees.

Note that the region partitioning that other kinds of pointer anal-
yses produce could be modeled in a similar way. For a context-
insensitive pointer analysis, each call site mapping .5 is the iden-
tity function. And in the case of a flow-sensitive approach, the
analysis result is not just one abstract store p per function, but a set
of abstract stores, one for each program point.

5. SHAPE ANALYSIS

This section presents the shape analysis algorithm in detail. We
first present the shape abstraction and then give the intra- and inter-
procedural algorithms.

5.1 Shape Abstraction

The role of the shape abstraction is to make the points-to infor-
mation more accurate. Roughly speaking, the region abstraction
provides “may” points-to relations between memory locations, and
the shape abstraction augments it with “must” points-to informa-
tion about each heap cell.

The shape abstraction is based on the notion of configurations.
Each configuration abstracts the state of one individual memory
location, the tracked location. The full heap abstraction consists
of a finite set of configurations, such that each concrete memory
location can be modeled by one configuration in the set. Each con-
figuration keeps track of: reference counts from each region to the
tracked location; expressions that definitely reference the tracked
location (hit expressions); and expressions that definitely don’t ref-
erence the location (miss expressions).

Formally, we describe configurations using an index domain 7
for counting references, and a secondary domain H for hit and miss
expressions. A configuration is then a pair of an index and a sec-
ondary value. If R is the set of regions in the currently analyzed



function and F,, is the finite set of program expressions, then the
domains are:

Index values: iel = R—{0,...,k,00}
Secondary values: he H = P(E,) x P(Ep)
Configurations: ceC = IxH

Each index value 7 gives the reference counts for each region. We
bound the reference counts to a fixed value k, to ensure that the
abstraction is finite. For each region r € dom(z), the number ¢(r)
is the number of references to the tracked location from region r:
if i(r) € 0..k, then the reference count is exactly i(r); otherwise,
if i(r) = oo, the reference count is k& + 1 or greater. In practice,
we found a low value k& = 2 to be precise enough for all of the
programs that we experimented with. We emphasize that & is the
maximum reference count from each region; however, there can be
many more references to the tracked object, as long as they come
from different regions. Finally, each secondary value h € H is a
pair h = (e*,e™), where e™ is the hit set and e~ is the miss set.

The full shape abstraction consists of a set of configurations, with
at most one configuration for each index value. In other words, the
abstraction is a partial map from index values to secondary values.
We represent it as a total function that maps the undefined indices
to a bottom value L :

Shape abstraction: a€ A = I — (HU{Ll})

We define a lattice domain over the abstract domain, as follows.
The bottom element is o, = Ai.L, meaning that no configuration
is possible. The top element is at = Ai.(0, 0), meaning that any
index is feasible and, for each index, any expression can either ref-
erence or fail to reference the tracked location. Given a1, a2 € A,
their join a1 U as is:

a1 (%) if i ¢ dom(az)
(a1 Ua2)(i) = ¢ a2(7) Ifz ¢ dom(a1)
a1(i) Uaz(i) ifi e dom(ar)ndom(asz)

where (e, ey ) U (ed,ey) = (ef Ned, el Ney)
and Lu(et,e)=(eT,e)UL=(eT,e7)

The merge operator LI is overloaded and applies to both A and HU
{L}; one can infer which operator is being used from its context.
We denote by C the partial order that corresponds to LI.

5.2 Intra-Procedural Analysis

We present the dataflow equations, the transfer functions for as-
signments, malloc, and free, and then give formal results.

5.2.1 Dataflow Equations

We formulate the analysis of each function in the program as a
dataflow analysis that computes a shape abstraction a € A at each
program point in the function. The algorithm differs from standard
approaches in two ways. First, it uses a system of dataflow equa-
tions and a corresponding worklist algorithm that operate at the
granularity of individual configurations, rather than entire heap ab-
stractions (i.e., sets of configurations). Second, the dataflow infor-
mation is being initialized not only at the entry point in the control-
flow, but also at each allocation site, where the analysis produces a
new configuration for the newly created memory location.

Let Sasgn be the set of assignments in the program, and Sq10c C
Sasgn the set of allocation assignments. For each assignment s €
Sasgn, We define two program points: es is the program point be-
fore s and se is the program point after s. Let Sentry C Sasgn be
the set of assignments that occur at the beginning of the currently
analyzed function (i.e., assignments reachable from the function

Forall s € Sasgn, Sa € Saitoc, Se € Sentry, t € I :

[JoIN] Res(es)i = | Res(s’'e)

s’ epred(s)

Res(se) i =| |, c;([s](p, (i',Res(es)i))) %

[ALLOC] Res(sq®)iq 3 ha, Where [s4]7°"(p) = (ia, ha)

[TRANSF]

[ENTRY] Res(esc)i Jaoi

Figure 8: Intra-procedural dataflow equations.

entry point without going through other assignments), and let pred
and succ map assignments to their predecessor or successor assign-
ments in the control flow (these can be easily computed from the
syntactic structure of control statements).

We model the analysis of individual assignments using transfer
functions that operate at the level of individual configurations. The
transfer function [s] of a statement s € Sasgn takes the current
region abstract store p and a configuration ¢ € C before the state-
ment to produce the set of possible configurations after the state-
ment: [s](p, c) € A. Furthermore, for each allocation s € Sqiioc,
there is a new configuration [s]?“" (p) € C being generated.

The result of the analysis is a function Res that maps each pro-
gram point to the shape abstraction at that point. Figure 8 shows
the dataflow equations that describe Res. In this figure, p is the re-
gion store for the currently analyzed function and a¢p € A is the
boundary dataflow information at the function entry point. Equa-
tions [JOIN], [TRANSF], and [ENTRY] are standard dataflow equa-
tions, but are being expressed such that they expose individual con-
figurations and their dependencies. Equation [ALLOC] indicates
that the analysis always generates a configuration for the new loca-
tion, regardless of the abstraction before the allocation statement.

This formulation allows us to build an efficient worklist algo-
rithm for solving the dataflow equations. Instead of computing
transfer functions for entire heap abstractions when the informa-
tion at a program point has changed, we only need to recompute
it for those indices whose secondary values have changed. Rather
than being entire program statements, worklist elements are state-
ments paired with indices. Using a worklist with this finer level of
granularity serves to decrease the amount of work required to find
the least fixed point.

The worklist algorithm is shown in Figure 9. Lines 1-14 perform
the initialization: they set the value of Res at entry points (lines 4-7)
and at allocation sites (lines 8-14), and initialize itto a at all other
program points (lines 2-3). The algorithm also initializes the work-
list, at lines 1, 7, and 14. Then, it processes the worklist using the
loop between lines 16-22. At each iteration, it removes a statement
and an index from the worklist, and applies the transfer function
of the statement for that particular index. Finally, the algorithm
updates the information for all successors, but only for the indices
whose secondary values have changed (lines 19-21). Then, it adds
the corresponding pair of successor statement and index value to
the worklist, at line 22.

5.2.2 Decision and Stability Functions

To simplify the formal definition of transfer functions, we in-
troduce several evaluation functions for expressions. First, we use
a location evaluation function L[e] that evaluates an expression e
to the region that holds the location of e. The function is not de-
fined for expressions that do not represent I-values (&e and null).



WORKLIsT(DataflowInfo ag)

1 w=90
2 foreachs € Sasgn
3 Res(es) = Res(se) = a
4 for each se € Sentry
5 Res(es.) L= ao
6 for each i such that Res(es. )i has changed
7 W =W U{(s,i)}
8 for each s, € Saiioc
9 let (ia, ha) = [5a]7" ()
10 Res(sq®)ia L= hqe
11 for each 4 such that Res(s. )i, has changed
12 for each s € succ(sa)
13 Res(es)i LI= Res(sq®)i
14 W =W U{(s,i)}
15
16  while (W is not empty)
17 remove some (s, ¢) from W
18 Res(se) L= [s](p, (i, Res(es)i))
19 for each 7’ such that Res(se):’ has changed
20 for each s” € succ(s)
21 Res(es’)i’ LU= Res(se)i’
22 W=wu{(s,i)}

Figure 9: Intra-procedural worklist algorithm.

If p = (pv, pr, ps), then:

Llz]p pv(2)
Llxe[p = pr(L[e]p)
Lle.flo = ps(Llelp, f)

Second, we define a decision evaluation function D[e] that takes
a store p and a configuration ¢, uses this information to deter-
mine whether e references the location that c tracks: D[e](p, ¢) €
{+, —,?}. The evaluation returns “+” is e references the tracked
location, “—"" if it doesn’t, and “?” if there is insufficient informa-
tion to make a decision:

— ifece” Vi(Lle]p) =0

. _ Ve=nulVve=&z
D[[e]](p, (27 (€+,6 ))) = + ifec et
7 otherwise

(the condition ¢(L[e]p) = 0 in the miss case is a shorthand for
“e Znull A e# &' A i(L]e]p) =07)

Finally, we define two stability evaluation functions to determine
if writing into a region affects the location or the value of an expres-
sion. The location stability function S[e]; takes an abstract store
and a region, and determines whether the location of e is stable with
respect to updates in that region: S[e];(p,r) € {true, false}:

S[z]i(p,r) = true
Slxeli(p,r) = Sleli(p,7) A
Sle-fli(p,r) = Sleli(p,7)
The value stability function S[e],, indicates whether the value of e

is stable with respect to updates in r. Value stability implies loca-
tion stability, but not vice-versa:

Lle]p #r

S[null],(p,r) = true

Slz]o(p,7) = pz)# 7

S[& ]]u(/)ﬂ") = Sleli(p,7)

S[xelu(psr) = Slelu(psr) A Lxe]p #r
Sle-flo(p,r) = Slelilp,r) A Lle-flp #7

PROPERTY 1 (STABILITY). Given a sound abstract store p,
an assignment eg < ey such that L[eo](p) = r, a concrete state o
before the assignment and a concrete state o’ after the assignment,
then:

o for any expression e, if S[e]. (p,

value in stores o and o”;

o if S[eo]i(p, r) then eg evaluates in store o’ to the value that e;
evaluates in store o;

e if S[ex]:(p, ) then e; evaluates to the same value in stores o
and o’

r) then e evaluates to the same

We illustrate the importance of stability with an example. Con-
sider two variables: x in region r, and y in region r,. Assume
that the tracked location is being referenced by v, that the tracked
location does not have a self reference, and that the program exe-
cutes the statements z = &x; *xx = y. Although we assign y to xx
and y is a hit expression, xz will not hit the tracked location after
this code fragment. The reason is that xz does not represent the
same memory location before and after the statement; the update
has caused =z to have different I-values. Our analysis captures this
fact by identifying that expression *zx is not location-stable with re-
spect to updates in region r. In general, if the left-hand side of an
assignment is not location-stable, it is not safe to add it to the hit
(or miss) set, even if the right-hand side hits (or misses) the tracked
location.

5.2.3 Analysis of Assignments: ey « e;

The analysis of assignments plays the central role in the intra-
procedural analysis. Given a configuration ¢ = (i, h) before the
assignment, the goal is to compute all of the resulting configura-
tions after the assignment. Given our language syntax, this form
of assignment models many particular cases, such as nullifications
(z = null), copy assignments (z = y), load assignments (z = xy
or x = y.d), store assignments (xx = y or x.d = y), address-
of assignments (x = &y), as well as assignments that involve
more complex expressions. Our formulation compactly expresses
the analysis of all these statements in a single, unified framework.

Figure 10 shows the algorithm. The analysis must determine
whether or not the expressions eo and ey reference the tracked lo-
cation. For this, it invokes the decision function D[-] on eo and
e1. For each of the two expressions, if the decision function can-
not precisely determine if they hit or miss the tracked location, it
bifurcates the analysis in two directions: one where the expression
definitely references the tracked location, and one where it defi-
nitely doesn’t. The algorithm adds e and e; to the corresponding
hit or miss set and analyzes each case using the auxiliary function
assign; it then merges the outcomes of these cases.

The function assign is shown Figure 11 and represents the core
of the algorithm. It computes the result configurations when the
referencing relations of ep and e; to the tracked location are pre-
cisely known, and are given by the boolean parameters by and b1,
respectively. The algorithm works as follows. First, it evaluates
the region r that holds the location being updated, using L[eo].
Then, it updates the reference count from r, between lines 2-8. If
eo references the location, but e; doesn’t, it decrements the count;
if e; references the location, but eq doesn’t, it increments it; and
if none or both reference it, the count remains unchanged. Special
care must be taken to handle infinite reference counts; in particular,
decrementing infinite counts yields two possible values, co and k.
The result is a set S; that contains either one or two indices with the
updated reference count(s) for ». Note that the analysis can safely
preserve reference counts from all regions other than r, because
regions model disjoint sets of memory locations.



[[60 — elﬂ(pv (7:7 (e+7 67))) :
case (Dﬂeo]](p, (ia (e+7 67)))7DH61]](p7 (ia (€+7 ei)))) of

(’Uo € {_7+}7 v1 € {_7+}) =
assign(eo7e1,p,i,eﬁeﬂvo =+,v1=4)

(?, (NS {+,—}) =
assign(eo, e1, p, 3, U {eo}, e, true,v1 = +) U
assign(eo, e1, p,4,e",e” U {eo}, false, v1 = +)

(’Uo € {_7+}7 ?) =
assign(eo, e1, p, 3, U {e1}, e, vo = +, true) U
assign(eo, e1, p,i,e",e” U {e1},vo = +, false)

7 =
assign(eo, e1, p,4,et U {eo, e1}, e, true, true) U
assign(eo, e1, p,4, e U {eo}, e” U {e1},true, false) LI
assign(eo, e1, p, i, U {e1},e” U {eo}, false, true) U
assign(eo, e1, p,4,et, e~ U {eo, e1 }, false, false)

Figure 10: Transfer function for assignments [eq < e1].

Next, the analysis derives new hit and miss sets, using the com-
putation between lines 10-20. First, at lines 10 and 11, the analysis
filters out expressions whose referencing relations to the tracked
location no longer hold after the update. For instance, the filtered
set e,, includes from e~ only those expressions e that meet one of
the following two conditions:

e Sle]w(p,r): the value of e is stable with respect to the updated
region r. In that case, e has the same value before and after the
assignment, so it remains in e ;

e S[eli(p,r) A —bi: the location of e is stable with respect to
r and the assigned value misses the tracked location (i.e., b1 =
false). Hence, the location of e is the same before and after
the assignment, but its value may or may not change. If the
value doesn’t change, e will not reference the tracked location
after the assignment because it didn’t before (e € e™). If the
value changes, the location gets overwritten with a value that
still doesn’t reference the tracked location (as indicated by b, =
false). Hence, the analysis can conclude that in either case e will
not reference the tracked location and can safely keep e in e, .

At lines 13 and 14, the analysis tries to add the left-hand side
expression eq to the hit or miss set. It uses a similar reasoning as
above to determine that ¢q is a hit (or miss) expression only if it
is location-stable and the written value hits (or misses) the tracked
location. At lines 16-18, the analysis derives new expressions in
et and e;; by substituting occurrences of xe; with xeq in expres-
sions that do not contain address-of subexpressions. The set E;, in
this figure represents all program expression that don’t contain the
address-of operator. Once again, substitutions are safe only when
certain stability conditions are met, in this case that e and e; are
both location-stable.

At line 20, the analysis discards from the miss set all those ex-
pressions whose referencing relations can be inferred by the deci-
sion function using region information alone. This allows the anal-
ysis to keep smaller miss sets without losing precision. At the end,
assign produces one configuration for each index in S;. We use the
following notation: if S is a set of indices and / a secondary value,
then (S,h) =Xi € I .if (i € S) then helse L.

assign(eo, e1, p,,et, e, bo, b1) :

1 r=L[eo](p)

2 if (bo A ﬁb1) then

3 if (i(r) <k)thenS; = {i[r —i(r)—1] }

4 else S; = {i[r — k|, i[r — oo }
5  elseif (mbo A b1) then

6 if (i(r) < k)thenS; = {i[r —i(r)+1] }

7 else S; = {i[r — oo] }

8 elseS;={i}

9

10 ¢f ={ece |Slelu(p,r) V (S[elilp,r) Ab1)}
1 ep ={e€e |S[elu(pr) v (Sleli(p,r) A=b1)}

13 if (S[eo]i(p,7) A b1) thenel U= {eo}
14 if (S[[eo]][(p,r) A ﬁbl) thene, U= {60}

16 if (S[eo]i(p,r) A S[ei]i(p,r)) then

17 el U= (ef[xeo/*e1] N E,)
18 en U= (e [xeo/xe1] N Ey)
19

20 e, ={ece, |Vi'e€S;.i(L]e]p) =0}
22 return (S;, (e, en))

Figure 11: Helper function assign.

Note that bifurcation can produce up to four cases and each case
may yield up to two configurations. However, there can be at
most three resulting configurations after each assignment, since we
merge configurations with the same index, and the reference count
from the updated region can only increase by one, decrease by one,
or remain unchanged. In the example from Section 2 the analy-
sis of each statement and configuration produces either one or two
configurations.

Finally, transfer functions map configurations with a secondary
value of L to bottom abstractions a_ . The same is true for all of
the other transfer functions in the algorithm.

5.2.4 Analysis of Malloc and Free

Figure 12 shows the analysis of dynamic allocation and deallo-
cation statements. The transfer function [e < malloc] works as
follows. First, the effect of the allocation is equivalent to that of a
nullification [e < null] because the tracked location is guaranteed
to be distinct from the fresh location returned by malloc (even if it
happens to be allocated at the same site). Second, since the con-
tents of the fresh location are not initialized, its fields become miss
expressions provided that e is location-stable.

The generating function [e < malloc]?¢" yields a configuration
(4, c) for the newly created location such that the index 4 records
a reference count of 1 from the region of ¢ and 0 from all other
regions. The secondary value h records e as a hit expression, and
adds field expressions to the miss set if e is stable.

Finally, the analysis models the transfer function for deallocation
statements [free(e)] as a sequence of assignments that nullify each
field of the deallocated structure. This ensures that the analysis
counts references only from valid, allocated locations.

5.2.5 Conditional Branches

The analysis extracts useful information from test conditions in
if and while statements. On the branch where the tested expression



[e < malloc](p, c) :
a = [e — null)(p, )
if (S[el (o, £Ie] (0))) then
en = {(xe)-f | f € FY N E,
a={(,(e",e " Uey)) |ai=(e",e)}
return a

[e < malloc]?°" (p) :
r = L[e](p)
i =M. if (r' =r)then lelse 0
¢ ={(+e).f | f € F}NE,
if (S[eli(p,r)) then h = {{e}, e™}
else h = {0, 0}
return (i, h)

[free(e)](p. ) :
a= [t — *e](p,c) (tfresh)

a = Ugierjaiz L} [t-f1 < null](p, (i, ai))

a = Uierjaiz L} [t-fm < null](p, (4, ai))
a = Ugierjaiz 1} [t < nulll(p, (4, ai))
return a

Figure 12: Analysis of malloc and free.

e is null, the analysis determines that e misses the tracked location.
To take advantage of this information, the analysis invokes the de-
cision function D[e](p, ¢). If the returned value is “?”, then the
analysis adds e to the miss set e~ ; if the returned value is “+”, then
the configuration is inconsistent with the actual state of the program
and the analysis reduces the secondary value to L.

The latter case occurs in the example from Section 2, where the
condition x ! = nul | allows the analysis to filter out the config-
uration X! after the while loop.

5.3 Formal Framework

This section summarizes the formal results for the intra-procedural
analysis. The proofs for all of the theorems below are available in
a companion technical report [12]. The first two theorems provide
correctness and termination guarantees for the worklist algorithm.

THEOREM 1 (WORKLIST CORRECTNESS). If transfer func-
tions map each configuration with L secondary value to a_ , then
the worklist algorithm from Figure 9 yields the least fixed point of
the system of dataflow equations from Figure 8.

THEOREM 2 (MONOTONICITY). The transfer functions [s]
for assignments, malloc, and free are monotonic in the secondary
value: if h C A/, then [s](p, (3, h)) C [s](p, (3, ")) for all s, i, p.

COROLLARY 1 (TERMINATION). The worklistalgorithm from
Figure 9 is guaranteed to terminate.

We next give soundness conditions and results. Given an abstract
store p = (pv, pr, py) and a concrete store o = (04, 01,05), We
say that a region partial map o : L — R is (o, p)-consistent if:
range(a) C dom(p,); a(0w(x)) = pu(x), Yz € Vi pr(all)) =
a(oi(l);and pr(a(l), f) = a(os(l, f)) for all the locations ! and
fields f where « and o are defined. The definitions below give
soundness conditions for our abstractions. We denote by |.S| the
cardinality of a set S if itis less or equal to &, and co otherwise.

DEFINITION1 (REGION ABSTRACTION SOUNDNESS). Are-
gion abstraction, consisting of abstract stores for procedures and

mappings for call sites, is sound if for each activation of each pro-
cedure p there exists a region mapping o : L — RP such that:

e p accesses only locations in dom(a?);

e for each concrete store o that occurs during the execution of p,
a® is (o, pP)-consistent;
e for each call site cs in p that invokes g, if o? is the store before

(or after) the call and o is the store at the entry (or exit) of ¢,
then o (1) = pes(a?(1)), VI € Lya Ndom(a?).

DEFINITION 2 (SHAPE ABSTRACTION SOUNDNESS). Let p
be a sound region store for an activation of procedure p, and let «v
be the corresponding region mapping for that activation of p. Let R
be the regions of p, and o a concrete store during the execution of p.
Denote by L, = {I|(l, f) € dom (o)} Ndom(c) the set of of valid
first-field locations. Then ¢ = (i, (e*,e™)) safely approximates
l € Ly, written ¢ =4, [, if:

evre R.i(r)=|{l'|a(l'y=r A a(l') =1} |x
eVecet {(e,0) mpv = v=1

eVece .(e,0) v = v#I

A shape abstraction a € A safely approximates o, written a ~,, o,
if:VieL,. 3iel.(iai) =opl.

The soundness theorem states that shape analysis is sound as
long as the underlying region abstraction is sound.

THEOREM 3 (ANALYSIS SOUNDNESS). Let s be a statement
in procedure p. Consider two concrete stores o and ¢’, a sound
region store p for p, and a shape abstraction a € A. If (s,0) — o’
and a =, o, then:

o ;e [s](p, (4,ai)) =, o', if s is not a malloc; and
o ([s]°"(p) U Ue,[s1(p, (i, ai))) =, o', if s is a malloc.

5.4 Inter-Procedural Analysis

We formulate the inter-procedural algorithm as a context-sensitive
analysis that distinguishes between different calling contexts of the
same procedure. Again, we take advantage of our abstraction and
define procedure contexts to be individual configurations, not entire
heap abstractions.

The result for an input configuration context is a set of corre-
sponding output configurations at the end of the procedure. If we
consider a graph model (such as the one in Figure 5) that describes
how the state of the tracked location changes during execution, we
can express the input-ouput relationships for procedure contexts
as reachability relations: the outputs are those exit configurations
that are reachable from the input configuration (the input context).
However, we do not need to build the configuration graph explic-
itly; instead, we tag configurations with the entry index that they
originated from. This separates out configurations that originated
from different entries, allowing the analysis to quickly determine
both the output configurations for a given input, and the input con-
figuration for a given output. Formally, we extend the index domain
in the analysis with the index at entry:

Index values: (i°,i¢) eI, = IxI

The entry index ¢ has no bearing on the intra-procedural trans-
fer functions — they simply preserve this value, and operate on the
current index °.

The analysis at procedure calls must account for the assignment
of actuals to formals and for the change of analysis domain be-
tween the caller and the callee. For this, the analysis uses two



Forall se € Sentry, Sc € Scat, @ € Ipp :

[IN] : _
Res(esc)i 3 U (Isel™(p, ps., (i, Res(e50)i")))i
i €1
tgt(se) = f(se)
[ouT]
ReS(SC.)i = U ([[Scﬂout (P7 :U‘Sc 7(7:/7 RES(OSc)i/),

i/ 4" elp
(7" Res(s,)i")))i
where s, = exit(tgt(sc))

Figure 13: Additional inter-procedural dataflow equations.

WORKLIsT(DataflowInfo ao)

15 ..

16 while (W is not empty)

17 remove some (s, 7) from W

18 if s € Scqu then

19 let s. = entry(tgt(s)), s» = exit(tgt(s))

20 Res(ese) L= [s]""(p, us, Res(es, 7))

21 for each i’ s.th. Res(es. )i’ has changed

22 W U= {(se, i)}

23 for each ¢’ s.th. Res(s,e)i’ # L

24 Res(se) L=

25 [s]°“* (p, 115, Res(es, i), Res(®ss, ')
26 else if s € Sczis then

27 for sc,i’ s.th. tgt(sc) = fn(s), Res(esc)i’ # L
28 Res(sce) L=

29 [sc]°“ (p, s, , Res(esc, i), Res(es, 1))
30 else

31 Res(se) L= [s](p,Res(es,1))

32

33 for each s’, i’ s.th. Res(s’e)i’ has changed

34 for s” € succ(s’)

35 Res(es”)i’ L= Res(s'e)i’

36 w u= {(s",i)}

Figure 14: Inter-procedural worklist algorithm

transfer functions: an input function [s]**(p, is,¢) € A which
takes a caller configuration ¢ (before the call) and produces the set
of configurations at the entry point in the callee; and an output func-
tion [s]°** (p, s, ¢, ¢’) € A which takes an exit configuration ¢’ at
the end of the procedure, along with the caller configuration ¢ that
identifies the calling context, to produce a set of caller configura-
tions after the call. Both functions require the region store p for the
current procedure and the region mapping . at the call site where
the information must be propagated.

We express the inter-procedural analysis using a set of dataflow
equations that augments the intra-procedural equations from Fig-
ure 8 with the two additional equations from Figure 13. We use
the following notations: fn(s) € P is the procedure that state-
ment s belongs to; tgt(s.) € P is the target procedure of a call
statement s.; Scqu IS the set of call sites in the program; and
entry(p) € Seniry and exit(p) € Sewsr are the entry and exit
statements of procedure p, respectively. Equation [IN] performs
the transfer from the caller to the callee; and [OuUT] transfers the
analysis back to the caller. Figure 14 shows the main loop of the
inter-procedural worklist algorithm; the remainder of the algorithm
is unchanged. The algorithm propagates output configurations to
the callers when it encounters new exit configurations in the callee,
or when it discovers new input contexts in the caller.

[[C'a“ q(eh 0y en)]]in(pv s (7:7 h)) :
a=[p—e]...[pn —eal(p, {(i 1)})

rewrn [y, 21y Sinlp, 1, (4, a9))

e )):
el ={e€el |Vrerange(n).Sle
e, ={ece” |Vrerange(n) . Slelu(p,r
ig =Ar € RT.i°(ur)

return ((i5, &), (e" —cf e —e;)

where S;n (p, i, ((i%, %), (™,
|
|

[call g(ex, .., en)]" (p, 1
let s. = call g(e
((

if [se]™ (o, 1,
return \i. L

ﬁfﬁ)@%%ﬁ@ﬁﬂ%

1
( 726),h))(i§,i;) = 1 then

et (
let (e}, e;) = ha
el ={eeet |Vrerange(u) . Slel.(p,7))}
e ={e € e |Vr e range(u) . Slel. (p, 7))
ig = Ar € R .if (r & range(y)) then i°(r)

else i< (1 (1))
return ((i5,1%), (el Ueg, ez Uey))

Figure 15: Inter-procedural transfer functions.

Figure 15 shows the input and output transfer functions. The
entry transfer function accomplishes two things. First, it performs
the assignments of actual to formal arguments, which may gener-
ate new references to the tracked location. Second, it adjusts the
regions of existing references according to the call site map u. Ref-
erences whose regions are not in the range of p are not visible by
the callee and are discarded by the slicing function S;,,. The exit
transfer function performs the reversed tasks. First, it accounts for
context-sensitivity using the if statement at the beginning: it checks
if the exit configuration in the caller originates from the input con-
text ((:¢,4°), h) before the call. If so, it restores the hit and miss
expressions discarded at entry and adjusts the region counts.

6. EXTENSIONS

We present two extensions: incremental computation of shapes,
and detection of memory errors.

6.1 On-Demand and Incremental Analyses

The goal of a demand-driven analysis is to analyze a selected
set of dynamic structures in the program, created at a one or a few
allocation sites. In our framework, this can be achieved with mini-
mal effort: we just apply the dataflow equation [ALLoC] from Fig-
ure 8 to the selected allocation sites. The effect is that the dataflow
information gets seeded just at those sites, and the worklist algo-
rithm will automatically propagate that information through the
program. In particular, the inter-procedural analysis will propagate
shape information from procedures that contain these allocations
out to their callers.

Our analysis framework also enables the incremental compu-
tation of shapes. To explore new allocation sites, we seed the
dataflow information at the new sites, initialize the worklist to con-
tain successors of those allocations, and then run the worklist algo-
rithm. Key to the incremental computation is that our abstraction
based on configurations allows the analysis to reuse results from
previously analyzed allocation sites. This is possible both at the



intra-procedural level, when the new configurations match exist-
ing configurations at particular program points; and at the inter-
procedural level, when new calling contexts match existing con-
texts.

6.2 Memory Error Detection

We extend our analysis algorithm to enable the static detection of
memory errors such as memory accessed through dangling point-
ers, memory leaks, or multiple frees. To detect such errors, we
enrich the index with a flag indicating whether the tracked cell has
been freed:

Index values: iy € Iy = {true,false} x I

Since this information is in the index, for any configuration we
know precisely whether or not the cell has been freed. Most of
the transfer functions leave this flag unchanged; and since merging
configurations does not combine different index values (as before),
there is no merging of flags. Only two more changes are required
in the analysis. First, after the initial allocation this flag is false:

[e < malloc]$“" (p) = ((false, ia), ha)

Second, we must change the transfer function for free statements,
since the allocation state of the tracked cell may change at these
points. We express the modified transfer function for free using
the original one, which preserves the allocation flag, and using the
decision function to determine whether the freed location is the one
being tracked or not:

[free(e)] s (p, ((f.7), h)) = case (D[e](p, c)) of
‘=7 = [free(e)] (p, ((f.9),h))

“+7 = [free(e)] (p, ((true, i), h))

“1r = [free(e)] (p, ((f,9),h)) U
[free(e)] (p, ((true, 1), h))

With these additions, the analysis can proceed to detect errors.
To identify memory leaks, it checks if there are no incoming refer-
ences to a cell, but the cell was never freed. While a configuration
with no incoming references means there are no pointers to the cell
from regions that are in scope, this does not mean that functions
further up the call stack do not still have pointers to the cell. To
be sure that none of these functions have pointers to the tracked
cell, the cell must not have been allocated at entry to the function.
We classify memory leaks as configurations ((false, Ar.0), h) that
are not reachable from the boundary configurations in ag. How-
ever, leak detection suffers from the standard problem of reference
counting, that it cannot detect leaked cycles.

To detect double frees, the analysis performs the following check.
For any statement s = free(e), if ((true,i),h) € Res(es) and
Dlel(p, (i,h)) # “—", a possible double free has occurred. And
to identify accesses to deallocated memory the analysis checks the
following. For any statement s, define E; as the set of expressions
that are dereferenced by s: {e¢ | xe appears in s}. If ((true, ), h) €
Res(es) and D[e](p, (i, h)) # “—" forany e € Es, a possible ref-
erence to deallocated memory has occurred.

7. LIMITATIONS

The analysis algorithm presented in this paper has the following
limitations:

e Spurious configurations. The analysis may generate spurious
configurations, but still determine the correct final shape in
spite of this imprecision. In the example from Figure 5, con-
figurations Y*T*L* and X*Y!L' are spurious. Ruling such
cases requires more complex decision functions D[-].

e Complex structural invariants. For manipulations of linked
structures with complex invariants, our algorithm may not
identify the correct shape. For example, our algorithm can-
not determine that shapes are preserved for operations on
doubly-linked lists, because our configurations cannot record
the doubly-linked list invariant.

e Robustness. The analysis may not identify the correct shape
when the same program is written in a different manner. In
the example program from Section 2, if we replace state-
ment x=t - >n with x=x- >n, the algorithm will not verify
the shape property. This is because the analysis does not
know that x=t at that point, and cannot add t - >n to the hit
or miss set. To address this issue, the analysis needs expres-
sion equality information.

e \Worst-case exponential blowup. Similar to most of the exist-
ing shape abstractions, the size of our abstraction is exponen-
tial in the worst case. In practice, we have seen cases where
a blowup in the number of configuration occurs, but only be-
cause of the imprecision in the analysis, e.g., for traversals of
doubly-linked lists with multiple pointers.

However, we believe that these are limitations of the current al-
gorithm, but not of the framework with local reasoning. We antici-
pate these issues can be addressed by extending the abstraction and
the algorithm, while still reasoning about one single location. For
instance, the decision function could be improved to rule out spuri-
ous configurations; an expression equality analysis could be added
as an underlying analysis in the vertical decomposition to address
the robustness issue; and configurations could be extended with
reachability information and structural invariants about the tracked
location. We chose to keep the algorithm in this paper simpler and
cleaner to emphasize the concept and to make it amenable to for-
mal presentation. These issues will be the subject of future work.

8. RESULTS

We have implemented all of the algorithms presented in the pa-
per, including the points-to analysis, shape analysis, and extensions
for detecting memory errors, using the SUIF Compiler infrastruc-
ture [1]. We have extended the analysis to handle various C con-
structs, such as arrays, pointer arithmetic, casts, unions, and others.
The points-to analysis makes the usual assumptions, e.g., that array
accesses and pointer arithmetic do not violate the array or structure
bounds. Our shape analysis is guaranteed to be sound as long as the
underlying region abstraction computed by the points-to analysis is
sound. We have tested our prototype implementation on several
small examples and on a few larger C programs. To experiment
with the demand-driven and incremental approach, our system an-
alyzes one allocation site at a time, reusing existing results as new
sites are explored. The experiments were conducted on a 1.2GHz
Athlon machine with 256 MB of memory, running Linux RedHat 9.

8.1 Core List Manipulations

We have tested the analysis on the following programs that ma-
nipulate singly-linked lists:

i nsert :inserts an element into a list;

del et e : deletes an element from a list;

spli ce : list splicing program from Section 2;
rever se : iterative list reversal program from [8];
qui cksort : recursive quicksort program from [5];
i nsertion_sort : iterative insertion sort.



The analysis has successfully determined that all of these pro-
grams preserve acyclic list shape. It has also determined that none
of the programs leak memory or access deallocated memory. The
analysis took less than 1 second for these programs altogether.

8.2 [Experience on Larger Programs

We have also used the analysis to detect memory leaks in por-
tions of three popular C programs: OpenSSH, OpenSSL, and BinU-
tils. The results of these experiments are shown in Figure 16. In
total, we analyzed 184 dynamic allocation sites in about 70 KLOC,
taking less than two minutes. This produced 97 warnings, 38 of
which were actual memory leaks (a few warnings were for double
frees and accesses to deallocated memory, all of which were false).
Hence, more than one warning out of three was an actual error.
Given that the tool uses sound analysis techniques, we view this as
a low rate of false positives.

The error reporting is based on error traces. An error trace repre-
sents an execution trace through the program that leads to an error.
The tool produces these traces by following the program execution
backwards through the configuration graph, from the error point
to the allocation site; we find the traces to be extremely helpful in
identifying whether a warning is legitimate. Furthermore, the tool
clusters error traces on a per-region basis: all of traces in one clus-
ter refer to errors about locations in the same region. The tool then
reports one warning per cluster. We find this clustering technique
very useful in identifying distinct bugs, since all of the errors in
one cluster essentially refer to the same programming error. For
our programs, the majority of clusters have a single trace; a few
clusters have less than 10 traces; and one cluster has more than 100
error traces.

As mentioned above, all of the detected errors were memory
leaks. Most of them were caused as functions failed to clean up
local resources on abnormal return paths. For instance, some func-
tions in SSH do not reclaim memory when a connection fails. In
a few cases, however, functions failed to release resources on all
return paths.

The examination of false warnings indicated that they were due
to several sources of imprecision. Many of the errors were due
to lack of path information that could have been used to rule out
the error trace. For instance, we are unable to track the correla-
tion between the references to the tracked cell and the values of
various error codes in the program. False warnings were also due
to the context-insensitive treatment of global variables in pointer
analysis. For instance, one of the programs stores references to
several buffers (stdin, stout, and stderr) into global variables. Since
these references are being passed as the same argument to a func-
tion, pointer analysis merges them together. This imprecision in the
pointer analysis then impacts the precision of shape analysis. The
above-mentioned cluster with more than 100 error traces was due
to this kind of imprecision.

The tool was most affected when the analysis could not accu-
rately identify shapes, as in the case of doubly-linked lists or for
heap manipulations where it lacked variable equality information,
as mentioned in Section 7. This lead to a blowup in the number of
feasible configurations and the analysis failed to complete in such
cases. However, we are able to isolate these situations using in-
cremental analysis: we explored one allocation site at a time and
introduced a cutoff for the amount of exploration to be performed
from any given allocation site (by limiting the size of the work-
list). Figure 16 indicates that the analysis did not complete for 3
allocation sites in SSL and 10 sites in Binutils due to this kind of
imprecision. They represent about 10% of the allocation sites in
these programs.

[ Program | OpenSSH | OpenSSL | BinUtils |
Size (LOC) 18.6 K 256 K 244K
Alloc. Sites 41 31 125
Analyzed 41 28 115
Total Time (sec) 45s 22s 44s
Region Analysis 16s 13s 6s
Shape Analysis 29s 9s 38s
Reported 26 13 58
Real bugs 10 4 24

Figure 16: Results for Larger Programs

Overall, we consider that these results are encouraging. They
suggest that the local reasoning approach to shape analysis is both
sufficiently lightweight to scale to larger programs, and sufficiently
precise to yield a low rate of false warnings.

9. RELATED WORK

There has been significant work in the past decade in the area
of shape analysis [34]. Early approaches to shape analysis have
proposed the use of path matrices and other matrices that capture
heap reachability information [18, 17, 11]. In particular, Ghiya and
Hendren [11] present an inter-procedural shape analysis that uses
boolean matrices to identify trees, dags, or cyclic graphs. Their
implemented system has been successful at analyzing programs of
up to 3 KLOC.

Sagiv et. al. present an abstract interpretation that uses shape
graphs to model heap structures [29]. They introduce materializa-
tion and summarization as key techniques for the precise compu-
tation of shapes. Role analysis [21] uses shape graph abstractions
to check program specifications for heap shapes and heap effects.
Experiments have not been presented for these analyses.

In subsequent work, Sagiv et. al. have proposed a parametric
shape analysis framework based on 3-valued logic [31]. They en-
code shape graphs as 3-valued structures and use a focus opera-
tion to accurately compute shapes when the analysis encounters
unknown (1/2) logic values. Our bifurcation technique is similar
to their focus operation, but applies to a different analysis abstrac-
tion. The 3-valued logic approach has been implemented in the
TVLA system [23] and has been successful at verifying correctness
and safety properties for complex heap manipulations [22, 8, 35].
Work on inter-procedural analysis in TVLA has explored modeling
the program stack using 3-valued structures [28] and expressing the
function input-output relations for individual heap cells [20]. These
analyses seem expensive in practice; for instance, the analysis of a
recursive procedure that deletes an element from a list takes more
than 200 seconds [20].

Yahav and Ramalingam [36] have proposed heterogeneous heap
abstractions as a means of speeding up analyses in TVLA. Their
framework constructs a heap abstraction that models different parts
of the heap with different degrees of precision, and keeps precise
information just for the relevant portion of the heap. In contrast,
our approach is homogeneous, precisely abstracts the entire heap,
but models each heap location separately. Their approach enabled
TVLA to analyze programs of up to 1.3 KLOC.

Reynolds, O’Hearn, and others propose Separation logic [27,
26] and BI (the logic of Bunched Implications) [19] as extensions
of Hoare logic that permit reasoning about mutable linked struc-
tures. They provide features (such as the separating conjunction
and implication, or the frame rule) that make it easier to express
correctness proofs for pointer-based programs. Compared to static



analyses, these logics provide techniques for verifying program cor-
rectness; analyses, on the other hand, provide techniques for auto-
matically inferring points-to properties. A significant challenge for
static analysis is the automatic synthesis of loop invariants. Gen-
erally speaking, inferring points-to properties is more difficult than
verifying them. Therefore, although separation logic works well
for correctness proofs with local reasoning, it is not clear whether
an analysis can use local reasoning alone. In our system, we push
global reasoning down to the pointer analysis component; and that
enables us to use local reasoning at the shape analysis level. Fur-
thermore, we use a finite shape abstraction that localizes the rea-
soning to one single heap location.

Demand-driven and incremental algorithm have been proposed
in the area of pointer analysis. Heintze and Tardieu [16] describe a
technique to answer aliasing queries by exploring the minimal set
of points-to constraints that yields the desired answer. Vivien and
Rinard [33] present an incremental points-to analysis that gradually
explores more code to refine the points-to information. Our notion
of demand-driven and incremental analysis is different — it refers to
the number of explored allocation sites.

Heine and Lam present Clouseau [15], a static leak detector tool
for C and C++ programs. They use a notion of pointer ownership
to describe the references responsible for freeing heap cells, and
formulate the analysis as an ownership constraint system. Their
approach is able to detect leaks and double frees, but cannot de-
tect accesses through dangling pointers. Intuitively, that is because
their system tracks owning pointers (and doesn’t have information
about targets of non-owning pointers), while ours tracks memory
locations and their allocation state. The experiments indicate that
our shape analysis approach yields more precise results than the
pointer ownership approach. In particular, Clouseau reports a large
number of warnings when the program places pointers in aggregate
structures, or when it manipulates multi-level pointers.

Das et. al. present ESP [6], a path-sensitive tool for verifying
state machine properties. ESP uses property simulation, a tech-
nique that captures path information but avoids the exponential cost
of a full path-sensitive analysis. We borrow from ESP the notion
of index values in the abstraction to model critical information that
the analysis must not merge at join points. However, ESP is de-
signed to analyze temporal properties for non-recursive structures,
not shapes in recursive heap structures. DeLine and Fahndrich pro-
pose Vault [7], an extension of C where programmers can specify
resource management protocols that a compiler can enforce. The
system can ensure, for instance, that the program doesn’t leak re-
sources. But it cannot precisely track unbounded numbers of re-
sources such as those that arise in recursive structures.

The SLAM Project [2, 3] uses predicate abstraction refinement
along with model checking techniques to check temporal safety
properties of C programs. Necula et al. propose CCured [25], a
an analysis and transformation system for C programs that uses
type inference to identify type-safe pointers, and instrument the re-
maining pointers with run-time checks. However, CCured does not
address the memory deallocation problem and uses a garbage col-
lector instead.

Other existing error-detection tools, such as Metal [9] and Pre-
fix[4], use unsound techniques to limit the number of false positives
or to avoid fixed-point computations.

Finally, dynamic memory error detection tools such as Purify [13]
or SWAT [14] instrument the program to detect errors at run-time.
They test only one run of the program and may miss errors that are
not exposed in that run; in particular, they may miss errors in rarely
executed code fragments.

10. CONCLUSIONS

We have presented a new approach to shape analysis where the
compiler uses local reasoning about the state of one single heap
location, as opposed to global reasoning about entire heap abstrac-
tions. We have showed that this approach makes it easier to develop
efficient intra-procedural analysis algorithms, context-sensitive inter-
procedural algorithms, demand-driven and incremental analyses,
and can enable the detection of memory errors with low false pos-
itive rates. We believe that the proposed approach brings shape
analysis a step closer to being successful for real-world programs.
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APPENDIX
A. LANGUAGE SEMANTICS

The operational semantics of the simple language from Figure 7
uses the following semantic domains:

locations: 1€ L

values: v € LU{null}

stores: o= (0v,01,05) € (V — L)X
(L = (Lu{null}))x
((Lx F)—1L)

The following rules describe the evaluation of expressions. Re-
lation (e,o) —; [ evaluates e in store o to the location [ of e;
and relation (e,o) —. v evaluates e in store o to the value v
of e. Given a concrete store o = (o, 0y,05), We use the nota-
tions: dom,, (o) = dom(o), dom; (o) = dom(o;), and domy (o) =
dom(oy). The evaluation rules are as follows.

x € dom, (o) (e,o) =l edom(c) o(l) =1

(z,0) — o(x) (xe,a) — I

(e,o) =11 (I, f) € doms (o) (e,o) —; 1 € dom;(o)
<€.f, U> -1 U(l7 f) <67 U> —wv U(l)

(e,o) =1 1
(&e,0) =4 1 (null, ) — null

The evaluation relation for statements (s,o) —5 o’ indicates
that the execution of statement s in input store o produces the store
o’. The evaluation rules are as follows:

(e,0) =il edomy(o) {l;}ser fresh
o' =oll—= g ]lly = nulllyer((ly,, ) = lflrer
(e «— malloc, o) —; o’

(e,0) =u 1l VfeF:(l,f) € domy(o)
o' = (0 —{(L,f) = Yrer) —{o(.f) = Jser

(free(e), o) —5 o’

(eg,0) = L € domy(o) (e1,0) —v v

(eq « e1,0) —s o[l — 4]

prog(f) = ((z1,..,zn),s) Vi=1l.n: {(e;, o) —u v;
(s,0[0(wi) = vili=1.n) —=s 0

(call p(e1, .., en),0) —5 o’

<So,0’> . o <S1,0’”> iy o'

(s0; s1,0) —s 0’

(e,0) =y v=null {so,0) =50

(if () so else s1,0) —5 o

(e,0) myv#£null (s1,0) =50

(if (e) so else s1,0) —5 o

(e,0) —» v # null
(s,0) —s 0"
<67 U> —v U= null <Whl|€ (6) 57UII> —s o'
while (e) s,0) —s o while (e) s,0) —5 o’
( (e) s,0) ( (e) s,0)




