Visual Recognition with Humans in the Loop

Authors: Steve Branson, Catherine Wah, Florian Schro, Boris Babenko, Peter Welinder, Pietro Perona, and Serge Belongie

Presenters: Qi Huang, Shuo Chen

Visual Recognition with Humans in the Loop

Authors: Steve Branson, Catherine Wah, Florian Schro, Boris Babenko, Peter Welinder, Pietro Perona, and Serge Belongie

Presenters: Qi Huang, Shuo Chen

Visipedia - Visual Encyclopedia

Goal

- a. Creation of large-scale machine vision dataset
- b. Scalable representation of visual knowledge
- c. Embed interactive images with wiki articles
- d. Visual search

Visipedia - Visual Encyclopedia

Goal

- a. Creation of large-scale machine vision dataset
- b. Scalable representation of visual knowledge
- c. Embed interactive images with wiki articles
- d. Visual search

This work: fine-grained vision recognition / classification

- CV's Development
 - Good at inter-category classification (easy for human)
 - Bad at fine-grained classification (hard for human)

- CV's Development
 - Good at inter-category classification (easy for human)
 - Bad at fine-grained classification (hard for human)

Easy for CV
Easy for human

- CV's Development
 - Good at inter-category classification (easy for human)
 - Bad at fine-grained classification (hard for human)

Chair? Airplane? ...

Easy for CV
Easy for human

Finch? Bunting?...

Hard for CV Hard for human

Different Difficulties

Finch.

Bunting.

Sparrow.

Albatross.

Different Difficulties

Human:

Lack of expertise, knowledge, memory.

Finch.

Bunting.

Sparrow.

Albatross.

Different Difficulties

Human:

Lack of expertise, knowledge, memory.

Computer:

Lack of fundamental vision capabilities.

Finch.

Bunting.

Sparrow.

Albatross.

Human in the loop

Computer & Human contribute collaboratively

Human in the loop

Computer & Human contribute collaboratively

Human in the loop

Computer & Human contribute collaboratively

Basic (Testing) Algorithm Flow

Three questions

1. How to incorporate computer vision?

2. How to pick the next question to ask?

3. How to update the posterior p(c|x) ?

Three questions

1. How to incorporate computer vision?

2. How to pick the next question to ask?

3. How to update the posterior p(c|x) ?

How to incorporate computer vision

- Basically plug in whatever you have
 - The authors used SIFT feature SVM classifier and another attribute-based classifier
- The point is to get a p(c|x) before asking questions
- Doesn't even have to be a computer vision component

Three questions

1. How to incorporate computer vision?

2. How to pick the next question to ask?

3. How to update the posterior p(c|x) ?

Some notations

• A set of possible questions $Q = \{q_1...q_n\}$, (e. g. IsRed?, HasStripes?, BellyColor?)

• The response $u_i = (a_i, r_i)$ is an answer $a_i \in \mathcal{A}_i$, plus a confidence value

 $r_i \in \mathcal{V}, (e.g., \mathcal{V} = \{\text{Guessing, Probably, Definitely}\})$

Some notations (cont'd)

- At time step t
- Already have a response set

$$U^{t-1} = \{u_{j(1)}...u_{j(t-1)}\}\$$

• Pick a question $q_{j(t)}$ to ask

How to pick the next question?

- By maximizing information gain
- Just like a decision tree algorithm

$$I(c; u_i | x, U^{t-1}) = \mathbb{E}_u \left[KL \left(p(c | x, u_i \cup U^{t-1}) \parallel p(c | x, U^{t-1}) \right) \right]$$

$$= \sum_{u_i \in \mathcal{A}_i \times \mathcal{V}} p(u_i | x, U^{t-1}) \left(H(c | x, u_i \cup U^{t-1}) - H(c | x, U^{t-1}) \right)$$

$$\mathrm{H}(c|x,U^{t-1}) = -\sum_{c=1}^{C} p(c|x,U^{t-1}) \log p(c|x,U^{t-1})$$

Three questions

1. How to incorporate computer vision?

2. How to pick the next question to ask?

3. How to update the posterior p(c|x) ?

How to update the posterior

Bayesian rule

$$p(c|x,U) = rac{p(U|c,x)p(c|x)}{Z} = rac{p(U|c)p(c|x)}{Z}$$

An assumption is made here

$$p(U|c,x) = p(U|c)$$

Terms that we need to compute

Another assumption

$$p(U^{t-1}|c) = \prod_{i}^{t-1} p(u_i|c)$$

$$p(u_i|x, U^{t-1}) = \sum_{c=1}^{C} p(u_i|c) p(c|x, U^{t-1})$$

What we need to compute

Terms that we still need to compute

$$p(u_i|c) = p(a_i, r_i|c) = p(a_i|r_i, c)p(r_i|c)$$

Yet another assumption

$$p(r_i|c) = p(r_i)$$

Get all these numbers from training/counting

Discussion about the assumptions

1
$$p(U|c,x)=p(U|c)$$

2 $p(U^{t-1}|c)=\prod_i^{t-1}p(u_i|c)$
3 $p(r_i|c)=p(r_i)$

Dataset & Question selection

- Bird-200
 - 6033 images over 200 bird species
 - Hard to be identified by non-experts

- Questions extracted from whatbird.com
 - 25 question set, encompass 288 binary attributes
 - Class-attribute is "deterministic"

Answer collection

- Mechanical Turk Interface
 - Collect non-expert answers.
 - Use prototypical image.
 - Use random answer for eval.

Evaluation

- Two cases:
 - Without CV
 - With CV (1-vs-all SVM, Attributes classifier)
- Two methods:
 - Ask exactly T questions, measure correct ratio (%)
 - Early termination, measure average # of questions

Modeling User Response (Method 1)

Rose-breasted Grosbeak

Q: Is the belly red? yes (Def)

Q: Is the breast black? yes (Def.)

Q: Is the primary color red? yes (Def.)

Modeling User Response (Method 1)

- Non-expert responses need modeling
- Much human effort is still needed for a usable service

Benefit of CV (Method 1)

CV achieves higher accuracy w/ less questions

Where does CV help (Method 2)

CV helps most for easy classification tasks

Where does CV help? (A case)

W/o vision:

HasShapePerchingLike

has largest information gain

W/ vision:

HasThroatColorWhite

likelihood of classes change

Western Grebe

w/ vision:

Q #1: Is the throat white? yes (Def.)

w/o vision:

Q #1: Is the shape perching-like? no (Def.)

Contribution

- A platform incorporates CV and human recognition
 - Flexible for a variety of CV algorithms
- [Hard question] human input drives up the performance
 - Stochastic model makes user response reliable
 - Needs further work on question picking
- [Easy question] CV can efficiently reduce human labor
 - Possibly human-aware CV can work better

Thank You!

The algorithm

Algorithm 1 Visual 20 Questions Game

- 1: $U^0 \leftarrow \emptyset$
- 2: **for** t = 1 to 20 **do**
- 3: $j(t) = \max_{k} I(c; u_k | x, U^{t-1})$
- 4: Ask user question $q_{j(t)}$, and $U^t \leftarrow U^{t-1} \cup u_{j(t)}$.
- 5: end for
- 6: Return class $c^* = \max_c p(c|x, U^t)$

Trade-off

- (+) Provide a practical service to collect data
 - Minimize human efforts -> exclude in the future
 - Pluggable platform to test CV algorithms

- (-) Selection of questions are tricky to the performance
 - Rely on already gained experts' knowledge