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This work: fine-grained vision recognition / classification
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e Different Difficulties

Human: Firch
Lack of expertise, knowledge, memory.
Bunting.
-
Sparrow.

Computer:
Lack of fundamental vision capabilities. Albatross.




Human in the loop

e Computer & Human contribute collaboratively

:
R

Finch? Bunting?...

Hard for CV
Hard for human



Human in the loop

e Computer & Human contribute collaboratively

Finch? Bunting?... Yellow Belly? Blue Belly?

Hard for CV

Hard for human Easy for human



Human in the loop

e Computer & Human contribute collaboratively

Finch
r Belly Bunting
Color?
Sparrow
Albatross
Finch? Bunting?... Yellow Belly? Blue Belly?
Hard for GV Easy for human Easy for CV

Hard for human



Basic (Testing) Algorithm Flow

. Question 1: _} Question 2:
SN ] ’ [ Is the belly black? ] [ Is the bill hooked? ]

* #\: NO #\: YES
D
<inalin — L.

S
Input Image (')

p(c|z)
p(c|r)
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How to incorporate computer vision

e Basically plug in whatever you have

o The authors used SIFT feature SVM classifier and
another attribute-based classifier

e The pointis to get a p(c|z) before asking
guestions

e Doesn't even have to be a computer vision
component
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Some notations

e A set of possible questions 9 = {q:...q.} , (€.
g. IsRed?, HasStripes?, BellyColor?)

e Theresponse u; = (a;,m:) IS @an answera; € A;
, plus a confidence value
r; €V, (e.g., V = {Guessing, Probably, Definitely})



Some notations (cont’d)

e Attime stept
e Already have a response set

U = {uj)-uje-1)}

e Pick a question ¢j) to ask



How to pick the next question?

e By maximizing information gain
e Just like a decision tree algorithm

I(c; u;|x, Ut_l) =E, [KL (p(c|a:,u2- U Ut_l) | p(cl|z, Ut_l))]

= Y |p(wilz, U (H(cle,u; UU) — Hcle, UY))
u; EA; XV

C
H(clz, U'™1) = = Ip(cla, U1)log p(clz, U1

c=1




Three questions

1. How to incorporate computer vision?
2. How to pick the next question to ask?

3. How to update the posterior p(c|z) ?



How to update the posterior

e Bayesian rule

p(c|z,U)

_ p(Ule,2)p(cla)

Z

e An assumption is made here

p(Ulc,z) = p(U|c)

_p(Ulc)p(c|z)




Terms that we need to compute

e Another assumption

p(U*"e) = | | p(uilc)

p(uilz, U ™) |= ) Jp(uilc)p(cle,U™)




What we need to compute

p(ui|z, U*™Y)

p(clz, U™1)

/

p(u;|c) - p(Ulc)




Terms that we still need to compute

P(Uz'lc) = p(ai, "‘z'|C) = P(ai|7’i, C)P(MC)
Val T~

answer confidence value

e Yet another assumption

p(rilc) = p(ri)

e Get all these numbers from training/counting



Discussion about the assumptions




Dataset & Question selection

e Bird-200

o 06033 images over 200 bird species
o Hard to be identified by non-experts

e Questions extracted from whatbird.com

o 25 question set, encompass 288 binary attributes
o Class-attribute is “deterministic”



Answer collection

e Mechanical Turk Interface
o Collect non-expert answers.
o Use prototypical image.

o Use random answer for eval.




Evaluation

e [WO cases:

o Without CV
o With CV (1-vs-all SVM, Attributes classifier)

e [wo methods:

o Ask exactly T questions, measure correct ratio (%)
o Early termination, measure average # of questions



Modeling User Response (Method 1)
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e Non-expert responses need modeling
e Much human effort is still needed for a usable service



Benefit of CV (Method 1)
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CV achieves higher accuracy w/ less questions



Where does CV help (Method 2)
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CV helps most for easy classification tasks



Where does CV help? (A case)

e \W/o vision:

HasShapePerchingLike
has largest information gain

W/ vision:
HasThroatColorWhite

likelihood of classes change

Western Grebe

w/ vision:

Q #1: Is the throat white? yes (Def.)

w/o vision:

Q #1: Is the shape perching-like? no (Def.)




Contribution

e A platform incorporates CV and human recognition
o Flexible for a variety of CV algorithms

e [Hard question] human input drives up the performance
o Stochastic model makes user response reliable
o Needs further work on question picking

e [Easy question] CV can efficiently reduce human labor
o Possibly human-aware CV can work better



Thank You!



The algorithm

Algorithm 1 Visual 20 Questions Game

1: U° 0

2: fort =1 to 20 do

3:  j(t) = maxg I(c; ug|z, U™ 1)
4:  Ask user question g;(), and Ut « Uty Uj(t)-
5
6

: end for
: Return class ¢* = max, p(c|z, U?)




Trade-off

e (+) Provide a practical service to collect data
o Minimize human efforts -> exclude in the future
o Pluggable platform to test CV algorithms

e (-) Selection of questions are tricky to the performance
o Rely on already gained experts’ knowledge



