
O L I V I E R C H A P E L L E A N D Y A Z H A N G

A Dynamic Bayesian Network Click
Model for Web Searching Ranking

Presentation by Adith Swaminathan and Deirdre Quillen

Based on Olivier Chapelle’s slides from his talk at Microsoft Research, 2009
http://research.microsoft.com/apps/video/dl.aspx?id=105108

http://research.microsoft.com/apps/video/dl.aspx?id=105108

CS 6784: Advanced Topics in Machine Learning

 Structured Output Prediction

 Learning with Humans in the Loop

 Much of the data used for machine learning is gathered by
observing human behavior (e.g. search engine logs, purchase
data, fraud detection). However, it is known that this data is
biased (e.g. users can click only on results that were
presented). How can one account for these biases during
learning? Or how can the learning algorithm deal with these
biases by not being a passive observer, but by actively
interacting with the human?

 Learning Representations

Specific application:
Web search ranking

Specific bias: Clicks
depend on presented

ranking

Clicks for Web Search Ranking

 Implicit relevance feedback

 Abundant, cheaper than explicit relevance score

 Personalized, democratic, timely

 Can be used as features, or labels

 Difficult to interpret, noisy

 Presentation bias & Quality of Context bias

 Results at lower positions are less likely to be clicked, even if
relevant

 Clicks depend on the context and quality of other links

Problem Statement

 “What would have been the click-through rate (CTR)
of a url if it was the only shown result?”

 Naïve approach (non-answer)

 Position models (widely used)

 Cascade models (more accurate)

 Dynamic Bayesian Network: extends cascade
models, can be used in learning to rank

 Question: How would you evaluate solutions to this problem?

Naïve approach

 𝐶𝑇𝑅(𝑞, 𝑢) =
#{𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑢}

#{𝑢 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝑅𝑒𝑠𝑢𝑙𝑡𝑠}

 Position bias!

 𝐶𝑙𝑖𝑐𝑘𝑠@𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑞, 𝑝 =
#{𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑟𝑎𝑛𝑘 𝑝}

#{𝑅𝑒𝑠𝑢𝑙𝑡𝑠}

 𝐶𝑇𝑅𝑛𝑒𝑤 𝑞, 𝑢 =
 {𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑢} 1 𝐶𝑙𝑖𝑐𝑘𝑠@𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑞,𝑅𝑎𝑛𝑘 𝑢)

{𝑢 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝑅𝑒𝑠𝑢𝑙𝑡𝑠}

 Need to separate relevance and position bias…

Position Model

 How to control for relevance? Same url at different
positions?

 User click User examined and found it attractive

 Pr 𝑢 𝑎𝑡 𝑟𝑎𝑛𝑘 𝑝 𝑔𝑒𝑡𝑠 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 =
Pr 𝑢𝑠𝑒𝑟 𝑙𝑜𝑜𝑘𝑠 𝑎𝑡 𝑟𝑎𝑛𝑘 𝑝 Pr(𝑢𝑠𝑒𝑟 𝑐𝑙𝑖𝑐𝑘𝑠 𝑢|𝑢𝑠𝑒𝑟 𝑙𝑜𝑜𝑘𝑠 𝑎𝑡 𝑢)

 Pr 𝐶 = 1 𝑢, 𝑝 = α𝑢β𝑝 = Pr 𝐶 = 1 𝑢, 𝐸 = 1 Pr(𝐸 = 1|𝑝)

 Logistic model: Pr 𝐶 = 1 𝑢, 𝑝 = 1 (1 + exp(−α𝑢 − β𝑝))

 Question: What is the (unrealistic) assumption these
models are making?

Quality of Context
bias?!

Cascade Model

 User scans results
list top-down

 Stops when relevant
url found

 Pr 𝐶 = 1 𝑢3 = (1 −
α1)(1 − α2)α3

Model user decision-making, and design interactive
learning systems for the predicted behavior

Examine next url

Click
through?

Done

Yes

No

𝑢

α𝑢

Limitations

 Position Model

 Click == Relevant

 Ignores quality-of-context bias

 Cascade Model

 Exactly one click per session modeled

 Click == Relevant

 User never abandons search

 Proposed extension

 Click snippet was attractive, but link may be a dud

 User may abandon search before finding a relevant result

 Allows 0 and multiple click sessions to be modeled

A more expressive user flowchart

Examine next url

Click
through?

Yes

No

𝑢

𝑎𝑢

Satisfied
with 𝑢?

Yes 𝑠𝑢

Done

No

Dynamic Bayesian Network

 𝐸𝑖: Did the user examine
the url at position 𝑖?

 𝐴𝑖: Was the user attracted
by the url?

 𝐶𝑖: Did the user click on it?
 𝑆𝑖: Was the user satisfied

after clicking the url?

 Url-specific params 𝑎𝑢 and
𝑠𝑢 are the important
hidden variables to
estimate

 𝐶𝑖 observed, all else hidden

Assumptions of DBN

Click on url 𝑢 at position 𝑖 user
examined 𝑢 and found it attractive

𝐴𝑖 = 1, 𝐸𝑖 = 1 𝐶𝑖 = 1

Attraction only depends on the url 𝑢
(Perceived relevance)

Pr 𝐴𝑖 = 1 = α𝑢

After clicking, user may be satisfied with
the page (Actual relevance)

Pr 𝑆𝑖 = 1 𝐶𝑖 = 1) = 𝑠𝑢

Not clicking on a url user cannot be
satisfied with the page

𝐶𝑖 = 0 𝑆𝑖 = 0

If user is satisfied, done. 𝑆𝑖 = 1 𝐸𝑖+1 = 0

If user is not satisfied, there’s a chance
they will get frustrated and abandon

Pr 𝐸𝑖+1 = 0 𝐶𝑖 = 1, 𝑆𝑖 = 0) = 1 −

If a user stops examining urls at
position 𝑖, all subsequent positions are
left un-examined

𝐸𝑖 = 0 𝐸𝑖+1 = 0

Flowchart Activity

Examine next url

Click
through?

Yes

No

𝑢

𝑎𝑢

Satisfied
with 𝑢?

Yes 𝑠𝑢

Done

No

Modify this flowchart to
account for users getting
frustrated and abandoning
the search.

Hint: Insert the following node
appropriately:

Frustrated?

Yes

No

1 −

Flowchart Activity Solution

Examine next url

Click
through?

Yes

No

𝑢

𝑎𝑢

Satisfied
with 𝑢?

Yes 𝑠𝑢

Done

No

No
Frustrated?

Yes 1 −

Relevance estimates from DBN

 Relevance == probability that user is satisfied by url

 𝑅𝑢 = Pr 𝑆𝑖 = 1 𝐸𝑖 = 1) = Pr 𝑆𝑖 = 1 𝐶𝑖 = 1) Pr(𝐶𝑖 =

 Experimentally, optimal = 0.9
 If = 1, we know that the user was

satisfied with the last click.
 Inference by counting

 𝑠𝑢 =
 #{𝑢 𝑖𝑠 𝑙𝑎𝑠𝑡 𝑐𝑙𝑖𝑐𝑘} #{𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑢}

 𝑎𝑢 =
 #{𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑢} #{𝑢 𝑣𝑖𝑒𝑤𝑒𝑑 𝑖𝑛 𝑅𝑒𝑠𝑢𝑙𝑡}

 𝑢 𝑣𝑖𝑒𝑤𝑒𝑑 𝑖𝑛 𝑅𝑒𝑠𝑢𝑙𝑡 =
𝑢 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑂𝑅 {𝑢𝑟𝑙 𝑏𝑒𝑙𝑜𝑤 𝑢 𝑐𝑙𝑖𝑐𝑘𝑒𝑑}

Inference for the Simpler DBN model

Evaluation

 How accurate is the predicted CTR?
 Predict attractiveness, i.e., CTR@1

 How useful is the predicted relevance as a feature for
learning to rank?

 Can we use predicted relevance as a proxy label for
learning to rank?

 Experiment setup:
 Session == Unique user and query, ended by 60min. idle time

 Only first page of results

 Discard sessions where clicks aren’t in order of ranking

 Queries with at least 10 sessions kept (682K queries, 58M
sessions)

 Retrieve all sessions for a query

 Consider a url 𝑢 that appeared both in position 1 and
other positions

 Hold out sessions where the url appears in pos. 1

 Train model on remaining sessions, predict 𝑎𝑢
 Compute observed CTR@1 on the test set 𝑎𝑢
 𝑀𝑆𝐸 = (𝑎𝑢 − 𝑎𝑢)

2, average over all such urls and
queries, weighted by the number of test sessions

Predicting CTR@1

Predicting CTR@1: Results

 DBN > Cascade >
Position models

 X-axis = 100 those
urls whose train set
>= 100

 More sessions
priors not as
important. Cascade &
DBN improve.

 Navigational queries
have quality-of-
context bias, and lots
of sessions. Position
models suffer.

Predicted Relevance as a feature

 Accurate CTR@1 need not directly translate to
relevance

 Retrieve all sessions for a query

 Consider all urls with editorial relevance judgments
(3153 queries, 44.5M sessions)

 Train model, predict 𝑎𝑢, 𝑠𝑢
 Sort urls according to predicted relevance 𝑎𝑢𝑠𝑢
 Compute 𝑁𝐷𝐶𝐺5, average across queries
𝑁𝐷𝐶𝐺5is the cumulative gain or usefulness of our ranking (measured with editorial
judgments) normalized by the cumulative gain of the optimal ranking over the first 5
elements

Predicted Relevance as a feature: Results

Model 𝑵𝑫𝑪𝑮𝟓 Gain

Logistic 0.705 -7.8%

Cascade 0.73 -4.6%

DBN 0.748 -2.2%

DBN – 12 nodes 0.765

DBN –12 (𝑎𝑢only) 0.756 -1.2%

Baseline ϕ 0.795 +3.9%

 DBN > Cascade > Position
models

 Modeling satisfaction and
attraction separately helps

 Modeling user clicks on header
(sponsored search) and footer
(next page of results) improves
results

 Baseline ϕ hand-tuned ranking
function used by Yahoo
 𝑁𝐷𝐶𝐺5 improved 0.8% on Baseline ϕ

when 𝑎𝑢𝑠𝑢 added as feature

Predicted Relevance as a label

 How do the DBN predicted relevance compare with
editorial relevance judgments?

 Technique: Boosted decision trees trained on
pairwise preferences

 Use two kinds of preferences:
 Preference 𝑃𝐸 from editorial judgments (4180 queries, 126K

urls, 1M preference pairs)

 Preference 𝑃𝐶 from the DBN model relevance predictions
(420K queries, 1.1M urls, 2M preference pairs)

 Learn a ranking function that weights preferences in
𝑃𝐶 with and 𝑃𝐸 with weight 1 −

 Test on held out set of editorial judgments (𝐷𝐶𝐺5)

Predicted relevance as a label: Results

 Only 4% worse with
only click data

 2% better using both
sources of data

 Pessimistic evaluation:
even better if using
click-based metrics

 𝐷𝐶𝐺5 relative to = 0
 Left = Only editorial judgments, Right = Only clicks

Limitations and Discussion

 Completely blind to query reformulations
 Unrealistic prior on 𝑎𝑢 and 𝑠𝑢
 Assumes homogeneous user population
 Cannot model out-of-order clicks
 Any others?

 Click not necessarily == relevant, models attraction and
satisfaction separately

 Good example of the “Interactive Learning System design
philosophy” in action: Model user decision-making,
and design algorithms to work with predicted behavior

