
Kernel Dependency Estimation

Jason Weston, Oliver Chapelle, Andre Elisseeff,
Bernard Scholkopf and Vladmir Vapnik

Presentation by: Nathan Knerr and Anshumali

Shrivastava

Example Structured Prediction
Problem

• Given half a digit,
predict the other half

• We have some
structure because it’s a
digit and we want to
take advantage.

• We will come back to
this near the end.

X Y

Reminder: Kernels

• Is generalized inner products.

• Creates a distance (d). i.e.
d(x, y) = k x, x + k y, y − 2k(x, y)

• Behaves like vector spaces (Hilbert Spaces).

Are Kernels Enough ?

K(.,.)

L(.,.)

Y(Graphs) X (Strings)

How do we reasonably classify the Green Point ?

Nearest Neighbor ?

Near Neighbors

K(.,.)

L(.,.)

Y X

What is the problem with this approach ?

K(.,.)

Highlights of Paper

• Kernels (or distances) in the input and output
spaces is sufficient for efficient structured
prediction.

• Generic Framework for Structured Prediction

– Need a notion of similarity in input space

– Loss function serves as kernels in output space.

• Eliminates the need to perform feature
extraction when kernels known.

Advantages of Kernels

• Right representation not always available.
– Strings ?

– Graphs ?

• Many applications dealing with complex
objects have standard notions of similarity.
– String Distances

– Graph Kernels

• Feature representation may not be efficient.
– Radial Basis Functions (RBF)

Example Kernels

• Multi-class pattern recognition:

𝑙 𝑦, 𝑦′ =
1

2
𝑦 == 𝑦′

• Regression Estimation:

𝑙 𝑦, 𝑦′ = 𝑦 ∙ 𝑦′
• Multinomial

𝑙 𝑦, 𝑦′ = 𝑦 ∙ 𝑦′ + 1 𝑝
• Radial Basis functions

𝑙 𝑦, 𝑦′ = exp −
𝑦 − 𝑦′ 2

2𝜎2

• Arbitrary distance matrix(Δ 𝑦𝑖 , 𝑦𝑗 = 𝐷𝑖𝑗)

𝑙 𝑦𝑖 , 𝑦𝑗 =
𝐷𝑖𝑗

2
− 𝑐𝑝 𝐷𝑖𝑝

2𝑚
𝑝=1 − 𝑐𝑞 𝐷𝑞𝑗

2𝑚
𝑞=1 + 𝑐𝑝𝑐𝑞 𝐷𝑝𝑞

2𝑚
𝑝,𝑞=1

2

Plenty of options!
See also: Learning with Kernels by Scholkopf and Smola (2002)

ALGORITHM

Problem

Goals
Givens
• Kernel in input 𝑘
• Loss Function (𝑙)
Output
• A predicted structure y for some

arbitrary structured input x.

X Y

????

𝑘 𝑙

Approach

Goals
Givens
• Kernel in input 𝑘
• Loss Function (𝑙)
Output
• A predicted structure y for some

arbitrary structured input x.

Basic Steps

Learning

1) Kernel PCA

2) Ridge regression

Testing

1) Finding a “good” output

X Y

Kernel PCA

𝑘 𝑙

𝑌

Approach

Goals
Givens
• Kernel in input 𝑘
• Loss Function (𝑙)
Output
• A predicted structure y for some

arbitrary structured input x.

Basic Steps

Learning

1) Kernel PCA

2) Ridge regression

Testing

1) Finding a “good” output

X Y
𝑘 𝑙

𝑌

Approach

Goals
Givens
• Kernel in input 𝑘
• Loss Function (𝑙)
Output
• A predicted structure y for some

arbitrary structured input x.

Basic Steps

Learning

1) Kernel PCA

2) Ridge regression

Testing

1) Finding a “good” output

X Y

𝑓 (𝑥)

Ridge Regression

???

𝑘 𝑙

𝑌

Kernel PCA on Outputs - Goal

• Basically finding a set of
vectors that yield a
good representation of
the labels.

– Represents the output
space as vectors that can
learned in the next step

– Kernelized analog of
Principal Component
Analysis

X Y

Kernel PCA

Projected
structures (𝑦)

𝑘 𝑙

𝑌

Y

Kernel PCA-Setting

• Input: Data objects 𝑦𝑖 with defined kernel
functions 𝑙(𝑦𝑖 , 𝑦𝑗).

• Output: A vector representation Φ𝑙 𝑦 ∈ 𝑅𝑝

 s. t. 𝑙 𝑦, 𝑦′ ≅ Φ𝑙 𝑦 ∙ Φ𝑙 𝑦′

Note: Only access to 𝑙 ∙,∙ allowed. How to
compute such Φ𝑙 𝑦 ?

Kernel PCA-Idea

• Mercers Theorem: Every kernel 𝑙(∙,∙) has an
associated feature space 𝜙(∙), such that

𝑙 𝑦𝑖 , 𝑦𝑗 = 𝜙 𝑦𝑖
𝑇𝜙 𝑦𝑗 .

 𝜙 ∙ exist but we don’t know how to find it.

• But we can get the PCA representation of

𝜙(∙), using only access to 𝑙(∙,∙) !!

𝑙(∙,∙)

Mercer

𝑌 ∈ Rp

Y 𝜙 ∙ ∈ 𝑅∞

𝑙(∙,∙)

Mercer

𝑌 ∈ Rp

Vanilla PCA in 𝜙(∙)

• 𝝓 𝒚𝒊 = 𝝓 𝒚𝒊 −
𝟏

𝒎
 𝝓 𝒚𝒌

𝒏
𝒌=𝟏

• Solve 𝐶𝜈𝑗 = 𝜆𝑗𝜈𝑗

𝐶 =
1

𝑚
 𝜙 𝑦𝑖 𝜙 𝑦𝑖

𝑇𝑚
𝑖=1

• The 𝑗𝑡ℎ component of
𝑦𝑖

y𝑖
𝑗 = 𝜙 𝑦𝑖

𝑇𝜈𝑗

• Ensure 𝜈𝑗
𝑇𝜈𝑗 = 1

Key observation : 𝝂𝒋 = 𝜶𝒋

𝒊𝝓(𝒚𝒊)
𝒎
𝒊=𝟏

𝝓 𝒚𝒊
𝑻𝝓 𝒚𝒋 = 𝒍(𝒚𝒊, 𝒚𝒋)

𝜙 ∙ ∈ 𝑅∞

𝑦𝑖 𝜙(𝑦𝑖)

𝑦𝑖

𝑙(∙,∙)

Mercer

𝑌 ∈ Rp

Kernel PCA

• 𝐿′ = 𝐼 −
1

𝑚
1𝑚𝑚 𝐿 𝐼 −

1

𝑚
1𝑚𝑚

𝐿 is gram matrix, Li,j = 𝑙 𝑦𝑖 , 𝑦𝑗 .

1mm 𝑚 × 𝑚 matrix of 1’s. 𝐼 is the identity.

• Solve
1

𝑚
𝐿′𝛼𝑗 = 𝜆𝑗𝛼𝑗

• y 𝑗 = 𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1

where𝛼𝑗
𝑖is the 𝑖𝑡ℎ component of 𝛼𝑗.

• Ensure 𝛼𝑗
𝑇𝐿′𝛼𝑗 = 1.

𝜙 ∙ ∈ 𝑅∞

𝑦𝑖

𝜙(𝑦𝑖)

𝑦𝑖

𝝓(∙) never used !!

Substitution Activity

Materialize 𝝓(𝒚) - PCA

• Solve 𝐶𝜈𝑗 = 𝜆𝑗𝜈𝑗 where

 𝐶 =
1

𝑚
 𝜙 𝑦𝑖 𝜙 𝑦𝑖

𝑇𝑚
𝑖=1

• The 𝑗𝑡ℎ component of 𝑦

y 𝑗 = 𝜙 𝑦 𝑇𝜈𝑗

• Ensure 𝜈𝑗
𝑇𝜈𝑗 = 1

Just use 𝒍(∙,∙) – Kernel PCA

• Solve
1

𝑚
𝐿′𝛼𝑗 = 𝜆𝑗𝛼𝑗

• y 𝑗 = 𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1 where

𝛼𝑗
𝑖 is the 𝑖𝑡ℎ component of 𝛼𝑗.

• Ensure 𝛼𝑗
𝑇𝐿′𝛼𝑗 = 1.

Key connection : 𝝂𝒋 = 𝜶𝒋

𝒊𝝓(𝒚𝒊)
𝒎
𝒊=𝟏

𝝓 𝒚𝒊
𝑻𝝓 𝒚𝒋 = 𝒍(𝒚𝒊, 𝒚𝒋)

Kernel Ridge Regression

• Recall we know a
‘kernelized’ version of
the input (X)

• Want to map the input

feature space to
vectorized outputs

• 𝑥 →
𝑦 1

…
𝑦 𝑝

 𝑦

X Y
𝑘 𝑙

Kernel Ridge Regression

• Objective (primal version):

min
𝑤

𝛾 𝑤
2
+

1

𝑚
 𝑦 𝑖 − 𝛽 ∙ Φ𝑘 𝑥𝑖

2
𝑚

𝑖=1

• Convert to dual form and solve to find the predicted
location in the projected y space:

𝑓𝑛 𝑥 = 𝛽𝑖
𝑛𝑘 𝑥𝑖 , 𝑥

𝑚

𝑖=1

Where
𝛽𝑛 = 𝐾 + 𝛾𝐼 −1𝑦 𝑛

Activity

• I don’t know Kernel
(Ridge) regression

• But I know Kernel PCA
and Linear (Ridge)
Regression

• Can I still make it work ?

X Y

Kern
el P

C
A

𝑘 𝑙

𝑌

Activity

• Yes !!

• Use kernel PCA on input
space to get vector
representation

• Input output both
vector spaces. Use
linear regression.

𝑥 1

…
𝑥 𝑝

→
𝑦 1

…
𝑦 𝑝

X Y

Kern
el P

C
A

Kern
el P

C
A

Any Regression

𝑘 𝑙

Inference

• Just found a way to
estimate what we think
the input (x) should
map to in the projected
space

• Need to find the actual
structured output y that
most closely matches

𝑓 (𝑥).

X Y

𝑓 (𝑥)

Kernel PCA

??

𝑘

𝑌

Inference

• Project all Ys to 𝑦

• Find 𝑦𝑛 nearest to 𝑓 (𝑥)
in the vector space 𝑦 .

X Y

𝑓 (𝑥)

𝑦

𝑦 𝑛

Kern
el P

C
A

𝑘 𝑙

𝑌

Inference

• Formally:

𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈𝑌

𝑦1
…
𝑦𝑝

−

𝑓1 𝑥
…

𝑓𝑝 𝑥

• Where 𝑦 → 𝑦1 ,𝑦2 ,… , 𝑦𝑝 via Kernel PCA.
• 𝑓𝑛 𝑥 is done from learned Kernel Ridge

Regression.
• Some kernels can be inverted explicitly
• Paper simply searched all possible y’s

More info: Scholkopf et. al. “Input space Vs feature space in kernel-based methods”

Expensive

• Formally:

𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈𝑌

𝑦1
…
𝑦𝑝

−

𝑓1 𝑥
…

𝑓𝑝 𝑥

• Note: slow.
The recall the formula for kernel PCA is:

𝑦𝑗 = 𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1

That is, for each 𝑦 ∈ 𝑌 sum over all training data
• Must be done each time we look at a new 𝑦 ∈ 𝑌

EXPERIMENTS

Strings to Strings

• All outputs subject to a 0.3 chance of a random insert/delete and a 0.15
chance of 2 random inserts/delete

• 200 strings, 5 fold cross validated
• Substring Kernel, normalized in both input and output
• Loss is computed via the kernel in the output.
• In the space induced by the input kernel, used RBF kernel

Class Base output Uniform or Prefer Repeat Input Alphabet

1 abad Uniform [a,b,c,d]

2 dbbd 0.7 repeat. Uniform otherwise [a,b,c,d]

3 aabc 0.7 repeat. Uniform otherwise [c,d]

Kernel Dependency Est. K-Nearest Neighbors

String Loss 0.676 +/- 0.030 0.985 +/- 0.029

Classification Loss 0.125 +/- 0.012 0.205 +/- 0.026

For more details see the paper

USPS Image Reconstruction

• Given top half of a USPS
digit want the lower half

• Not given the digit—have to
infer from top half

• The tricky part is choosing a
good loss function

• Use an RBF kernel with a
width designed to match k-
means

• 1000 digits 5-fold Cross
Validated

• Hopfield net is a neural
network

Loss

Kernel Dependency
Estimation

0.8384+/-0.0077

K Nearest
Neighbors

0.8960+/-0.0052

Hopfield Net 1.2190+/-0.0072

USPS Optical Character Recognition

• Same USPS database as before
• Different Expiriment
• Classifying handwritten digits
• 1000 16x16 pixel digits with 5

folds.
• Variables for all algorithms

optimized on one fold
• RBF kernel for input
• 0-1 loss multi-class loss on the

output

Kernel Dependency Est 1-vs-rest SVM K-Nearest Neighbors

0-1 loss 0.0798 +/- 0.0067 0.0847 +/- 0.0064 0.1250 +/- 0.0075

For reference (from Learning with Kernels from Smola):
One-versus rest SVM trains one classifier per class and then assigns it to the maximal class:

Conclusions

• Structured Output Prediction

• only need a loss function kernel and a kernel in the
input space.

• Kernels are capable of modeling things that would
require infinitely many features to represent

• Kernels PCA gives an implicit feature
representation

Any Questions?

