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Example Structured Prediction
Problem

* Given half a digit,
predict the other half

X Y
e We have some a |
structure because it’s a »
digit and we want to

take advantage.

e We will come back to
this near the end.



Reminder: Kernels

* |s generalized inner products.

* Creates a distance (d). i.e.
d(x,y) = k(x,x) + k(y,y) — 2k(x,y)

e Behaves like vector spaces (Hilbert Spaces).



Are Kernels Enough ?
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How do we reasonably classify the Green Point ?

Nearest Neighbor ?



Near Neighbors
X Y
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What is the problem with this approach ?



Highlights of Paper

* Kernels (or distances) in the input and output
spaces is sufficient for efficient structured

prediction.
* Generic Framework for Structured Prediction
— Need a notion of similarity in input space

— Loss function serves as kernels in output space.

* Eliminates the need to perform feature
extraction when kernels known.



Advantages of Kernels

* Right representation not always available.
— Strings ?
— Graphs ?

 Many applications dealing with complex
objects have standard notions of similarity.
— String Distances
— Graph Kernels

* Feature representation may not be efficient.
— Radial Basis Functions (RBF)



Example Kernels

Multi-class pattern recognition:

[y, y) =z ==y")

N -

Regression Estimation:

—
!

y,y)=y-
Multinomial
(v, y) =@y + 1P

_IIy—y’I|2>
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Radial Basis functions

I(y,y') = exp(
Arbitrary distance matrix(A(yi,yj) = Dj;)
2 2 2 2
(lDij| = Xpea cp|Dip|” = Xik1 ¢q|Dgj” + Eplg=1 cp¢q|Dpq )

2

(yuy)) =

Plenty of options!
See also: Learning with Kernels by Scholkopf and Smola (2002)



ALGORITHM



Problem

\
Goals ﬁ
Givens §
 Kernelininputk _.4
* Loss Function (l)

Output
* A predicted structure y for some

arbitrary structured input x.
2?2??




Approach

—
Goals -
Givens § Y
 Kernelininputk _
* Loss Function (l)
Output

* A predicted structure y for some
arbitrary structured input x. Kernel PCA

Basic Steps

Learning

1) Kernel PCA

2) Ridge regression
Testing

1) Finding a “good” output
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* Loss Function (l)
Output

* A predicted structure y for some
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Approach

Goals

Givens
 Kernelininputk
* Loss Function (l)
Output

* A predicted structure y for some
arbitrary structured input x.

Basic Steps

Ridge Regression
Learning

1) Kernel PCA

2) Ridge regression
Testing

1) Finding a “good” output



Kernel PCA on Outputs - Goal

e Basically finding a set of
vectors that yield a
good representation of
the labels.

— Represents the output

N ——
—
/ %

space as vectors that can Kernel PCA
learned in the next step
— Kernelized analog of
Principal Component
Analysis
Projected

structures (y)



Kernel PCA-Setting

* Input: Data objects y; with defined kernel
functions [(y;, y;)-

e Output: A vector representation ®;(y) € RP

s.t. L(y,y") = ®;(y) - D,(y")

Note: Only accessto [ ( -, ) allowed. How to
compute such ®;(y) ?




Kernel PCA-lIdea

* Mercers Theorem: Every kernel [(+,-) has an
associated feature space ¢ (), such that

(v, y;1) = o) o ().

¢ (+) exist but we don’t know how to find it.

* But we can get the PCA representation of
¢ (+), using only access to I(+,") !!






Vanilla PCA in ¢ (+)

Mercer

0

P = ¢ — -1 d(Vi)
. Solv? Cvj = Ajv;
C==—2Z1 6o’
* The jt* component of
Vi

5i' = p )Ty

e Ensure vavj =1

Key observation: v; = };2, a]‘:qb(y,-)
"o (y;) =1 y))




Kernel PCA

L= (1=~ L) L (I = — Lynm)

m

L is gram matrix, L;; = l(yi,yj).

1m

oM X m matrix of 1’s. [ is the identity.

1.,
Solve QL a; = Ajaj

§ = i=1 “}I(Yi: y)

wherea'lis the it" component of a;.

J

Ensure ajTL’aj =1.

¢ (-) never used !!

Mercer

Vi

d(vi)

()




Substitution Activity

Materialize ¢ (y) - PCA Just use I(,") — Kernel PCA

* Solve Cv; = A;v; where e Solve —L’a] = Lq;

(m)
C=— m1¢(YL)¢(YL)T

* The j'" component of P 9 =31, ajl(y;,y) where
AT _ T .
¥ =) v a; is the it" component of a;.
° T, —
Ensure vj v; =1 * EnsureaL'a; = 1.

Key connection: v; = 3/, a]‘:qb(y,-)
d)To(y;) =1 y))



Kernel Ridge Regression

e Recall we know a
‘kernelized’ version of
the input (X)

 Want to map the input
feature space to %,

Q

vectorized outputs

0

5;1

%



Kernel Ridge Regression

* Objective (primal version):

1 m
nin (1w +2 Y 51 (8- 04:0)
=1

e Convert to dual form and solve to find the predicted
location in the projected y space:

fa®) = D Bk 0)

Where
B = (K +yD7'9"



Activity

* | don’t know Kernel
(Ridge) regression

 But | know Kernel PCA
and Linear (Ridge)
Regression

e Can |l still make it work ?

N —
—
/ X\

VJd |sUJ9)



Activity
* Yes !l

* Use kernel PCA on input
space to get vector
representation

Vad @

* Input output both
vector spaces. Use
linear regression.

VJd |sUJ9)



Inference

e Just found a way to
estimate what we think
the input (x) should
map to in the projected
space

* Need to find the actual f@)
structured output y that Kernel PCA g
most closely matches

f(x).

27




Inference

* Projectall Ystoy

* Find y,, nearest to f(x)
in the vector space ¥.

Vd |2UJ9)




Inference

* Formally:
Vi _f1(x)_
y(x) = argminycy e
Vp _fp(x)_
* Wherey — [)/’I V2, )//;] via Kernel PCA.

* f.(x)is done from learned Kernel Ridge
Regression.

* Some kernels can be inverted explicitly
* Paper simply searched all possible y’s

More info: Scholkopf et. al. “Input space Vs feature space in kernel-based methods”



Expensive

* Formally:

_5’;_ _f1(x)_
y(x) = argminycy el
Vp _fp(x)_

 Note: slow.
The recall the formula for kernel PCA is:

5’} — l 1 ]l(yu :V)
That is, for each y € Y sum over all training data
* Must be done each time we lookatanewy €Y



EXPERIMENTS



Strings to Strings

1 abad Uniform [a,b,c,d]
2 dbbd 0.7 repeat. Uniform otherwise [a,b,c,d]
3 aabc 0.7 repeat. Uniform otherwise [c,d]

* All outputs subject to a 0.3 chance of a random insert/delete and a 0.15
chance of 2 random inserts/delete

e 200 strings, 5 fold cross validated

e Substring Kernel, normalized in both input and output

* Lossis computed via the kernel in the output.

* Inthe space induced by the input kernel, used RBF kernel

String Loss 0.676 +/- 0.030 0.985 +/- 0.029
Classification Loss 0.125 +/-0.012 0.205 +/- 0.026

For more details see the paper



USPS Image Reconstruction
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Not given the digit—have to

infer from top half
* The tricky part is choosing a

Given top half of a USPS
digit want the lower half

good loss function

Use an RBF kernel with a
width designed to match k-

means
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1.2190+/-0.0072

Hopfield Net



USPS Optical Character Recognition

e Same USPS database as before
e Different Expiriment
* Classifying handwritten digits

e 1000 16x16 pixel digits with 5
folds.

e Variables for all algorithms
optimized on one fold

* RBF kernel for input

e (-1 loss multi-class loss on the
output

0-1 loss 0.0798 +/- 0.0067 0.0847 +/- 0.0064 0.1250 +/- 0.0075

For reference (from Learning with Kernels from Smola):
One-versus rest SVM trains one classifier per class and then assigns it to the maximal class:



Conclusions

Structured Output Prediction

only need a loss function kernel and a kernel in the
Input space.

Kernels are capable of modeling things that would
require infinitely many features to represent

Kernels PCA gives an implicit feature
representation

Any Questions?



