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Overview

e Quiz

e Introduction to Markov Network
e Pairwise Log-linear Model

e Margin-based Formulation

e Exploiting Network Structure

e Polytope Constraints

e Coordinate-wise Optimization

e Training Methods

e Summary and Further Readings

2
/201

Moontae Lee and Ozan Sener Max-Margin Markov Networks



Markov Random Field

e Temporal/Spatial relations need

to be modelled by most of the o °
ML systems
o Markov Random Field (MRF) is o e

a way to model such structures.

Markov Random Field
Given a graph G(V, E), a set of variables (X, ),cv is a MRF if a

variable is conditionally independent of all other variables given
its neighbors. ex.P(XE|XA, XB,» Xc, XD) = P(XE’XC, XD)
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How to do Inference - argmax P({X,},cv)

e |f it is a Markov Chain, we can use Viterbi algorithm.

e What if it is not ?

Hammersley & Clifford theorem

If MRF has positive measure, its probability density can be
decomposed over set of cliques.

o P(Xa, Xs, Xc, Xp, Xg) = e EXaXaXc. X, Xe) \yhere,
E(Xag) = E(Xa, Xg, Xp) + E(Xp, Xg) + E(Xc, XEg)
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Pairwise Log-linear Model

e Assume pairwise MRF (any two non-adjacent variables are
conditionally independent given all other variables)

e Energy function is defined over edges
E(X) — Z(u7v)eg E()(u7 XV)

e |f we use indicator functions, resultant energy is linear.
Consider two nodes (x1, xo) Markov network;

A(x)=1 if xx=0,%=0 wy =E(x; = 0,x = 0)
hix)=1 if xy=0,x=1 wy =E(x3 = 0,x = 1)
fiix)=1 if xx=1,%=0 ws =E(x; = 1,x =0)
fa(x)=1 if xq=1x=1 wy =E(xy =1,x% =1)
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Problem to be Solved

e Energy function is log-likelihood (E=w f) where f is the
concatenation of all edge features.

f=(f(a,b) f(b,a) f(a,c) f(c,a) , f(. a), f. a), (Tl c). f(E,a))

e And we solve the energy minimization problem which
corresponds to ML problem.

= PR,

y = argmaxw’ f( %)
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Margin-based Formulation

e We want to learn a weight vector w such that
arg max wa(,y) =" brace”
WTI‘(7 “brace”) > ll”r“'(‘e “aaaaa")

WTF(7 “brace”) > w f( prace “zzzzZ2")

e Our goal is to maximize the margin constraining ||w|| <1

max A\ s.t wa(7 “brace") — WTf(,y) >A Y,
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Max-Margin Markov Network (MMMN)

e Primal Formulation:

.1
min Cw|?+CY & st wlAR(y) > At(y) = & Vay

where Af(y) = f(x,t(x)) — f(x,y), At«(y) = loss against the true label t(x)

e Dual Formulation:

2

1

max > ax(y)At(y) - D
X,y

> ax(y)Ak(y)
X,y

s.t Zax(y) = C Vi ax(y) >0 Vx,y
y
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Max-Margin Markov Network (MMMN)

e Primal Formulation:
1
min SIwlP+CY 6 st wTAGRY) 2 At(y) — & Yy
where Af(y) = f(x,t(x)) — f(x,y), Atx(y) = loss against the true label t(x)

e Dual Formulation:

2

1

max Zax(y)AtX(y) =
X,y

> ax(y)Ak(y)
X,y

s.t Zax(y) =C Vi ax(y) >0 Vi,
y

Q1. # of dual variables? (m examples, / binary outputs)
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Max-Margin Markov Network (MMMN)

e Primal Formulation:

1
min 5||W||2 +CY & st wlAf(y) > At(y) — & Vay

where Af(y) = f(x,t(x)) — f(x,y), Atx(y) = loss against the true label t(x)

e Dual Formulation:
2

max Zax(y)AtX(y) - = y)Af(y)

Zax(y =C VY  ax(y) >0 Vuy

Q1. # of dual variables? (m examples, / binary outputs)
Q2. # of addends?
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Max-Margin Markov Network (MMMN)

e Primal Formulation:
1
min 5||W||2 +CY & st wlAf(y) > At(y) — & Vay
where Af(y) = f(x,t(x)) — f(x,y), Atx(y) = loss against the true label t(x)

e Dual Formulation:

2

max Zax(y)mx(y)—f Zax JAL(y)

Zax(y =C VY  ax(y) >0 Vuy

Q1. # of dual variables? (m examples, / binary outputs)
Q2. # of addends = m -2/ +m -2/
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Max-Margin Markov Network (MMMN)

e Primal Formulation:

. 1
min §||w||2+c;gx st wlAf(y) > Ate(y) — & Vxy

where Afi(y) = f(x, t(x)) — f(x,y), Atc(y) = loss against the true label t(x)

e Dual Formulation:
2

max Zax(y)Atx(y)f* y)Af(y)

ZO‘X(}’ = C Vx ax(y) >0 Vs,

Q1. # of dual variables? (m examples, / binary outputs)
Q2. # of addends = m -2/ + m -2/
Q3. Is it equivalent to Structural SVM (SSVM)?
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Exploiting Structure in MMMN (1)

(Observation 1) Dual variables {a(y)}«,, satisfy

Zax(y) =C and ax(y) >0V,
y

So, a,(y) can be an unnormalized density function over y given x
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Exploiting Structure in MMMN (1)

(Observation 1) Dual variables {c(y)}x,, satisfy

Zax(y) = C and ax(y) >0V,
y

So, ay(y) can be an unnormalized density function over y given x
(Observation 2) Both are decomposed into

Aty (y) = loss against t(x) = # of disagreements = Z Iy #(t(x))i] = Z At (yi)

iev iev

Af(y) = f0t(x) = Floy) = D (FO6 )i t0))) = FOoyiny)) = D Af(yi, )

(i)€E (ij)eE

The decompositions are sums over edges and nodes coherent to
our network structure G = (V/, E)!
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Exploiting Structure in MMMN (2)

 Define new dual variables via marginalizations {a,(y)}x,,

px(yi) = D ax(y) VieV, Vy, Vx
y~lyil

wx(yiy)) = > ax(y) Y(i,j) €E, Vyiyj, Vx
y~lyi,yl

e Then the 1st term has a new representation such that

Zax Atx y) Zax(y) (Z Atx(}’l ) Zzax At'x y,

iev y iev

iev y~Iyil i€V yi

=> (Z Atyi) D ax(y)> =3 > () Atx(vi)
Yi
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Exploiting Structure in MMMN (3)

e (Example) Given a sample x, see the following transformation:

“ Y1 [ ¥2 [ ¥3 “ Atx(y1) [ At(y2) [ At«(y3) “ At(y) [ ax(y)
t(x) 1 0 1 true label
0] 0] O 1 0 1 2 0.1
0 | O 1 T 0 0 T 0.2
al 0 1 0 1 1 1 3 0.1
possible 0 1 1 T 1 0 2 0.1
labels y 1 0 | O 0 0 1 1 0.1
1 0 1 0 0 0 0 0.1
1 1 0 0 1 1 2 0.2
1 1 1 0 1 0 T 0.1
ux(yi=0) |[ 05 ] 05 | 05 0.5%1 0.5%0 0.5%1 S
ux(yi=1) || 05 | 05 | 05 || 0.5%0 0.5%1 0.5%0 =

Zax(y)AtX(y) =sum of 8 terms = 1.5 (. y € {0,1}%)

y

ZZMX(}’i)Atx(}’i) =sumof 6 terms =15 (. i€ {1,2,3} y; € {0,1})

i i
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

1Y axWAEWMIP =D > Z DD i e irs vi ) A i) T B (v, yir)

Y x,x! (i, ))EE (i" j')EE YirYj Yir Yt

e Therefore the new equivalent formulation is to maximize

> DDy Ate(yi)— Z > Z DD i e irs vy ) B ) T A (v yir)

x i€V yi xx’ (i J)EE (i" j')EE YisYj Yir »¥jr
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

IIZax NAEWNIP=D" 3" 3T ST ST iy (virs yi ) AE(yi, vi) T A (vir vy

x,x! (i, J)EE (i j')EE YisYj Yir »Yj!

e Therefore the new equivalent formulation is to maximize

DO iy A y,)—*z ST ST ST (i v i, vy ) ARy, i) T B (virs )

x i€V yi x,x! (i, J)EE (i' j')EE YisYj Yir »Yjt

Q1. # of dual variables? (m examples, / binary outputs)
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

IIZax NAEWIP=>" 3" 3T ST iy (virs i ) Af(yi, vi) T A (v vyr)

x,x! (i, J)EE (i' ,j')EE YisYj Yir »Yjt

e Therefore the new equivalent formulation is to maximize

> Dy An( y:)**z DD DD i e irs v ) AE(i ) T AR (v yir)

x ieV i x,x! (i,))EE (i" J'YEE YirYj Yir ¥y

Q1. # of dual variables? (m examples, / binary outputs)

s (Vi) Yooyl = Ml [{px(yi, ¥i) s | = mIZ = mi(1+ 1)
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

IIZax NAEWMIP=D" 3" 30 30> iy i vy ) BF(yis ) T BF (v, )

x,x! (i, J)EE (i" j')EE YisY; Yir ¥t

e Therefore the new equivalent formulation is to maximize

DD iy Ab( y,)ffz DD DT DT iy irs v ) AE(i ) T A (v yir)

x ieV vy x,x! (i, J)EE (i' j')EE YisYj Yir »Yjt

Q1. # of dual variables? (m examples, / binary outputs)

{iyi) byl = ml Ko ¥i) bl = mil? = mi(1 +1)

Q2. # of addends?
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

IIZax NAEWNIP=3" 3" 3T S5 i v (virs i ) AF(yi, yi) T A (vir vy

x,x! (i, J)EE (i' j')EE YisYj Yir »Yj!

e Therefore the new equivalent formulation is to maximize

> 3> iy Atlyi)— Z ST DT DT iy (i i )AE(i ) T Afr (vir, yjr)

x ieV vy xx’(lJEE(’j’)eE}’yj,V/yJ

Q1. # of dual variables? (m examples, / binary outputs)

s (Y)Yl = Ml {1 (vi, ¥i) iy | = mIZ = mi(1+ 1)

Q2. # of addends = m/ -2+ m?- ;G2 - 2*
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Exploiting Structure in MMMN (4)

e Similarly the 2nd term has a new representation such that

IIZax NAEWNIP=>" 3" 3T ST ST iy (i i ) Af(yi, vi) T A (v vyr)

x,x! (i,J)EE (i" j'YEE YirYj Yir ¥yt

e Therefore the new equivalent formulation is to maximize

D oD iy Ab(yi) - Z DD D0 D> iy (virs v )AR(yis vi) T A (yirs )

x ieV yi XX/(IJEE(IJI)EEYYJYI,VJ

Q1. # of dual variables? (m examples, / binary outputs)

=ml* = ml(1+1)

e (Vi) byl = ml Ko ¥3) by
Q2. # of addends = m/ -2+ m? - ;G2 - 2*
Q3. What is a computational trade-off?
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Polytope Constraints (1)

e New formulation is subject to marginal polytope constraint

D ux(yi) = C ¥, Vievs ZMX Yir¥i) = mx () px(iyj) = 0 Y, Vi jyee
Yi

13
/20‘

Moontae Lee and Ozan Sener Max-Margin Markov Networks



Polytope Constraints (1)

e New formulation is subject to marginal polytope constraint

Zux vi) = C VYx,Viev: Zux Yir¥j) = px(y)  mx(¥in¥) 2 0 Vo, Y(ijeE

(Define 1) For given graph G = (V, E), Marg[G] :=

{{mi(C)}iev U {pi(Si)} et | “legal distribution Qg
such that{y;} & {u;} are correct marginals of Qg}
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Polytope Constraints (1)

e New formulation is subject to marginal polytope constraint

D me(yi) = C Ve Vievi Y mx(viryy) = mx(y)  mx(yiyj) 20 Vi, V(i e
Yi Yi

(Define 1) For given graph G = (V, E), Marg[G] :=

{{mi(C)}iev U {pi(Si)} et | “legal distribution Qg
such that{x;} & {p;} are correct marginals of Q¢ }

(Define 2) For given graph G = (V, E), Local[G] :=

{{;1 i) Yiev U {1ij(Sij) }ij)ee | marginals are
locally consistent satisfying the calibration constraints}
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,
Local[G] is the superset. That means Local[G] D Marg[G]
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,

Local[G] is the superset. That means Local[G] D Marg[G]

Q2. Can you come up with an example in Local[G] — Marg[G]?
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,

Local[G] is the superset. That means Local[G] D Marg[G]

Q2. Can you come up with an example in Local[G] — Marg[G]?

Think about the example given in the black board
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,
Local[G] is the superset. That means Local[G] D Marg[G]

Q2. Can you come up with an example in Local[G] — Marg[G]?

Think about the example given in the black board

- Q2-a. Is {{p1, p12, p3}, {2, o3, 13} } € Local[G]?
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Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,
Local[G] is the superset. That means Local[G] D Marg[G]

Q2. Can you come up with an example in Local[G] — Marg[G]?

Think about the example given in the black board

- Q2-a. Is {{p1, pa, 3}, {1112, p1o3, p13}} € Local[G]?
- Q2-b. Is {1, pa, 3}, {2, pios, pas}}y € Marg[G]?
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Polytope Constraints (3)

e QOur formulation requires marginal polytope constraint on
tree-structured graph G
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Polytope Constraints (3)

e Our formulation requires marginal polytope constraint on
tree-structured graph G

(Theorem) If G:tree-structured

Local[G] = Marg[G] (i.e., two polytopes are consistent)
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Polytope Constraints (3)

e Our formulation requires marginal polytope constraint on
tree-structured graph G

(Theorem) If G:tree-structured

Local[G] = Marg[G] (i.e., two polytopes are consistent)

e Thus constraints coincide with the local consistency polytope

s
/201

Moontae Lee and Ozan Sener Max-Margin Markov Networks



Polytope Constraints (3)

e Our formulation requires marginal polytope constraint on
tree-structured graph G

(Theorem) If G:tree-structured

Local[G] = Marg[G] (i.e., two polytopes are consistent)

e Thus constraints coincide with the local consistency polytope

Q. If the given graph G is not tree-structured?
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Polytope Constraints (3)

e Our formulation requires marginal polytope constraint on
tree-structured graph G

(Theorem) If G:tree-structured

Local[G] = Marg|G] (i.e., two polytopes are consistent)
e Thus constraints coincide with the local consistency polytope

Q. If the given graph G is not tree-structured?

= Solve the relaxed optimization on Local[G] via approximate
algorithms such as loopy belief propagation.
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Coordinate Ascent/Descent

e Consider the problem of max,, . a, f(ao,...,an)

e If we only want to reach local maximum (it is global if KKT is
satisfied), we can replace the gradient with gradient in a
predefined direction.

Coordinate Ascent

while until convergence: \J |}
for i=0to n : | /

a; = argmax,, f(ag,...,q;,...c, [\
Check KKT Conditions us] L

Convergence: Same as gradient T B R v R 8

descent
16/2
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Sequential Minimal Optimization (SMO)

e Recall the initial dual formulation.
2

max f—Zax YAt (y Zax(y)Af (v)

Zax }’):C Vx ax()’)ZO V)(,y

e If we choose a specific coordinate a,(y!);

ax(y=C— > axly)

yeY/yt

e We can choose two coordinates y!, y?; then,

ax(y) +ax(y?) = C = Zpey g2y ax(y) =7 = axl(y?) =7 — ax(y?)
mMax, (1) ax(y2) f = MaXy, (1) aax(y1)? + bax(yl) + ¢

e Corresponding update in primal

A =ax(y") — ax(y?)
1x(vi i) = mx(yioyi) + Mlyi = vl vy = v 1= Mlyi = v,y = v7]
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How to Train MMMN /SSVM in General?

e Polynomial-Size Reformulation
o Exploit sparse dependency structure in underlying distribution
o Implicit representation requires an inference in graphical model
e Cutting-plane Method

o Efficiently manage only polynomially many working constraints
o The next quadratic programming has only a different constraint
o # of constraints needed can be large for good approximation

e Subgradient Method

o Formulate the optimization objective as an unconstrained

non-differentiable function having a maximum operation
o # of iterations needed is improved ((O(1/€?) vs (O(1/¢))
o The problem is that we haven't seen it yet!
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Summary and Further Reading

e MMMN/SSVM allow us to encode various dependencies on
completely general graph structures whereas HMM/CRF is
mostly about linear/skip chain dependencies

e When a graph satisfies sub-modularity, computing maximum in
min-max formulation can be efficiently solved by linear
program via finding min-cut

e The exact inference to train the CRF is intractable in this case

 Associative Max-Margin Markov Netowrks by [Taskar 2004]

e Dual Extragradient and Bregman Projections by [Taskar 2006]

e Learning Structural SVM with Latent Variables by
[Yu/Joachim 2009]
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The End

Do you have any question?

Question Answer
...Which tool do you use?... ...ShareLaTeX...
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