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Overview

• Quiz
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• Polytope Constraints
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• Summary and Further Readings
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Markov Random Field

• Temporal/Spatial relations need
to be modelled by most of the
ML systems

• Markov Random Field (MRF) is
a way to model such structures.

Markov Random Field
Given a graph G (V ,E ), a set of variables (Xv )v∈V is a MRF if a
variable is conditionally independent of all other variables given
its neighbors. ex .P(XE |XA,XB ,XC ,XD) = P(XE |XC ,XD)
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How to do Inference - arg maxP({Xv}v∈V )

• If it is a Markov Chain, we can use Viterbi algorithm.

• What if it is not ?

Hammersley & Clifford theorem
If MRF has positive measure, its probability density can be
decomposed over set of cliques.

• P(XA,XB ,XC ,XD ,XE ) = e−E(XA,XB ,XC ,XD ,XE ) where,
E (XA:E ) = E (XA,XB ,XD) + E (XD ,XE ) + E (XC ,XE )
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Pairwise Log-linear Model

• Assume pairwise MRF (any two non-adjacent variables are
conditionally independent given all other variables)

• Energy function is defined over edges
E (X ) =

∑
(u,v)∈E E (Xu,Xv )

• If we use indicator functions, resultant energy is linear.
Consider two nodes (x1, x2) Markov network;

f1(x) = 1 if x1 = 0, x2 = 0

f2(x) = 1 if x1 = 0, x2 = 1

f3(x) = 1 if x1 = 1, x2 = 0

f4(x) = 1 if x1 = 1, x2 = 1

w1 =E (x1 = 0, x2 = 0)

w2 =E (x1 = 0, x2 = 1)

w3 =E (x1 = 1, x2 = 0)

w4 =E (x1 = 1, x2 = 1)

E (x1, x2) =
∑4

i=1 fiwi = f (x1, x2)Tw
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Problem to be Solved
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• Energy function is log-likelihood (E=wT f ) where f is the
concatenation of all edge features.

f = ( f(a,b) f(b,a) f(a,c) f(c,a) , f(     ,a), f(    ,b), f(     ,a),  f(     ,c), f(     ,a) )

• And we solve the energy minimization problem which
corresponds to ML problem.

y = arg maxwT f ( , y)
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Margin-based Formulation

• We want to learn a weight vector w such that

arg maxwT f ( , y) = ”brace”

wT f ( , “brace”) > wT f ( , “aaaaa”)

...

wT f ( , “brace”) > wT f ( “zzzzz”)

• Our goal is to maximize the margin constraining ‖w‖ ≤ 1

maxλ s.t wT f ( , “brace”)− wT f ( , y) ≥ λ ∀y

Moontae Lee and Ozan Sener Max-Margin Markov Networks 7/20

7/20



Max-Margin Markov Network (MMMN)

• Primal Formulation:

min
1

2
‖w‖2 + C

∑
x

ξx s.t wT ∆fx (y) ≥ ∆tx (y)− ξx ∀x,y

where ∆fx (y) = f (x , t(x))− f (x , y), ∆tx (y) = loss against the true label t(x)

• Dual Formulation:

max
∑
x,y

αx (y)∆tx (y)−
1

2

∥∥∥∥∥∥
∑
x,y

αx (y)∆fx (y)

∥∥∥∥∥∥
2

s.t
∑
y

αx (y) = C ∀x αx (y) ≥ 0 ∀x,y
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Max-Margin Markov Network (MMMN)

• Primal Formulation:

min
1

2
‖w‖2 + C

∑
x

ξx s.t wT ∆fx (y) ≥ ∆tx (y)− ξx ∀x,y
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Max-Margin Markov Network (MMMN)

• Primal Formulation:

min
1

2
‖w‖2 + C

∑
x

ξx s.t wT ∆fx (y) ≥ ∆tx (y)− ξx ∀x,y

where ∆fx (y) = f (x , t(x))− f (x , y), ∆tx (y) = loss against the true label t(x)

• Dual Formulation:

max
∑
x,y

αx (y)∆tx (y)−
1

2

∥∥∥∥∥∥
∑
x,y

αx (y)∆fx (y)

∥∥∥∥∥∥
2

s.t
∑
y

αx (y) = C ∀x αx (y) ≥ 0 ∀x,y

Q1. # of dual variables? (m examples, l binary outputs)

Q2. # of addends = m · 2l + m · 2l

Q3. Is it equivalent to Structural SVM (SSVM)?
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Exploiting Structure in MMMN (1)

(Observation 1) Dual variables {αx(y)}x ,y satisfy∑
y

αx (y) = C and αx (y) ≥ 0 ∀y

So, αx(y) can be an unnormalized density function over y given x
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Exploiting Structure in MMMN (1)

(Observation 1) Dual variables {αx(y)}x ,y satisfy∑
y

αx (y) = C and αx (y) ≥ 0 ∀y

So, αx(y) can be an unnormalized density function over y given x

(Observation 2) Both are decomposed into

∆tx (y) = loss against t(x) = # of disagreements =
∑
i∈V

I [ yi 6= (t(x))i ] =
∑
i∈V

∆tx (yi )

∆fx (y) = f (x , t(x))− f (x , y) =
∑

(i,j)∈E

(
f (x , t(x)i , t(x)j )− f (x , yi , yj )

)
=
∑

(i,j)∈E
∆fx (yi , yj )

The decompositions are sums over edges and nodes coherent to
our network structure G = (V ,E )!
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Exploiting Structure in MMMN (2)

• Define new dual variables via marginalizations {αx(y)}x ,y

µx (yi ) =
∑
y∼[yi ]

αx (y) ∀i ∈ V , ∀y, ∀x

µx (yi , yj ) =
∑

y∼[yi ,yj ]

αx (y) ∀(i , j) ∈ E , ∀yi , yj , ∀x

• Then the 1st term has a new representation such that

∑
y

αx (y)∆tx (y) =
∑
y

αx (y)

∑
i∈V

∆tx (yi )

 =
∑
y

∑
i∈V

αx (y)∆tx (yi )

=
∑
i∈V

∑
yi

∆tx (yi )
∑

y∼[yi ]

αx (y)

 =
∑
i∈V

∑
yi

µx (yi )∆tx (yi )
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Exploiting Structure in MMMN (3)

• (Example) Given a sample x, see the following transformation:

y1 y2 y3 ∆tx (y1) ∆tx (y2) ∆tx (y3) ∆tx (y) αx (y)

t(x) 1 0 1 true label

all
possible
labels y

0 0 0 1 0 1 2 0.1
0 0 1 1 0 0 1 0.2
0 1 0 1 1 1 3 0.1
0 1 1 1 1 0 2 0.1
1 0 0 0 0 1 1 0.1
1 0 1 0 0 0 0 0.1
1 1 0 0 1 1 2 0.2
1 1 1 0 1 0 1 0.1

µx (yi = 0) 0.5 0.5 0.5 0.5*1 0.5*0 0.5*1
Σ = 1.5

µx (yi = 1) 0.5 0.5 0.5 0.5*0 0.5*1 0.5*0

∑
y

αx (y)∆tx (y) = sum of 8 terms = 1.5 (∵ y ∈ {0, 1}3)

∑
i

∑
yi

µx (yi )∆tx (yi ) = sum of 6 terms = 1.5 (∵ i ∈ {1, 2, 3} yi ∈ {0, 1})
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Exploiting Structure in MMMN (4)

• Similarly the 2nd term has a new representation such that

‖
∑
x,y

αx (y)∆fx (y)‖2 =
∑
x,x′

∑
(i,j)∈E

∑
(i′,j′)∈E

∑
yi ,yj

∑
yi′ ,yj′

µx (yi , yj )µx′ (yi′ , yj′ )∆fx (yi , yj )
T ∆fx′ (yi′ , yj′ )

• Therefore the new equivalent formulation is to maximize

∑
x

∑
i∈V

∑
yi

µx (yi )∆tx (yi )−
1

2

∑
x,x′

∑
(i,j)∈E

∑
(i′,j′)∈E

∑
yi ,yj

∑
yi′ ,yj′

µx (yi , yj )µx′ (yi′ , yj′ )∆fx (yi , yj )
T ∆fx′ (yi′ , yj′ )
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Exploiting Structure in MMMN (4)

• Similarly the 2nd term has a new representation such that
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2 · 24

Q3. What is a computational trade-off?
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Polytope Constraints (1)

• New formulation is subject to marginal polytope constraint∑
yi

µx (yi ) = C ∀x , ∀i∈V ;
∑
yi

µx (yi , yj ) = µx (yj ) µx (yi , yj ) ≥ 0 ∀x , ∀(i,j)∈E
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• New formulation is subject to marginal polytope constraint∑
yi
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∑
yi

µx (yi , yj ) = µx (yj ) µx (yi , yj ) ≥ 0 ∀x , ∀(i,j)∈E

(Define 1) For given graph G = (V ,E ), Marg [G ] :={
{µi(Ci)}i∈V ∪ {µij(Sij)}(i ,j)∈E | ∃legal distribution QG

such that{µi} & {µij} are correct marginals of QG}
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• New formulation is subject to marginal polytope constraint∑
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∑
yi

µx (yi , yj ) = µx (yj ) µx (yi , yj ) ≥ 0 ∀x , ∀(i,j)∈E

(Define 1) For given graph G = (V ,E ), Marg [G ] :={
{µi(Ci)}i∈V ∪ {µij(Sij)}(i ,j)∈E | ∃legal distribution QG

such that{µi} & {µij} are correct marginals of QG}

(Define 2) For given graph G = (V ,E ), Local [G ] :={
{µi(Ci)}i∈V ∪ {µij(Sij)}(i ,j)∈E | marginals are

locally consistent satisfying the calibration constraints}
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Polytope Constraints (2)

Q1. Between Marg [G ] and Local [G ], which is the superset?
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Polytope Constraints (3)

• Our formulation requires marginal polytope constraint on
tree-structured graph G
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Polytope Constraints (3)

• Our formulation requires marginal polytope constraint on
tree-structured graph G

(Theorem) If G:tree-structured

Local [G ] = Marg [G ] (i.e., two polytopes are consistent)

• Thus constraints coincide with the local consistency polytope

Q. If the given graph G is not tree-structured?

⇒ Solve the relaxed optimization on Local[G] via approximate
algorithms such as loopy belief propagation.
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Coordinate Ascent/Descent

• Consider the problem of maxα0,...,αn f (α0, . . . , αn)

• If we only want to reach local maximum (it is global if KKT is
satisfied), we can replace the gradient with gradient in a
predefined direction.

Coordinate Ascent

while until convergence:

for i = 0 to n :

αi := arg maxαi
f (α0, . . . , αi , . . . αn)

Check KKT Conditions

Convergence: Same as gradient
descent
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Sequential Minimal Optimization (SMO)
• Recall the initial dual formulation.

max f =
∑
x,y

αx (y)∆tx (y)−
1

2

∥∥∥∥∥∥
∑
x,y

αx (y)∆fx (y)

∥∥∥∥∥∥
2

s.t
∑
y

αx (y) = C ∀x αx (y) ≥ 0 ∀x,y

• If we choose a specific coordinate αx(y 1);

αx (y1) = C −
∑

y∈Y/y1

αx (y)

• We can choose two coordinates y 1, y 2; then,

αx (y1) + αx (y2) = C −
∑

y∈Y/{y1,y2} αx (y) = γ =⇒ αx (y2) = γ − αx (y1)

maxαx (y1),αx (y2) f = maxαx (y1) aαx (y1)2 + bαx (y1) + c

• Corresponding update in primal

λ = αx (y1)− αx (y1)′

µx (yi , yj )
′ = µx (yi , yj ) + λI [yi = y1

i , yj = y1
j ]− λI [yi = y2

i , yj = y2
j ]
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How to Train MMMN/SSVM in General?

• Polynomial-Size Reformulation
◦ Exploit sparse dependency structure in underlying distribution
◦ Implicit representation requires an inference in graphical model

• Cutting-plane Method
◦ Efficiently manage only polynomially many working constraints
◦ The next quadratic programming has only a different constraint
◦ # of constraints needed can be large for good approximation

• Subgradient Method
◦ Formulate the optimization objective as an unconstrained

non-differentiable function having a maximum operation
◦ # of iterations needed is improved ((O(1/ε2) vs (O(1/ε))
◦ The problem is that we haven’t seen it yet!

Moontae Lee and Ozan Sener Max-Margin Markov Networks 18/20

18/20



Summary and Further Reading

• MMMN/SSVM allow us to encode various dependencies on
completely general graph structures whereas HMM/CRF is
mostly about linear/skip chain dependencies

• When a graph satisfies sub-modularity, computing maximum in
min-max formulation can be efficiently solved by linear
program via finding min-cut

• The exact inference to train the CRF is intractable in this case

• Associative Max-Margin Markov Netowrks by [Taskar 2004]

• Dual Extragradient and Bregman Projections by [Taskar 2006]

• Learning Structural SVM with Latent Variables by
[Yu/Joachim 2009]
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The End
Do you have any question?

Question
...Which tool do you use?...

Answer
...ShareLaTeX...
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