Max-Margin Markov Networks

by Ben Taskar, Carlos Guestrin and Daphne Koller

Moontae Lee and Ozan Sener

Cornell University

February 11, 2014

Overview

- Quiz
- Introduction to Markov Network
- Pairwise Log-linear Model
- Margin-based Formulation
- Exploiting Network Structure
- Polytope Constraints
- Coordinate-wise Optimization
- Training Methods
- Summary and Further Readings

Markov Random Field

- Temporal/Spatial relations need to be modelled by most of the ML systems
- Markov Random Field (MRF) is a way to model such structures.

Markov Random Field

Given a graph G(V, E), a set of variables $(X_v)_{v \in V}$ is a MRF if a variable is conditionally independent of all other variables given its neighbors. $ex.P(X_E|X_A,X_B,X_C,X_D) = P(X_E|X_C,X_D)$

How to do Inference - arg max $P(\{X_v\}_{v \in V})$

- If it is a Markov Chain, we can use Viterbi algorithm.
- What if it is not?

Hammersley & Clifford theorem

If MRF has positive measure, its probability density can be decomposed over set of cliques.

• $P(X_A, X_B, X_C, X_D, X_E) = e^{-E(X_A, X_B, X_C, X_D, X_E)}$ where, $E(X_{A:E}) = E(X_A, X_B, X_D) + E(X_D, X_E) + E(X_C, X_E)$

Pairwise Log-linear Model

- Assume pairwise MRF (any two non-adjacent variables are conditionally independent given all other variables)
- Energy function is defined over edges $E(X) = \sum_{(u,v) \in \mathcal{E}} E(X_u, X_v)$
- If we use indicator functions, resultant energy is linear. Consider two nodes (x_1, x_2) Markov network;

$$f_1(x) = 1$$
 if $x_1 = 0, x_2 = 0$ $w_1 = E(x_1 = 0, x_2 = 0)$
 $f_2(x) = 1$ if $x_1 = 0, x_2 = 1$ $w_2 = E(x_1 = 0, x_2 = 1)$
 $f_3(x) = 1$ if $x_1 = 1, x_2 = 0$ $w_3 = E(x_1 = 1, x_2 = 0)$
 $f_4(x) = 1$ if $x_1 = 1, x_2 = 1$ $w_4 = E(x_1 = 1, x_2 = 1)$

$$E(x_1, x_2) = \sum_{i=1}^4 f_i w_i = f(x_1, x_2)^T w$$

Problem to be Solved

• Energy function is log-likelihood ($E=w^T f$) where f is the concatenation of all edge features.

$$f = (f(a,b) f(b,a) f(a,c) f(c,a), f(,a), f(,a), f(,a), f(,a), f(,c), f($$

 And we solve the energy minimization problem which corresponds to ML problem.

$$y = \arg\max w^T f(b \cap a \in y)$$

Margin-based Formulation

• We want to learn a weight vector w such that

```
\arg\max w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, y) = "brace"
w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a \cap e}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a \cap e}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap a}, "brace") > w^{T} f( \frac{b \cap a}{b \cap
```

ullet Our goal is to maximize the margin constraining $\|w\| \leq 1$

Primal Formulation:

$$\begin{split} &\min \quad \frac{1}{2}\|w\|^2 + C\sum_x \xi_x \quad \text{s.t} \quad w^T \Delta f_x(y) \geq \Delta t_x(y) - \xi_x \ \forall_{x,y} \\ &\text{where} \ \Delta f_x(y) = f(x,t(x)) - f(x,y), \ \Delta t_x(y) = \textit{loss against the true label } t(x) \end{split}$$

Dual Formulation:

$$\max \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \sum_{y} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

Primal Formulation:

$$\begin{split} \min & \ \frac{1}{2}\|w\|^2 + C\sum_x \xi_x \quad \text{s.t.} \quad w^T \Delta f_x(y) \geq \Delta t_x(y) - \xi_x \ \forall_{x,y} \\ where & \ \Delta f_x(y) = f(x,t(x)) - f(x,y), \ \Delta t_x(y) = \textit{loss against the true label } t(x) \end{split}$$

Dual Formulation:

$$\max \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \sum_{y} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

Q1. # of dual variables? (m examples, l binary outputs)

Primal Formulation:

$$\begin{split} \min & \ \frac{1}{2}\|w\|^2 + C\sum_x \xi_x \quad \text{s.t} \quad w^T \Delta f_x(y) \geq \Delta t_x(y) - \xi_x \ \forall_{x,y} \\ where & \ \Delta f_x(y) = f(x,t(x)) - f(x,y), \ \Delta t_x(y) = \text{loss against the true label } t(x) \end{split}$$

Dual Formulation:

$$\max \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \sum_{x} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

- Q1. # of dual variables? (m examples, I binary outputs)
- Q2. # of addends?

Primal Formulation:

$$\begin{split} \min & \ \frac{1}{2}\|w\|^2 + C\sum_x \xi_x \quad \text{s.t.} \quad w^T \Delta f_x(y) \geq \Delta t_x(y) - \xi_x \ \forall_{x,y} \\ where & \ \Delta f_x(y) = f(x,t(x)) - f(x,y), \ \Delta t_x(y) = \text{loss against the true label } t(x) \end{split}$$

Dual Formulation:

$$\max \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \sum_{x} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

Q1. # of dual variables? (m examples, I binary outputs)

Q2. # of addends =
$$m \cdot 2^l + m \cdot 2^l$$

Primal Formulation:

$$\begin{split} &\min \ \ \frac{1}{2}\|w\|^2 + C\sum_x \xi_x \quad \text{s.t.} \quad w^T \Delta f_X(y) \geq \Delta t_X(y) - \xi_X \ \forall_{x,y} \\ &\text{where} \ \Delta f_X(y) = f(x,t(x)) - f(x,y), \ \Delta t_X(y) = \textit{loss against the true label } t(x) \end{split}$$

Dual Formulation:

$$\max \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \sum_{y} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

- Q1. # of dual variables? (m examples, I binary outputs)
- Q2. # of addends = $m \cdot 2^l + m \cdot 2^l$
- Q3. Is it equivalent to Structural SVM (SSVM)?

(Observation 1) Dual variables $\{\alpha_x(y)\}_{x,y}$ satisfy

$$\sum_y lpha_{\scriptscriptstyle X}(y) = {\sf C}$$
 and $lpha_{\scriptscriptstyle X}(y) \geq {\sf 0}$ $orall_y$

So, $\alpha_x(y)$ can be an unnormalized density function over y given x

(Observation 1) Dual variables $\{\alpha_x(y)\}_{x,y}$ satisfy

$$\sum_y \alpha_x(y) = \textit{C} \ \ \textit{and} \ \ \alpha_x(y) \geq 0 \ \ \forall_y$$

So, $\alpha_x(y)$ can be an unnormalized density function over y given x

(Observation 2) Both are decomposed into

$$\Delta t_{x}(y) = \textit{loss against } t(x) = \# \textit{ of disagreements} = \sum_{i \in V} \textit{I}[\ y_{i} \neq (t(x))_{i}\] = \sum_{i \in V} \Delta t_{x}(y_{i})$$

$$\Delta f_{x}(y) = f(x, t(x)) - f(x, y) = \sum_{(i,j) \in E} (f(x, t(x)_{i}, t(x)_{j}) - f(x, y_{i}, y_{j})) = \sum_{(i,j) \in E} \Delta f_{x}(y_{i}, y_{j})$$

The decompositions are sums over edges and nodes coherent to our network structure G = (V, E)!

• Define new dual variables via marginalizations $\{\alpha_{x}(y)\}_{x,y}$

$$\mu_{x}(y_{i}) = \sum_{y \sim [y_{i}]} \alpha_{x}(y) \quad \forall i \in V, \ \forall y, \ \forall x$$

$$\mu_{x}(y_{i}, y_{j}) = \sum_{y \sim [y_{i}, y_{j}]} \alpha_{x}(y) \quad \forall (i, j) \in E, \ \forall y_{i}, y_{j}, \ \forall x$$

Then the 1st term has a new representation such that

$$\sum_{y} \alpha_{x}(y) \Delta t_{x}(y) = \sum_{y} \alpha_{x}(y) \left(\sum_{i \in V} \Delta t_{x}(y_{i}) \right) = \sum_{y} \sum_{i \in V} \alpha_{x}(y) \Delta t_{x}(y_{i})$$

$$= \sum_{i \in V} \left(\sum_{y_{i}} \Delta t_{x}(y_{i}) \sum_{y \sim [y_{i}]} \alpha_{x}(y) \right) = \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i})$$

• (Example) Given a sample x, see the following transformation:

	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	$\Delta t_{x}(y_{1})$	$\Delta t_{x}(y_{2})$	$\Delta t_{x}(y_{3})$	$\Delta t_{x}(y)$	$\alpha_{x}(y)$
t(x)	1	0	1	true label				
all possible labels <i>y</i>	0	0	0	1	0	1	2	0.1
	0	0	1	1	0	0	1	0.2
	0	1	0	1	1	1	3	0.1
	0	1	1	1	1	0	2	0.1
	1	0	0	0	0	1	1	0.1
	1	0	1	0	0	0	0	0.1
	1	1	0	0	1	1	2	0.2
	1	1	1	0	1	0	1	0.1
$\mu_{X}(y_i=0)$	0.5	0.5	0.5	0.5*1	0.5*0	0.5*1	$\Sigma = 1.5$	
$\mu_{x}(y_i=1)$	0.5	0.5	0.5	0.5*0	0.5*1	0.5*0		

$$\sum_y \alpha_{\scriptscriptstyle X}(y) \Delta t_{\scriptscriptstyle X}(y) = \text{sum of 8 terms} = 1.5 \quad (\because y \in \{0,1\}^3)$$

$$\sum_i \sum_{y_i} \mu_{\scriptscriptstyle X}(y_i) \Delta t_{\scriptscriptstyle X}(y_i) = \text{sum of 6 terms} = 1.5 \quad (\because i \in \{1,2,3\} \ y_i \in \{0,1\})$$

• Similarly the 2nd term has a new representation such that

$$\|\sum_{x,y}\alpha_{x}(y)\Delta f_{x}(y)\|^{2} = \sum_{x,x'}\sum_{(i,j)\in E}\sum_{(i',j')\in E}\sum_{y_{i},y_{j}}\sum_{y_{i'},y_{j'}}\mu_{x}(y_{i},y_{j})\mu_{x'}(y_{i'},y_{j'})\Delta f_{x}(y_{i},y_{j})^{T}\Delta f_{x'}(y_{i'},y_{j'})$$

• Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_{i},y_{j}} \sum_{y_{i'},y_{j'}} \mu_{x}(y_{i},y_{j}) \mu_{x'}(y_{i'},y_{j'}) \Delta f_{x}(y_{i},y_{j})^{T} \Delta f_{x'}(y_{i'},y_{j'})$$

Similarly the 2nd term has a new representation such that

$$\|\sum_{x,y} \alpha_x(y) \Delta f_x(y)\|^2 = \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{j'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_i} \mu_x(y_i) \Delta t_x(y_i) - \frac{1}{2} \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{i'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

Q1. # of dual variables? (m examples, l binary outputs)

Similarly the 2nd term has a new representation such that

$$\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \|^2 = \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{i'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x, x'} \sum_{(i, j) \in E} \sum_{(i', j') \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i'}, y_{j'}} \mu_{x}(y_{i}, y_{j}) \mu_{x'}(y_{i'}, y_{j'}) \Delta f_{x}(y_{i}, y_{j})^{T} \Delta f_{x'}(y_{i'}, y_{j'})$$

Q1. # of dual variables? (m examples, l binary outputs)

$$|\{\mu_{\mathsf{x}}(y_i)\}_{\mathsf{x},y_i}| = ml \quad |\{\mu_{\mathsf{x}}(y_i,y_j)\}_{\mathsf{x},y_i,y_j}| = ml^2 \Rightarrow ml(1+l)$$

• Similarly the 2nd term has a new representation such that

$$\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \|^2 = \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{i'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

• Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x, x'} \sum_{(i, j) \in E} \sum_{(i', j') \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i'}, y_{j'}} \mu_{x}(y_{i}, y_{j}) \mu_{x'}(y_{i'}, y_{j'}) \Delta f_{x}(y_{i}, y_{j})^{T} \Delta f_{x'}(y_{i'}, y_{j'})$$

Q1. # of dual variables? (m examples, I binary outputs)

$$|\{\mu_{\mathsf{x}}(y_i)\}_{\mathsf{x},y_i}| = \mathsf{m} l \quad |\{\mu_{\mathsf{x}}(y_i,y_j)\}_{\mathsf{x},y_i,y_j}| = \mathsf{m} l^2 \Rightarrow \mathsf{m} l(1+l)$$

Q2. # of addends?

Similarly the 2nd term has a new representation such that

$$\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \|^2 = \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{i'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_{i},y_{j}} \sum_{y_{i'},y_{j'}} \mu_{x}(y_{i},y_{j}) \mu_{x'}(y_{i'},y_{j'}) \Delta f_{x}(y_{i},y_{j})^{T} \Delta f_{x'}(y_{i'},y_{j'})$$

Q1. # of dual variables? (m examples, I binary outputs)

$$|\{\mu_{\mathsf{x}}(y_i)\}_{\mathsf{x},y_i}| = ml \quad |\{\mu_{\mathsf{x}}(y_i,y_j)\}_{\mathsf{x},y_i,y_j}| = ml^2 \Rightarrow ml(1+l)$$

Q2. # of addends = $ml \cdot 2 + m^2 \cdot {}_{1}C_{2}^{2} \cdot 2^{4}$

• Similarly the 2nd term has a new representation such that

$$\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \|^2 = \sum_{x,x'} \sum_{(i,j) \in E} \sum_{(i',j') \in E} \sum_{y_i,y_j} \sum_{y_{i'},y_{j'}} \mu_x(y_i,y_j) \mu_{x'}(y_{i'},y_{j'}) \Delta f_x(y_i,y_j)^T \Delta f_{x'}(y_{i'},y_{j'})$$

Therefore the new equivalent formulation is to maximize

$$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x, x'} \sum_{(i, j) \in E} \sum_{(i', j') \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i'}, y_{j'}} \mu_{x}(y_{i}, y_{j}) \mu_{x'}(y_{i'}, y_{j'}) \Delta f_{x}(y_{i}, y_{j})^{T} \Delta f_{x'}(y_{i'}, y_{j'})$$

Q1. # of dual variables? (m examples, I binary outputs)

$$|\{\mu_x(y_i)\}_{x,y_i}| = ml \quad |\{\mu_x(y_i,y_j)\}_{x,y_i,y_j}| = ml^2 \Rightarrow ml(1+l)$$

- Q2. # of addends = $ml \cdot 2 + m^2 \cdot {}_{1}C_{2}^{2} \cdot 2^{4}$
- Q3. What is a computational trade-off?

New formulation is subject to marginal polytope constraint

$$\sum_{y_i} \mu_x(y_i) = C \ \forall_x, \forall_{i \in V}; \quad \sum_{y_i} \mu_x(y_i, y_j) = \mu_x(y_j) \quad \mu_x(y_i, y_j) \geq 0 \ \forall_x, \forall_{(i,j) \in E}$$

• New formulation is subject to marginal polytope constraint

$$\sum_{y_i} \mu_x(y_i) = C \ \forall_x, \forall_{i \in V}; \quad \sum_{y_i} \mu_x(y_i, y_j) = \mu_x(y_j) \quad \mu_x(y_i, y_j) \geq 0 \ \forall_x, \forall_{(i,j) \in E}$$

(Define 1) For given graph
$$G = (V, E)$$
, $Marg[G] := \{\{\mu_i(C_i)\}_{i \in V} \cup \{\mu_{ij}(S_{ij})\}_{(i,j) \in E} \mid \exists \text{legal distribution } Q_G \text{ such that} \{\mu_i\} \& \{\mu_{ij}\} \text{ are correct marginals of } Q_G\}$

New formulation is subject to marginal polytope constraint

$$\sum_{y_i} \mu_x(y_i) = C \ \forall_x, \forall_{i \in V}; \quad \sum_{y_i} \mu_x(y_i, y_j) = \mu_x(y_j) \quad \mu_x(y_i, y_j) \geq 0 \ \forall_x, \forall_{(i,j) \in E}$$

(Define 1) For given graph
$$G=(V,E)$$
, $Marg[G]:=\{\{\mu_i(C_i)\}_{i\in V}\cup\{\mu_{ij}(S_{ij})\}_{(i,j)\in E}\mid \exists \text{legal distribution }Q_G \}$ such that $\{\mu_i\}$ & $\{\mu_{ij}\}$ are correct marginals of $Q_G\}$

(Define 2) For given graph
$$G = (V, E)$$
, $Local[G] := \{\{\mu_i(C_i)\}_{i \in V} \cup \{\mu_{ij}(S_{ij})\}_{(i,j) \in E} \mid \text{marginals are locally consistent satisfying the calibration constraints}\}$

Q1. Between Marg[G] and Local[G], which is the superset?

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,

Local[G] is the superset. That means Local[G] $\supseteq Marg[G]$

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G, Local[G] is the superset. That means Local[G] $\supseteq Marg[G]$

Q2. Can you come up with an example in Local[G] - Marg[G]?

14/20

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,

Local[G] is the superset. That means Local[G] $\supseteq Marg[G]$

Q2. Can you come up with an example in Local[G] - Marg[G]?

Think about the example given in the black board

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G, Local[G] is the superset. That means Local[G] $\supseteq Marg[G]$

Q2. Can you come up with an example in Local[G] - Marg[G]?

Think about the example given in the black board

- Q2-a. Is $\{\{\mu_1, \mu_2, \mu_3\}, \{\mu_{12}, \mu_{23}, \mu_{13}\}\} \in Local[G]$?

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G, Local[G] is the superset. That means Local[G] $\supseteq Marg[G]$

Q2. Can you come up with an example in Local[G] - Marg[G]?

Think about the example given in the black board

- Q2-a. Is $\{\{\mu_1, \mu_2, \mu_3\}, \{\mu_{12}, \mu_{23}, \mu_{13}\}\} \in Local[G]$?
- Q2-b. Is $\{\{\mu_1, \mu_2, \mu_3\}, \{\mu_{12}, \mu_{23}, \mu_{13}\}\} \in Marg[G]$?

ullet Our formulation requires marginal polytope constraint on tree-structured graph G

 Our formulation requires marginal polytope constraint on tree-structured graph G

```
(Theorem) If G:tree-structured Local[G] = Marg[G] (i.e., two polytopes are consistent)
```

 Our formulation requires marginal polytope constraint on tree-structured graph G

```
(Theorem) If G:tree-structured Local[G] = Marg[G] (i.e., two polytopes are consistent)
```

Thus constraints coincide with the local consistency polytope

 Our formulation requires marginal polytope constraint on tree-structured graph G

```
(Theorem) If G:tree-structured Local[G] = Marg[G] (i.e., two polytopes are consistent)
```

- Thus constraints coincide with the local consistency polytope
- Q. If the given graph G is not tree-structured?

 Our formulation requires marginal polytope constraint on tree-structured graph G

```
Theorem) If G:tree-structured

Local[G] = Marg[G] (i.e., two polytopes are consistent)
```

- Thus constraints coincide with the local consistency polytope
- Q. If the given graph G is not tree-structured?
- \Rightarrow Solve the relaxed optimization on Local[G] via approximate algorithms such as loopy belief propagation.

Coordinate Ascent/Descent

- Consider the problem of $\max_{\alpha_0,...,\alpha_n} f(\alpha_0,...,\alpha_n)$
- If we only want to reach local maximum (it is global if KKT is satisfied), we can replace the gradient with gradient in a predefined direction.

Convergence: Same as gradient descent

Sequential Minimal Optimization (SMO)

Recall the initial dual formulation.

$$\max f = \sum_{x,y} \alpha_x(y) \Delta t_x(y) - \frac{1}{2} \left\| \sum_{x,y} \alpha_x(y) \Delta f_x(y) \right\|^2$$

$$s.t \quad \sum_{y} \alpha_x(y) = C \ \forall_x \qquad \alpha_x(y) \ge 0 \ \forall_{x,y}$$

• If we choose a specific coordinate $\alpha_x(y^1)$;

$$\alpha_x(y^1) = C - \sum_{y \in Y/y^1} \alpha_x(y)$$

• We can choose two coordinates y^1, y^2 ; then,

$$\begin{array}{l} \alpha_{x}(y^{1}) + \alpha_{x}(y^{2}) = C - \sum_{y \in Y/\{y^{1}, y^{2}\}} \alpha_{x}(y) = \gamma \implies \alpha_{x}(y^{2}) = \gamma - \alpha_{x}(y^{1}) \\ \max_{\alpha_{x}(y^{1}), \alpha_{x}(y^{2})} f = \max_{\alpha_{x}(y^{1})} a\alpha_{x}(y^{1})^{2} + b\alpha_{x}(y^{1}) + c \end{array}$$

Corresponding update in primal

$$\lambda = \alpha_x(y^1) - \alpha_x(y^1)'$$

$$\mu_x(y_i, y_j)' = \mu_x(y_i, y_j) + \lambda I[y_i = y_i^1, y_j = y_j^1] - \lambda I[y_i = y_i^2, y_j = y_j^2]$$

How to Train MMMN/SSVM in General?

- Polynomial-Size Reformulation
 - Exploit sparse dependency structure in underlying distribution
 - o Implicit representation requires an inference in graphical model
- Cutting-plane Method
 - Efficiently manage only polynomially many working constraints
 - o The next quadratic programming has only a different constraint
 - \circ # of constraints needed can be large for good approximation
- Subgradient Method
 - Formulate the optimization objective as an unconstrained non-differentiable function having a maximum operation
 - \circ # of iterations needed is improved $((O(1/\epsilon^2) \text{ vs } (O(1/\epsilon))$
 - The problem is that we haven't seen it yet!

Summary and Further Reading

- MMMN/SSVM allow us to encode various dependencies on completely general graph structures whereas HMM/CRF is mostly about linear/skip chain dependencies
- When a graph satisfies sub-modularity, computing maximum in min-max formulation can be efficiently solved by linear program via finding min-cut
- The exact inference to train the CRF is intractable in this case
- Associative Max-Margin Markov Netowrks by [Taskar 2004]
- Dual Extragradient and Bregman Projections by [Taskar 2006]
- Learning Structural SVM with Latent Variables by [Yu/Joachim 2009]

The End

Do you have any question?

Question

...Which tool do you use?...

Answer

...ShareLaTeX...