CS6784

Primer on Hidden Markov Models

Spring 2014

Thorsten Joachims
Cornell University
Department of Computer Science

Reading:
Koller, Friedman, Getoor, Taskar, "Graphical Models in a Nutshell"
http://www.seas.upenn.edu/~taskar/pubs/gms-srl07.pdf

Warm-Up Assignment

- Submission
- Deadline today, Thursday 1/30, by 11:59pm
- Make sure to not include your name in PDF \rightarrow doubleblind reviewing
- Reviewing
- Double-blind \rightarrow academic integrity
- You do not know who you reviewed. Authors do not know who reviewed them.
- Do not talk about who you reviewed.
- Assignments done at random. Let us know if you feel conflicted with some assignment.
- Answer review questions
- Text should justify and your scores as convincingly as possible.

Part-of-Speech Tagging

- Predict sequence of POS tags for sequence of words:

sentence	POS
$\mathrm{x}_{1}=($ The, bear, chased, the, cat $)$	$\mathbf{y}_{1}=(D E T, N, V, D E T, N)$
$\mathbf{x}_{2}=($ Students, bear, a, burden $)$	$\mathrm{y}_{2}=(N, V, D E T, N)$

- Ambiguity
- He will race/V the car.
- When will the race/NOUN end?
- I bank/V at CFCU.
- Go to the bank/NOUN!
- Average of ~ 2 parts of speech for each word
- 20 - 400 different tags (i.e. word classes)

Predicting Sequences

- Bayes rule:
- Generative model
- Design decisions:
- Representation
- Linear chain Hidden Markov Model
- Prediction (i.e. inference)
- Viterbi algorithm
- Learning
- Maximum likelihood

Representation:

Hidden Markov Model

- Bayes rule: $h(x)=\underset{y \in Y}{\operatorname{argmax}}[P(X=x \mid Y=y) P(Y=y)]$
- Independence assumptions for compact representation

$$
\begin{aligned}
& P\left(Y=\left(y^{1}, \ldots, y^{1}\right)=\prod_{i=1} P\left(Y^{i}=y^{i} \mid Y^{i-1}=y^{i-1}\right)\right. \\
& P\left(X=\left(x^{1}, \ldots, x^{l}\right) \mid Y=\left(y^{1}, \ldots, y^{l}\right)\right)=\prod_{i=1}^{l} P\left(X^{i}=x^{i} \mid Y^{i}=y^{i}\right)
\end{aligned}
$$

- Each sequence pair has
 probability:

$$
P(X=x, Y=y)=\left[\prod_{i=1}^{l} P\left(Y^{i}=y^{i} \mid Y^{i-1}=y^{i-1}\right) P\left(X^{i}=x^{i} \mid Y^{i}=y^{i}\right)\right]
$$

Representation:

Hidden Markov Model

- States: $\mathrm{y} \in\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\}$
- Special starting state s_{0}
- Outputs symbols: $x \in\left\{\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{m}}\right\}$
- Transition probability $P\left(Y^{i}=s \mid Y^{i-1}=s^{\prime}\right)$
- Probability that one states succeeds another
- Output/Emission probability $P\left(X^{i}=o \mid Y^{i}=s\right)$
- Probability that word is generated in this state

Estimating HMM Probabilities

- Maximum Likelihood: Given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, find

$$
\widehat{w}=\underset{w \in W}{\operatorname{argmax}} \prod_{i=1}^{n}\left[P\left(Y_{i}=y_{i}, X_{i}=x_{i} \mid w\right)\right]
$$

- Closed-form solutions
- Estimating transition probabilities

$$
P\left(Y^{j}=a \mid Y^{j-1}=b\right)=\frac{\# \text { of Times State a Follows State b }}{\# \text { of Times State b Occurs }}
$$

- Estimating mission probabilities

$$
P\left(X^{j}=o \mid Y^{j}=b\right)=\frac{\# o f \text { Times Output o is Observed in State b }}{\# \text { of Times State b Occurs }}
$$

- Need for smoothing the estimates (e.g. Laplace)

Prediction/Inference: Viterbi Algorithm

Prediction: Find most likely state sequence

- Given x and fully specified HMM:
- transition probabilities
- emission probabilities
- Find the most likely state (i.e tag) sequence $\left(y^{1}, \ldots, y^{l}\right)$ for a given sequence of observed output symbols (i.e. words) $\left(x^{1}, \ldots, x^{l}\right)$

$$
h(x)=\underset{\left(y^{1}, \ldots, y^{l}\right) \in Y}{\operatorname{argmax}}\left[\prod_{i=1}^{l} P\left(Y^{i}=y^{i} \mid Y^{i-1}=y^{i-1}\right) P\left(X^{i}=x^{i} \mid Y^{i}=y^{i}\right)\right]
$$

- Viterbi algorithm uses dynamic programming
- Construct trellis graph for HMM
- Shortest path in this graph is most likely state sequence
- Viterbi algorithm has runtime linear in length of sequence

Viterbi Example

$\mathbf{P}\left(\mathbf{X}^{\mathbf{i}} \mathbf{Y}^{\mathbf{i}}\right.$)	I	bank	at	CFCU	go	to	the
DET	0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP	0.94	0.01	0.01	0.01	0.01	0.01	0.01
N	0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP	0.01	0.01	0.48	0.01	0.01	0.47	0.01
V	0.01	0.4	0.01	0.01	0.55	0.01	0.01
	$\mathbf{P}\left(\mathbf{Y}^{\mathrm{i}} \mid \mathbf{Y}^{\text {i-1 }}\right.$)	DET	PRP	N	PREP	V	
	START	0.3	0.3	0.1	0.1	0.2	
	DET	0.01	0.01	0.96	0.01	0.01	
	PRP	0.01	0.01	0.01	0.2	0.77	
	N	0.01	0.2	0.3	0.3	0.19	
	PREP	0.3	0.2	0.3	0.19	0.01	
	V	0.2	0.19	0.3	0.3	0.01	

Directed Graphical Models

- Representation of joint distribution
- Exploit conditional independence between random variables
- Example
- Joint distribution

\mathbf{x} The bear chased the cat

$$
P(P, T, I, X, S)=P(P) P(T) P(I \mid P, T) P(X \mid I) P(S \mid T)
$$

Undirected Graphical Models

- Markov Networks / Markov Random Fields
- More flexible representation of joint distribution
- Example
- Joint distribution $P_{H}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{z} P^{\prime}\left(X_{1}, \ldots, X_{n}\right)$
$-P_{H}^{\prime}\left(X_{1}, \ldots, X_{n}\right)=\pi_{1}\left[D_{1}\right] \times \cdots \times \pi_{m}\left[D_{m}\right]$
$-Z=\sum_{X_{1}, \ldots, X_{n}} P_{H}^{\prime}\left(X_{1}, \ldots, X_{n}\right)$

