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Warm-Up Assignment 

• Submission 
– Deadline today, Thursday 1/30, by 11:59pm 
– Make sure to not include your name in PDF  double-

blind reviewing 

• Reviewing 
– Double-blind  academic integrity 

• You do not know who you reviewed. Authors do not know who 
reviewed them. 

• Do not talk about who you reviewed. 
• Assignments done at random. Let us know if you feel conflicted 

with some assignment. 

– Answer review questions 
– Text should justify and  your scores as convincingly as 

possible. 



Part-of-Speech Tagging 

• Predict sequence of POS tags for sequence of 
words: 

 

 

• Ambiguity 
– He will race/V the car. 

– When will the race/NOUN end? 

– I bank/V at CFCU. 

– Go to the bank/NOUN! 

• Average of ~2 parts of speech for each word 

• 20 – 400 different tags (i.e. word classes) 



Predicting Sequences 

• Bayes rule: 
– Generative model 

• Design decisions: 
– Representation 

• Linear chain Hidden Markov Model 

– Prediction (i.e. inference) 
• Viterbi algorithm 

– Learning 
• Maximum likelihood 



Representation:  
Hidden Markov Model 

• Bayes rule: ℎ 𝑥 = argmax
𝑦∈𝑌

[𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)] 

• Independence assumptions for compact representation 

 

 

 

 

 

• Each sequence pair has 
probability:  

 

 

 

 

 

Det N V Det N 

The cat the chased bear x 

y 

𝑃(𝑌 = 𝑦1, … , 𝑦1 = 𝑃 𝑌𝑖 = 𝑦𝑖 𝑌𝑖−1 = 𝑦𝑖−1
𝑙

𝑖=1

 

𝑃 𝑋 = 𝑥1, … , 𝑥𝑙 𝑌 = 𝑦1, … , 𝑦𝑙 = 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌𝑖 = 𝑦𝑖
𝑙

𝑖=1

 

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 =  𝑃 𝑌𝑖 = 𝑦𝑖 𝑌𝑖−1 = 𝑦𝑖−1 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌𝑖 = 𝑦𝑖
𝑙

𝑖=1

 



Representation:  
Hidden Markov Model 

• States: y  {s1,…,sk} 
– Special starting state s0 

• Outputs symbols: x  {o1,…,om} 

• Transition probability 𝑃(𝑌𝑖 = 𝑠|𝑌𝑖−1 = 𝑠′) 
– Probability that one states succeeds another 

• Output/Emission probability 𝑃(𝑋𝑖 = 𝑜|𝑌𝑖 = 𝑠) 
– Probability that word is generated in this state 

Det N V Det N 

The cat the chased bear x 

y 



Learning:  
Estimating HMM Probabilities 

• Maximum Likelihood: Given 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛), find  
 

 

 

 

• Closed-form solutions 
– Estimating transition probabilities 

 

 

– Estimating mission probabilities 

 

 

• Need for smoothing the estimates (e.g. Laplace) 

𝑤 = argmax
𝑤∈𝑊

 [𝑃 𝑌𝑖 = 𝑦𝑖 , 𝑋𝑖 = 𝑥𝑖 𝑤 ]

𝑛

𝑖=1

 

𝑃 𝑌𝑗 = 𝑎 𝑌𝑗−1 = 𝑏 =
#𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑆𝑡𝑎𝑡𝑒 𝑎 𝐹𝑜𝑙𝑙𝑜𝑤𝑠 𝑆𝑡𝑎𝑡𝑒 𝑏

# 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑆𝑡𝑎𝑡𝑒 𝑏 𝑂𝑐𝑐𝑢𝑟𝑠
 

𝑃 𝑋𝑗 = 𝑜 𝑌𝑗 = 𝑏 =
#𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜 𝑖𝑠 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑆𝑡𝑎𝑡𝑒 𝑏

# 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑆𝑡𝑎𝑡𝑒 𝑏 𝑂𝑐𝑐𝑢𝑟𝑠
 



Prediction/Inference:  
Viterbi Algorithm 

Prediction: Find most likely state sequence 
– Given x and fully specified HMM:  

• transition probabilities 
• emission probabilities 

– Find the most likely state (i.e tag) sequence 𝑦1, … , 𝑦𝑙  
for a given sequence of observed output symbols (i.e. 
words) 𝑥1, … , 𝑥𝑙   
 
 
 

– Viterbi algorithm uses dynamic programming 
• Construct trellis graph for HMM 
• Shortest path in this graph is most likely state sequence 

– Viterbi algorithm has runtime linear in length of 
sequence 

ℎ 𝑥 = argmax
(𝑦1,…,𝑦𝑙)∈𝑌

 𝑃 𝑌𝑖 = 𝑦𝑖 𝑌𝑖−1 = 𝑦𝑖−1 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌𝑖 = 𝑦𝑖
𝑙

𝑖=1

 



Viterbi Example 
P(Xi|Yi) I bank at CFCU go to the 

DET 0.01 0.01 0.01 0.01 0.01 0.01 0.94 

PRP 0.94 0.01 0.01 0.01 0.01 0.01 0.01 

N 0.01 0.4 0.01 0.4 0.16 0.01 0.01 

PREP 0.01 0.01 0.48 0.01 0.01 0.47 0.01 

V 0.01 0.4 0.01 0.01 0.55 0.01 0.01 

P(Yi|Yi-1) DET PRP N PREP V 

START 0.3 0.3 0.1 0.1 0.2 

DET 0.01 0.01 0.96 0.01 0.01 

PRP 0.01 0.01 0.01 0.2 0.77 

N 0.01 0.2 0.3 0.3 0.19 

PREP 0.3 0.2 0.3 0.19 0.01 

V 0.2 0.19 0.3 0.3 0.01 



Directed Graphical Models 

• Representation of joint distribution 
– Exploit conditional independence between random 

variables 

• Example 
– Joint distribution 

from [Koller/etal/07] 

𝑃 𝑃, 𝑇, 𝐼, 𝑋, 𝑆 = 𝑃 𝑃 𝑃 𝑇 𝑃 𝐼 𝑃, 𝑇 𝑃 𝑋 𝐼 𝑃 𝑆 𝑇  

Det N V Det N 

The cat the chased bear x 

y 



Undirected Graphical Models 

• Markov Networks / Markov Random Fields 
– More flexible representation of joint distribution 

• Example 

– Joint distribution 𝑃𝐻 𝑋1, … , 𝑋𝑛 =
1

𝑍
𝑃′(𝑋1, … , 𝑋𝑛) 

– 𝑃𝐻
′ 𝑋1, … , 𝑋𝑛 = 𝜋1 𝐷1 ×⋯ × 𝜋𝑚 𝐷𝑚  

– 𝑍 =  𝑃𝐻
′ (𝑋1, … , 𝑋𝑛)𝑋1,…,𝑋𝑛

 
from [Koller/etal/07] 


