CS6784 Primer on Hidden Markov Models

Spring 2014

Thorsten Joachims

Cornell University Department of Computer Science

Reading: Koller, Friedman, Getoor, Taskar, "Graphical Models in a Nutshell" <u>http://www.seas.upenn.edu/~taskar/pubs/gms-srl07.pdf</u>

Warm-Up Assignment

- Submission
 - Deadline today, Thursday 1/30, by 11:59pm
 - Make sure to not include your name in PDF \rightarrow double-blind reviewing
- Reviewing
 - Double-blind \rightarrow academic integrity
 - You do not know who you reviewed. Authors do not know who reviewed them.
 - Do not talk about who you reviewed.
 - Assignments done at random. Let us know if you feel conflicted with some assignment.
 - Answer review questions
 - Text should justify and your scores as convincingly as possible.

Part-of-Speech Tagging

Predict sequence of POS tags for sequence of words:

	POS
$\mathbf{x}_1 = (The, bear, chased, the, cat)$	
$\mathbf{x}_2 = (Students, bear, a, burden)$	$\mathbf{y}_2 = (N, V, DET, N)$

- Ambiguity
 - He will race/V the car.
 - When will the race/NOUN end?
 - I bank/V at CFCU.
 - Go to the bank/NOUN!
- Average of ~2 parts of speech for each word
- 20 400 different tags (i.e. word classes)

Predicting Sequences

- Bayes rule:
 - Generative model
- Design decisions:
 - Representation
 - Linear chain Hidden Markov Model
 - Prediction (i.e. inference)
 - Viterbi algorithm
 - Learning
 - Maximum likelihood

Representation: Hidden Markov Model

• Bayes rule: $h(x) = \underset{y \in Y}{\operatorname{argmax}} [P(X = x | Y = y)P(Y = y)]$

Each sequence pair has

igodol

• Independence assumptions for compact representation $P(Y = (y^{1}, ..., y^{1}) = \prod_{i=1}^{l} P(Y^{i} = y^{i} | Y^{i-1} = y^{i-1})$ $P(X = (x^{1}, ..., x^{l}) | Y = (y^{1}, ..., y^{l})) = \prod_{i=1}^{l} P(X^{i} = x^{i} | Y^{i} = y^{i})$

y
$$Det \rightarrow N \rightarrow V \rightarrow Det \rightarrow N$$
 \downarrow \downarrow

probability:

$$P(X = x, Y = y) = \left[\prod_{i=1}^{l} P(Y^{i} = y^{i} | Y^{i-1} = y^{i-1}) P(X^{i} = x^{i} | Y^{i} = y^{i})\right]$$

Representation: Hidden Markov Model

- States: $y \in \{s_1, ..., s_k\}$ - Special starting state s_0
- Outputs symbols: $x \in \{o_1, ..., o_m\}$
- Transition probability $P(Y^i = s | Y^{i-1} = s')$ - Probability that one states succeeds another
- Output/Emission probability $P(X^i = o | Y^i = s)$
 - Probability that word is generated in this state

$$\mathbf{y}$$
 $\text{Det} \rightarrow \text{N} \rightarrow \text{V} \rightarrow \text{Det} \rightarrow \text{N}$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \mathbf{x} The bear chased the cat

Learning: Estimating HMM Probabilities

• Maximum Likelihood: Given $(x_1, y_1), ..., (x_n, y_n)$, find $\widehat{w} = \underset{w \in W}{\operatorname{argmax}} \prod_{i=1}^{n} [P(Y_i = y_i, X_i = x_i | w)]$

- Closed-form solutions
 - Estimating transition probabilities $P(Y^{j} = a | Y^{j-1} = b) = \frac{\# of \ Times \ State \ a \ Follows \ State \ b}{\# \ of \ Times \ State \ b \ Occurs}$
 - Estimating mission probabilities

 $P(X^{j} = o | Y^{j} = b) = \frac{\# of \ Times \ Output \ o \ is \ Observed \ in \ State \ b}{\# \ of \ Times \ State \ b \ Occurs}$

Need for smoothing the estimates (e.g. Laplace)

Prediction/Inference: Viterbi Algorithm

Prediction: Find most likely state sequence

- Given x and fully specified HMM:
 - transition probabilities
 - emission probabilities
- Find the most likely state (i.e tag) sequence $(y^1, ..., y^l)$ for a given sequence of observed output symbols (i.e. words) $(x^1, ..., x^l)$ $h(x) = \underset{(y^1, ..., y^l) \in Y}{\operatorname{argmax}} \left[\prod_{i=1}^l P(Y^i = y^i | Y^{i-1} = y^{i-1}) P(X^i = x^i | Y^i = y^i) \right]$
- Viterbi algorithm uses dynamic programming
 - Construct trellis graph for HMM
 - Shortest path in this graph is most likely state sequence
- Viterbi algorithm has runtime linear in length of sequence

Viterbi Example

P(X ⁱ Y ⁱ)	Ι	bank	at	CFCU	go	to	the
DET	0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP	0.94	0.01	0.01	0.01	0.01	0.01	0.01
Ν	0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP	0.01	0.01	0.48	0.01	0.01	0.47	0.01
V	0.01	0.4	0.01	0.01	0.55	0.01	0.01

$P(Y^i Y^{i-1})$	DET	PRP	Ν	PREP	V
START	0.3	0.3	0.1	0.1	0.2
DET	0.01	0.01	0.96	0.01	0.01
PRP	0.01	0.01	0.01	0.2	0.77
Ν	0.01	0.2	0.3	0.3	0.19
PREP	0.3	0.2	0.3	0.19	0.01
V	0.2	0.19	0.3	0.3	0.01

Directed Graphical Models

- Representation of joint distribution
 - Exploit conditional independence between random variables V Det V Det V Det V
- Example
 - Joint distribution

$$\mathbf{y}$$
 $\text{Det} \rightarrow \text{N} \rightarrow \text{V} \rightarrow \text{Det} \rightarrow \text{N}$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \mathbf{x} The bear chased the cat

P(P,T,I,X,S) = P(P)P(T)P(I|P,T)P(X|I)P(S|T)

from [Koller/etal/07]

Undirected Graphical Models

- Markov Networks / Markov Random Fields

 More flexible representation of joint distribution
- Example
 - Joint distribution $P_H(X_1, \dots, X_n) = \frac{1}{Z} P'(X_1, \dots, X_n)$ - $P'_H(X_1, \dots, X_n) = \underline{\pi_1[D_1]} \times \cdots \times \underline{\pi_m[D_m]}$

$$-Z = \sum_{X_1, \dots, X_n} P'_H(X_1, \dots, X_n)$$

from [Koller/etal/07]

