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Intuition behind LDA

(from David Blei)

Probabilistic model

(from David Blei)

◮ Each document is a random mixture of corpus-wide topics

◮ Each word is drawn from one of those topics

Probabilistic model (2)

(from David Blei)

◮ We only observe the documents

◮ Our goal is to infer the underlying topic structure

Probabilistic model (2)

◮ The observations are generated from a generative
probabilistic process that includes hidden variables

◮ Infer the hidden structure using posterior inference. What
are the topics that describe this collection?

◮ Situate new data into the estimated model.
◮ How does this query or new document fit into the

estimated topic structure?

Notation

1. word: 1..V

2. document: w = (w1, w2, ...wN) sequence of N words

3. corpus: D={w1, ...,wM} collection of M documents



Graphical models notation

◮ Nodes are random variables

◮ Edges denote possible dependence

◮ Observed variables are shaded

◮ Plates denote replicated structure

Other models of the discrete data.

Latent Dirichlet allocation

α zθ

β

M

N

w

Latent Dirichlet allocation

LDA assumes the following generative process:

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of N words wn:

(a) Choose topic zn ∼ Multinomial(θ)
(b) Choose word wn ∼ from P(wn|zn, β)

Recap on distributions: Poisson

(from Wikipedia)

Recap on distributions: Dirichlet example

Dir(α); α = (3, 2, 1)
Cut strings (each of initial length 1.0) into K pieces with
different lengths
(from Wikipedia)



Recap on distributions: Dirichlet example (2)

Dirichlet distribution, K=3 for various parameter vectors α

Clockwise from top left:
α = (6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4).
(from Wikipedia)

The Dirichlet distribution

Geometric intuition The Dirichlet distribution

From a collection of documents, infer

◮ Per-word topic assignment zd ,n

◮ Per-document topic proportions θd

◮ Per-corpus topic distributions βk

Inference Inference

z: Per-word topic 

assignment

!: Per-document 

topic proportions



Inference

• Given corpus (w is observed), parameters (", 

#), calculate p(!,z| ", #, w)

• Intractable 
– Gibbs sampling

– Variational inference

Variational Inference

Choose $, % to approximate posterior distribution of !,z 

Variational Inference
Parameter estimation

• " controls proportion distribution of topics in one 

document.

• # is the probability matrix of topics and words
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Parameter Estimation

• Try to estimate parameters (", #), given 

corpus  {w}.

• EM algorithm:

– E step: find the optimizing value of $, %

– M step: maximize log likelihood w.r.t ! and ".

#&: Topics

"&: Dirichlet 

parameter

Smoothing for unseen words

• For unseen word, MLE of # will assign zero 

probability during inference.

• Take # as Dirichlet  distribution parameterized by  '.



Parameter Estimation Example

• 16,000 documents of TREC AP corpus

• 100-topic LDA model

Top words 

of p(w|z)

Inference example

q(z|w)>0.9
Bag-of-words assumption

Application/Empirical Results Overfitting discussion

• Mixture of unigrams model:

• pLSI:

– Heuristic Inference:

– Fold-in pLSI: refit p(z|d)
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Document classification
Application in Vision

Discovering object categories in image collections. J. Sivic, B. C. Russell, A. A. 

Efros, A. Zisserman, W. T. Freeman. MIT AI Lab Memo AIM-2005-005, February, 

2005.



LDA is modular, general, useful

LDA can be embedded in a more complicated model, 

embodying further intuition of structure of text

Slide from David Blei’s lecture at Machine Learning Summer School 2009 - Cambridge 

Summary

• Better graphic model

– Compared to unigram, mixture of unigram, PLSI

• Approximate inference/Parameter estimation

• Applications:

– generalizing documents/Images

– Feature reduction

– Other extensions

Thanks

Questions?


