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Intuition behind LDA
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Simple intuition: Documents exhibit multiple topics.

(from David Blei)

Probabilistic model

Topic proportions and
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(from David Blei)
» Each document is a random mixture of corpus-wide topics

» Each word is drawn from one of those topics

Probabilistic model (2)
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(from David Blei)
» We only observe the documents

» Our goal is to infer the underlying topic structure

Probabilistic model (2)

» The observations are generated from a generative
probabilistic process that includes hidden variables

» Infer the hidden structure using posterior inference. What
are the topics that describe this collection?

» Situate new data into the estimated model.

» How does this query or new document fit into the
estimated topic structure?

Notation

1. word: 1.V
2. document: w = (wy, ws, ...wy) sequence of N words
3. corpus: D={wrq, ..., wy} collection of M documents




Graphical models notation
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Nodes are random variables
Edges denote possible dependence
Observed variables are shaded
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Plates denote replicated structure

Other models of the discrete data.
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(b) mixture of unigrams
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(c) pLSL/aspect model

Latent Dirichlet allocation
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Latent Dirichlet allocation

LDA assumes the following generative process:
1. Choose N ~ Poisson(¢&)
2. Choose 6 ~ Dir(«)
3. For each of N words w,:

(a) Choose topic z, ~ Multinomial(#)
(b) Choose word w;, ~ from P(wj|z,, 5)

Recap on distributions: Poisson
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(from Wikipedia)

Recap on distributions: Dirichlet example
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Dir(a); a = (3,2,1)

Cut strings (each of initial length 1.0) into K pieces with
different lengths

(from Wikipedia)




Recap on distributions: Dirichlet example (2)

A

Dirichlet distribution, K=3 for various parameter vectors «
Clockwise from top left:
a=(6,2,2),(3,7,5),(6,2,6),(2,3,4).

(from Wikipedia)

The Dirichlet distribution

e The Dirichlet distribution is an exponential family distribution over
the simplex, i.e., positive vectors that sum to one

pl010) = T Lo

e The Dirichlet is conjugate to the multinomial. Given a multinomial
observation, the posterior distribution of 6 is a Dirichlet.

i

e The parameter o controls the mean shape and sparsity of 6.

e The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.

Geometric intuition

\ topic simplex

word simplex
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The Dirichlet distribution

From a collection of documents, infer
» Per-word topic assignment z4 ,
» Per-document topic proportions 04

» Per-corpus topic distributions
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark onthe future of the performing arts with these grants an act

every bit as important as our traditional areas nfsuppmt in health, medical research, education
and the social services,” Hearst Found: dent R:

P jolph A. Hearst said Monday in
announcing the granis. Lincoln Cenier’s share will be $200,000 for its new building, which

will house young ariists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter

of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
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Inference
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* Given corpus (w is observed), parameters (a,

B), calculate p(6,z| a, B, w)

* Intractable
— Gibbs sampling
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— Variational inference

Variational Inference
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Choose Y, ¢ to approximate posterior distribution of 6,z
(v, %) :argl_n:‘tnD[q(e.z 1.0 | p(6,z|w, o B)).
(1:9)
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Variational Inference
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Parameter estimation

e« controls proportion distribution of topics in one
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* Bis the probability matrix of topics and words
Parameter Estimation )
: Smoothing for unseen words
B ‘(\ a : Dirichlet
parameter X .
5 Tooi * For unseen word, MLE of B will assign zero
B . lopics . . .
<> 'k,) \) \’ probability during inference.
= 0 - YNy * Take B as Dirichlet distribution parameterized by n.

* Try to estimate parameters (a, B), given

corpus {w}.

* EM algorithm:
— E step: find the optimizing value of Y, ¢

— M step: maximize log likelihood w.r.t o and f.
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Parameter Estimation Example

* 16,000 documents of TREC AP corpus
* 100-topic LDA model

Inference example
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q(z|w)>0.9
Bag-of-words assumption
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Application/Empirical Results
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Overfitting discussion

* Mixture of unigrams model:

Never seen in art topic,
p(d) decreases a lot,
Perplexity explodes

Film, ..., Music

Play,..., Opera

document
topic
Topic distribution

* pLSI:

— Heuristic Inference: ) Train
N o ocument
P(W):ZHZP(WHIZ)p(d dyp(d). g . t
d n=1 z
— Fold-in pLSlI: refit p(z] d) Test
e - document

Document classification
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Figure 10: Classification results on two binary classification problems from the Reuters-21578
dataset for different proportions of training data. Graph (a) is EARN vs. NOT EARN.
Graph (b) is GRAIN vs. NOT GRAIN.

Application in Vision

E

Discovering object categories in image collections. J. Sivic, B. C. Russell, A. A.
Efros, A. Zisserman, W. T. Freeman. MIT Al Lab Memo AIM-2005-005, February,
2005.




LDA is modular, general, useful

LDA can be embedded in a more complicated model,
embodying further intuition of structure of text

Slide from David Blei’s lecture at Machine Learning Summer School 2009 - Cambridge

Summary

* Better graphic model
— Compared to unigram, mixture of unigram, PLSI

* Approximate inference/Parameter estimation

* Applications:
— generalizing documents/Images
— Feature reduction
— Other extensions

Thanks

Questions?




