Information Genealogy: Uncovering the Flow of Ideas in Non-Hyperlinked Document **Databases**

Benyah Shaparenko, Thorsten Joachims **KDD 2007**

Thorsten Joachims Cornell University Based on slides by Benyah Shaparenko

Archives

Motivation: We now have more then >10 years of online

- Newspaper archives
- Conference proceeding
- Personal email and photos
- Blogs, Wikipedia(?), etc.
- · Archival, self-referential process of corpus development

Possible Research Questions

Ideas: Understanding Archives

- · Visualization of content
 - Over time / landmarks / your year in photos / zoom content
- Summarization / aggregation of content
 - Summary of collection / Wikipedia curation / sentiment
- · Extract temporal development of content
 - Trends / what is hot
- · Augment collection with structure
 - identify relationships between documents / dependencies between documents and authors, institutions, ... / influence
- · Personal information management
 - Search with support for time
 - Photo archives / diary / reflection / where do I spend my time

Summarizing Temporal Development: Neural Information Processing Systems (NIPS) 1987 - 2000

11: kernel, margin, svm, vc, xi ,10: bayesian, mixture, posterior, likelihood

- spike, spikes, firing, neuron, neurons
- units, node, training, nodes, tree code, codes, decoding, message, hints image, images, object, face, video recurrent, hidden, training, units, error

[Benyah Shaparenko]

Task: Understand where information originates, how it spreads, and how information streams evolve over time.

- How did the ideas in a collection evolve?
- Who were the most influential authors driving the change?
- Did one news article influence another article?
- Who are the bloggers that are ahead of the curve?

Questions

- · How did ideas develop and spread in a given corpus?
- What are the inter-document influence relationships through which ideas spread?
- · Which documents are most influential?

Related Work

- Topic Detection and Tracking (e.g. Allan/et al./98)
- Real-world Influence on Documents (Kleinberg/02)
- Citation and Hyperlink Analysis (e.g. Kleinberg/99, Page/Brin/98, Garfield/03)
- Automatic Hypertext and Link Detection (e.g. Allan/et al/98)
- Language and Topic Modeling (e.g. Steyvers/et al/04, Hofmann/98, Kurland/Lee/04)

Generative Model of Corpus

Generative Modeling Assumptions:

- Documents are generated as probabilistic mixtures of previous documents and original ideas
- Measure influence by how much documents base their content on previous documents

Modeling Documents

- · Unigram language model
- Document is a vector-valued random variable $D=(W_1,...,D_l)$
- Generate document by drawing i.i.d. from language model θ

SVM: 0.4 margin: 0.2 support: 0.2 vector: 0.2

$$\begin{split} P(D^{(i)} = d^{(i)} \mid \theta^{(i)}) &= P(D^{(i)} = (w_1^{(i)} \cdots w_{\mid D^{(i)} \mid}^{(i)}) \mid \theta^{(i)}) \\ &= \prod_{j=1}^{\mid D^{(i)} \mid} P(W^{(i)} = w_j^{(i)} \mid \theta^{(i)}) &= \prod_{j=1}^{\mid D^{(i)} \mid} \theta_{w_j}^{(i)} \end{split}$$

Document language models are a mixture of the language model of its influencers, plus an original part.

Inter-Document Influence Model

· Influence: A document's language model is given by a mixture of preceding document's language models.

$$P(D^{(i)} = d^{(i)} \mid \pi^{(i)}) = \prod_{j=1}^{n_i} \left(\pi_n^{(i)} \bar{\theta}_{w_j^{(i)}}^{(i)} + \sum_{k \in \mathcal{P}} \pi_k^{(i)} \hat{\theta}_{w_j^{(i)}}^{(i)} \right)$$
$$0 \le \pi_k^{(i)}, \pi_n^{(i)} \text{ and } \pi_n^{(i)} + \sum_k \pi_k^{(i)} = 1$$

· Note: Only temporally preceding documents can influence this document.

Question: How can we Detect Influence?

- · Hypothesis Test
 - Null Hypothesis: Candidate document has mixing weight 0.
 - Alt. Hypothesis: Candidate has positive mixing weight.

Likelihood Ratio Test for Influence

· Space of all mixtures models

$$\Pi = \left\{ \pi^{(new)} : \pi_{cum}^{(new)} + \sum_{k \in \mathcal{P}} \pi_k^{(new)} = 1 \quad \land \quad \pi_k^{(new)} \geq 0 \quad \land \quad \pi_{cum}^{(new)} \geq 0 \right\}$$

- · Null Hypothesis: Candidate document has no influence (i.e. mixing weight 0).
 - → Space of mixture models restricted to those consistent with null hypothesis

$$\begin{split} &\Pi_0 = \left\{\pi^{(new)} : \pi_{cum}^{(new)} + \sum_{k \in \mathcal{P}} \pi_k^{(new)} = 1 \ \land \ \pi_k^{(new)} \geq 0 \ \land \ \pi_{cum}^{(new)} = 0\right\} \\ \bullet \ \ \text{Statistic:} \ &\Lambda_{d^{(can)}}(d^{(new)}) = \frac{\sup_{\pi \in \Pi_0} \{P(D^{(new)} = d^{(new)}|\pi)\}}{\sup_{\pi' \in \Pi} \{P(D^{(new)} = d^{(new)}|\pi')\}} \end{split}$$

- Reject null hypothesis if $-2\log(\Lambda_{d^{(can)}}(\overset{\cdot}{d}^{(new)}))>c$

Computing the LRT

- · Two optimization problem per LRT
- · Maximize likelihood L for parameters in S
- · Optimization Problem:

$$\max_{\pi \in \Re^{|S|}} \quad \log L(\pi \mid d^{(new)})$$
subject to
$$\sum_{k \in S} \pi_k^{(new)} = 1$$

$$\forall k \in S : \pi_L^{(new)} \ge 0$$

- →Convex (no local optima)
- Heuristic: Consider only documents that are sufficiently similar.

Experiments

- · Can we derive an influence graph from nonhyperlinked text?
- · Can we identify the most influential documents?

Identifying Dependencies and Influence

Which papers were influenced by "Shrinking the Tube: a New Support Vector Regression Algorithm" written by B. Schoelkopf et al.?

- Assume unigram word distribution is mixture of past papers
- Likelihood ratio test for non-zero mixture weight (convex program)

$log(\Lambda(d))$	Cite?	Title and Authors
321.2	No	"Support Vector Method for Novelty Detection", B. Schoelkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt.
221.8	Yes	"An Improved Decomposition Algorithm for Regression Support Vector Machines", Pavel Laskov.
219.9	Yes	"v-arc: Ensemble Learning in the Presence of Outliers", G. Raetsch, B. Schoelkopf, A. Smola, K. Miller, T. Onoda, S. Mims.
184.6	No	"Fast Training of Support Vector Classifiers", F. Perez-Cruz, P. Alarcon-Diana, A. Navia-Vazquez, A. Artes-Rodriguez.
168.9	Yes	"Uniqueness of the SVM Solution", C. Burges, D. Crisp.

[ShapaJo07]

Influence Graph: How sensitive is the Test? · Data: - Synthetic data generated according to mixture model. - Base language models are taken from random NIPS documents. LRT ROC-Area SIM ROC-Area ROC-Area@10% 0.95 Weight 0.9 500.3 10% (+) 0.85 100.5 10% (+) 8.0 25.2 10% (+) 0.75 10% (+) 0.7 3.6 2.8 0.65 0% (-) 0.4 0.6 0.8

Impact of Similarity Heuristic • Experiment: - Condition 1: Use pre-selection based on similarity - Condition 2: Make sure all cited documents are included. Arrows = citations Red: Candidate set Blue: Incl. all citations Dataset (C)GMAP GMAP (perfect C) NIPS (TFIDF) 0.4531 0.4556 NIPS (TF) 0.4489 0.4590 HEPTH (TFIDF) 0.2543 0.3803 HEPTH (TF) 0.3906 0.2432

Summary

For collections without a citation graph:

- Model of influence between documents
- · Method to construct an influence graph
- · Method to identify the most influential documents

Further Questions:

- Efficiency (all pairs)
- · Identify novelty
- · Provide descriptive summaries of ideas
- · Segmentation of documents
- What other things to do with the influence graph?