Exploration Scavenging

John Langford Alex Strehl Jennifer Wortman

8 April, 2010

Motivating application - web advertising

A common framework for many systems (ad = result)

- System shows an ad.
- User clicks on it if she likes it.What if the system had shown a different ad?
- System should learn to suggest relevant ads.

Motivating application - web advertising

A common framework for many systems (ad = result)

- System shows an ad.
- User clicks on it if she likes it.
- What if the system had shown a different ad?
 System should learn to suggest relevant ads.

The multi-armed bandit problem

Captures the essence of this setting, and many others.

The multi-armed bandit problem

Captures the essence of this setting, and many others.

The multi-armed bandit problem

Captures the essence of this setting, and many others.

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round				
1	?	?	1	?
2	?	0	?	?
3	5	?	?	?
4	?	?	?	2
5	0	?	?	?
6	?	?	?	4

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round	*	*	*	
1	5	0	1	2
2	0	0	3	2
3	5	3	1	3
4	0	1	2	2
5	0	1	7	2
6	0	1	0	4
Total	10	6	14	15

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round	*	*	*	•
1	5	0	1	2
2	0	0	3	2
3	5	3	1	3
4	0	1	2	2
5	0	1	7	2
6	0	1	0	4
Total	10	6	14	15

 $\begin{array}{l} \text{Gambler's reward: } 1+0+5+2+0+4=12. \\ \text{Gambler's } \textit{regret: } 15-12=3 \end{array}$

Exploration vs. exploitation

Suppose the gambler has discovered a slot machine with fairly good reward rate.

- Should he continue playing on (exploiting) that machine?
- What if he does?
- What if he does not?

A bandit algorithm (policy) must balance exploring different options and exploiting the best option so far.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $\left(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j\right)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

0.84 学

UCB1: a simple bandit algorithm

Initially play each machine once. On round t > k determine intervals $(\hat{\mu}_i - c_i, \hat{\mu}_i + c_i)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

?

9 0.62

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr\big(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j\big) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t > k determine intervals $(\hat{\mu}_i - c_i, \hat{\mu}_i + c_i)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \geq 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

UCB1: a simple bandit algorithm

Initially play each machine once. On round t>k determine intervals $(\hat{\mu}_j-c_j,\hat{\mu}_j+c_j)$ s.t.

$$\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$$

Play machine with highest $\hat{\mu}_j + c_j$.

The contextual k-armed bandit problem

What is the $contextual \ k$ -armed bandit problem?

Online multi-class classification with partial feedback.

Problem Statement

Suppose we already have a data set generated by following a policy (algorithm) π . Want to estimate the value of a *different* policy h:

$$V_D(h):=E_{(x,\vec{r})\sim D}[r_{h(x)}].$$

Where D is the distribution over tuples (x, \vec{r}) of inputs $x \in \mathcal{X}$ and rewards $\vec{r} \in [0, 1]^k$.

Langford et. al. Exploration Scavenging

When is this possible?

Estimating value with special restrictions

Suppose we severely restrict the behavior of π :

- for each action a, π chooses a exactly T_a times, where T_a > 0:
- π chooses a_t independent of x_t .

Then for all D,

$$V_D(h) = E_{\{x_t, \vec{r}_t\} \sim D^T} \left[\sum_{t=1}^T \frac{r_{t, a_t} I(h(x_t) = a_t)}{T_{a_t}} \right].$$

The contextual k-armed bandit problem

Given an arbitrary input space $\mathcal X$ and a set of actions $\mathcal A=\{1,\cdots,k\}$, in each round t:

- a tuple (x_t, r

 _t) is drawn from some distribution over tuples of inputs and k-dimensional reward vectors, and x_t is presented to the algorithm;
- ullet the algorithm chooses an action $a_t \in \mathcal{A}$;
- \bullet a reward r_{t,a_t} of action a_t is announced.

Goal: maximize the sum of rewards over the rounds of interaction.

Langford et. al. Exploration Scavenging

Impossibility Theorem

Evaluation is not possible when the exploration policy π depends on the current input. Consider the two problems (distributions) defined by:

	Under D		Under D'	
	$r_{t,0}$	r _{t,1}	$r_{t,0}$	$r_{t,1}$
$x_t = 0$	0	0	0	1
$x_t = 1$	0	1	1	1

Exploration policy: $\pi(x)=x$. Want to evaluate the policy h(x)=1-x. What happens?

Understanding the estimator

This expression for $V_D(h)$ is actually very simple.

$$E_{\{x_t, \vec{r}_t\} \sim D^T} \left[\sum_{t=1}^{reward for} \frac{\text{indicator for when}}{T_{t,a_t} I(h(x_t) = a_t)} \right]$$

Quantifying usefulness of the estimator

For every sequence T of actions, for any $\delta \in$ (0,1), with probability $1-\delta$, it holds that

$$\left| V_D(h) - \sum_{t=1}^T \frac{r_{t,a_t} I(h(x_t) = a_t)}{T_{a_t}} \right| \le \sum_{a=1}^k \sqrt{\frac{2 \ln(2kT/\delta)}{T_a}}$$

Accordingly, as $\mathcal{T} \to \infty$, the estimator

$$\hat{V}_D(h) = \sum_{t=1}^{T} \frac{r_{t,a_t} I(h(x_t) = a_t)}{T_{a_t}}$$

grows arbitrarily close to $V_D(h)$ with probability 1.

Direct approach

- \bullet Input space ${\mathcal X}$ is set of all pages.
- \bullet Set of actions A is set of all advertisements.
- In each round, algorithm chooses an advertisement for the page. Reward computed based on user action.

Langford et. al. Exploration Scavenging

Direct approach for multiple advertisements:

- Have an action for every slate of ads
 exponentially large set of actions . . .

Application

- Evaluation of different ad serving algorithms.
- Costly to evaluate on live system.
- Instead use proposed estimator with logged data.

How is this a contextual k-armed bandit problem?

Factoring Assumption

Assumption: probability of clicking ad a at position i on page x is

$$P(x, a, i) = C_i \cdot P(x, a)$$

 $\mathcal{P}(x,a)$: position independent click through rate. C_i : Attention Decay Coefficient (ADC). $C_1=1$

- ullet Transform a slate of ℓ ads to ℓ examples.
- Set the reward for clicking on i-th ad to

$$r_i' = r/C_i \quad 1 \le i \le \ell$$

where r indicates whether the slate received clicks. Langford et. al. Exploration Scavenging

Estimating ADC Naively

New estimator:

$$\hat{V}_D(h) = \sum_{i=1}^{T} \sum_{i=1}^{\ell} \frac{r_i' C_{\sigma(a_i,x)}}{T_{a_i}}$$

Only need to estimate C_i . However the straightforward

$$\hat{C}_{i} := \frac{\frac{\sum_{a} Clicks(a,i)}{\sum_{a} Impressions(a,i)}}{\frac{\sum_{a} Clicks(a,1)}{\sum_{a} Clicks(a,1)}}$$

Current policy already fairly good.

An example

Assume two slots, and two ads "a" and "b". User always clicks: 3/4 of the time on "a", 1/4 on "b" Clearly, $C_2=1$ If "a" is the first ad 90% of the time then $\hat{C}_2=\frac{3}{7}$.

Better Estimator of ADC

Average the click-through rates instead of the clicks.

$$\hat{C}_i := \frac{\sum_a \lambda_a CTR(a, i)}{\sum_a \lambda_a CTR(a, 1)}$$

 $\lambda_{\rm a}$ should be set so as to minimize ${\rm Var}[\hat{C}_i].$ Alternatively, set $\lambda_{\rm a}$ so as to minimize variance of

$$\sum_{a} \lambda_{a} CTR(a, i) + \sum_{a} \lambda_{a} CTR(a, 1)$$
 $s.t \sum_{a} \lambda_{a} = 1$

which is analytically tractable.

Thank you

Questions?

Easy corollary of their theorem

If
$$\pi(h(x)|x) > \tau$$
 for all x then

$$E[|\hat{V}_{\hat{\pi}}^h - V^h|] \leq \frac{\sqrt{E_x[\mathsf{max}_a(\pi(a|x) - \hat{\pi}(a|x))^2]}}{\tau}$$

Assumption makes bound prettier; not necessary for the

Empirical comparison

Estimating ADCs from Yahoo! logs leads to similar values as the much advocated $DCG(i)=1/\log_2(i+2)$.

For evaluating ad serving policies restrict attention to h_π that reorder the results of π . Much smaller variance.

Two reordering policies were evaluated

- h_π reorders results of π according to their CTR.
- h'_{π} reorders results of π randomly

Estimator is higher for h_{π} as expected.

A newer paper (Strehl, Langford, Kakade)

Lifts assumption that π , h do not depend on x_t

Estimate the probability that π will choose a. E.g.

$$\hat{\pi}(a|x) = \frac{|\{t|a_t = a \land x_t = x\}|}{|\{t|x_t = x\}|}$$

To evaluate a non-adaptive h

$$\hat{V}_{\hat{\boldsymbol{\pi}}}^h = \frac{1}{|S|} \sum_{(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{r_a}) \in S} \frac{r_a l(h(\boldsymbol{x}) = \boldsymbol{a})}{\max\{\hat{\boldsymbol{\pi}}(\boldsymbol{a}|\boldsymbol{x}), \tau\}}$$

Learning a policy

Let
$$C(x)=\{a|\hat{\pi}(a_t|x_t)>0\}$$

Learn a policy $h(x)=\operatorname{argmax}_{a\in C(x)}f(x,a)$ by minimizing

$$\sum_{t} \frac{(y_t - f(x_t, a_t))^2}{\max\{\hat{\pi}(a_t|x_t), \tau\}}$$

over a set of (x_t,a_t,y_t) triples. $y_t=1$ iff a_t was clicked. Finally estimate quality of h on test data by

$$\hat{V}_{\hat{\pi}}^{h} = \frac{1}{T} \sum_{t=1}^{T} \frac{y_{t} I(h(x_{t}) = a_{t})}{\max\{\hat{\pi}(a_{t}|x_{t}), \tau\}}$$