LEARNING USER INTERACTION MODELS FOR PREDICTING WEB SEARCH PREFERENCES Eugene Agichtein Eric Brill Susan Dumais Robert Rango Microsoft Research Jacob Bank and Christie Brandt

Predicting User Preferences

- Many successful supervised ranking methods...
- ...but they require labeled data
 - (e.g., pairwise preferences)

Problem: getting labeled data

- Explicit human ratings:
 - Expensive
 - Difficult to obtain
 - No effective way of getting explicit user feedback
- User interaction history:
 - "free" implicit feedback-millions each day
 - □ Click patterns, dwell time, mouse movement
- □ ...but how to model as pairwise preferences?

Implicitly Labeled Data

- Experiments with implicit ratings:
 - controlled text collections
 - selected queries/tasks
 - $\ \square$ laboratory settings
- □ Real web:
 - Uncontrolled
 - Ill-defined queries/tasks
 - ■Automated bots
 - Noisy, non-expert users
 - ■Malicious
 - Irrational

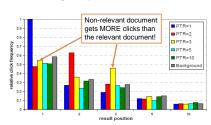
Main Questions

- Can explicitly accounting for "noisy" users provide more information?
- Can we automatically learn accurate user feedback interpretation models by representing user actions as a rich set of features?

Noisy Users

- Users click on non-relevant documents due to:
- Visual appearance/ layoutUser history/context
- Presentation order (position)

(PTR: Position of Top Relevant Document)



Modeling Noisy Users

- □ 2 components to user behavior
- □ Relevance component
 - Query-specific user reaction
 - based on perceived true relevance of documents
- Background component:
 - Users clicking indiscriminately

q:query

r: result

p: position of r

click through(q,r,p) = Expected(p) + relevanc (q,r)

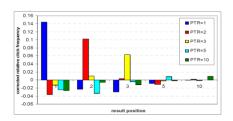
Calculating Background

- Calculate aggregated click frequency at position p:
 - Compute frequency of a click at p for each query q
 (how often would a random click for query q land on p?)
- Average frequencies across all queries

$$C(p) = \frac{1}{\#queries} \sum_{\forall queries \ q} \frac{\#clicks \ at \ p}{\#clicks \ in \ q}$$

Finding Relevance

 Find the expected behavior for each position over full dataset... and subtract it to get true relevance



Click Deviation

 Relevance: deviation from "expected behavior" at position p

r : result

p: position

$$\underbrace{dev(r,p)}_{\text{Click deviation of result r}} = \underbrace{obs(r,p)}_{\text{Observed click}} - C(p)$$

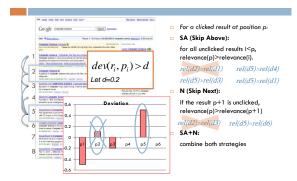
$$\underbrace{\text{Click deviation of result r}}_{\text{at position p}} = \underbrace{\text{Observed click}}_{\text{frequency at (r,p)}} = \underbrace{\text{Expected clickthrough}}_{\text{at position p}}$$

Model 1: CD (Click Deviation)

- Filter out noisy clicks, then apply SA or SA+N strategies
 - $\hfill \Box$ For each result r_i at position p_i
 - □ Given a parameter d:
 - \square If $dev(r_i, p_i) > d$:
 - retain click as input for SA or SA+N strategies

Example: CD (Click Deviation)

Example: CD (Click Deviation)



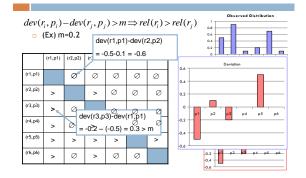
Model 2: Cdiff (Click Difference)

- Idea: when two results are compared, a result is "skipped" if it is clicked less than expected, "clicked" if more than expected.
- For each query q, calculate the deviation for each result-position pair
 - □ Compare every (r,p)-pair against every other:

$$dev(r_i, p_i) - dev(r_i, p_i) > m \Rightarrow rel(r_i) > rel(r_i)$$

- Ignores positional information
- $\hfill \Box$ Can compare events when both results clicked
 - Informational versus navigational queries

Example: Cdiff (Click Difference)



Precision/Recall Parameters

- d and m: tradeoff between precision and recall:
 - d, m large: higher precision, lower recall
 - d, m small: lower precision, higher recall

 $dev(r_i, p_i) > d$

 $dev(r_i, p_i) - dev(r_i, p_i) > m$

Beyond Clickthrough:

General User Behavior Model

- Large set of features to represent user behavior before and after the click
- Automatically derive implicit feedback interpretation

Background: Richer Feature Set

- Time users spent reading Usenet news articles predicts user interest [Morita and Shinoda 1994]
- Page activity correlates with reader interest [Goecks and Shavlik 1999]
 - (small sample size, no testing against explicit measurements)
- Curious Browser—combined implicit measurements with explicit queries [Claypool et al. 2001]
 - □ Time spent on page + scrolling correlated with interest
 - Individual scrolling/mouse-clicks not correlated
- Rich (but query-independent) feature set: clickthrough most important, but adding dwell time improved accuracy [Fox et al. 2005]

General User Behavior Model

- Represent user actions as features—rich feature set
- Query-specific model (behavior deviates with query)
- Capture actions before and after query
 - □ Observed : relate directly to query/result pair
 - □ Distributional: deviations from "expected" behavior
 - Derived—measure deviation of feature for given search result from expected value for any result.

User Behavior Model

f: feature

r: result

q:query

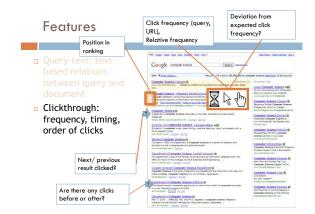
$$obs(q, r, f) = C(f) + rel(q, r, f)$$

Observed value of a feature with respect to result r and query q

background

Relevance-dependent component of behavior

(Observed feature values averaged across all search sessions and users for each query-result pair)



Time on domain? Time on uri? Average dwell time for query/result? Dwell time deviation? Duery-text: textbased relations between que Redirected? document Clickthrough Time on page? Cumulative time on all pages ofter search? Browsing: user behavior after click (intra-query diversity of page browsing) Followed links after query?

Learning User Behavior

- RankNet
 - Efficient
 - □ Scalable
 - □ Robust

- □ Train on pairs (r1, r2)
 - output: 1 if r1>r2, 0 otherwise
- Explicit boolean relevance judgments
- Gradient descent (multiple restarts) to set weights

Evaluation Metrics

- Evaluate based on pairwise agreement
- Query precision:

 $\frac{\#(predicted = human \ judgement)}{\#(predicted)}$

Query recall:

 $\frac{\#(predicted = human \ judgement)}{\#(human \ judgement)}$

Datasets

- "Orders of magnitude larger than any study yet reported in the literature"
- Explicit pairwise relevance judgements for top-10 results
 - Q1: at least 1 click for each query
 - (3500 queries, 28,093 query-URL pairs)
 - Q10: at least 10 clicks
 - (1300 queries, 18,728 query-URL pairs)
 - Q20: at least 20 clicks
 - (1000 queries, 12,922 query-URL pairs)
- □ Training/test for UB: train/validate on 75%, test on 25% (no query overlap)

Strategies Compared

- Current:
 - a "state-of-the art" ranking system from "a major websearch engine"
- □ SA
- □ SA+N
- □ CD
- CDiff
- CDiff+CD
- UserBehavior

Results: User Behavior Model Features



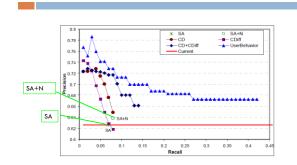
- Browsing features outperform combinations
- Query-text features by themselves perform badly

Results: adding more data

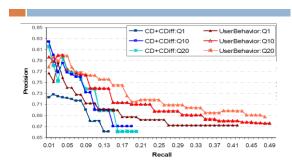
 Intelligent aggregation of large amounts of data improves precision (higher recall permitted)



Results: Q1 (at least 1 click)



Results



Extensions?

- Targeting divergent access patterns (clustering)
 - Modeling time-dependency of query distributions
 - Automatically finding "reliable users"

Conclusions

- Explicitly accounting for "noisy" user behavior greatly improves accuracy
- New model presented which represents user actions as a rich set of features based on actions before and after search
- More extensive feature-based characterization of user behavior: dramatic improvement in accuracy over human-defined heuristics

Questions?