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Introduction
 Goal:  Evaluate different search engines

Query: Structured SVM

Measure

Relevance
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Introduction

 How to evaluate search engines? 

 Use relevance judgments

 Complete relevance judgments not available

 How to predict relevance?

 Use clicks

 General problem: Clicks are biased!

 This work: 

Model the relationship between relevance & clicks
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Evaluating Search Engine

• Discount Cumulative Gain
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Evaluating DCG from Incomplete Information

 Express DCG as a random variable:
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 Expectation and variance (to estimate confidence interval):
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= 0 under independent assumption

X i {a1,a2,a3,a4,a5}

How to get                      ? p(Xi a j ) Predict from clicks!
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Modeling Clicks & Relevance

p( |q, c) p(X i |q, c)
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X5, c5

 We want to predict p(Xi a j )

p(q,X1,X2,L ,Xl ,c1,c2,L ,cl )

Joint probability p(q, ,c)

Conditional probability p( |q,c)

query relevance
clickthrough_rates

Independent assumption

query
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Modeling Clicks & Relevance

 Model

 Ordinal Regression

log
p(X a j |q, c)
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 Vector Generalized additive model (VGAM)
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Scalars

a j :one of the relevance levels

q : the aggregate click rate over all results

ci :click times over #of times the list was shown

p(X a3 |q, c) p(X a3 |q, c)

p(X a2 |q, c)

Comparative Evaluation

 If we only care about whether one ranking function 

outperforms another?

we care only about the sign of 
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rj(i) is the rank of document i from system j

DCGl

 Compute

 Monte Carlo simulation

 Draw samples according to p(X1, X2, … Xl|q,c)

P( DCGl 0)
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Experiments

 Data

 From Yahoo!

 28,961 relevance judgments for 2021 queries

 A distinct list includes: 

 a query

 the ranks of retrieved advertisements

 The clickthrough rate at each rank

 Dependency of Clicks on Entire 

Result List

e.g.   rel1= Excellent 
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Experiments 1   -- relevance prediction model

Compare two models

Predicted relevance: E(Xi)

Better!
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Experiments 2   -- estimating DCG

 Methodology

 Test sets: lists with complete relevance judgments and >500 

impressions (1720 lists)

 Train sets: remaining lists with >200 impressions (>5000 lists)

 Ground-truth: DCG

 Predictions:                    ,

 Experiment 2-1

E(D ˆ C G) E(CTR)
1

k
ck

Cov[E(D  ̂C G), DCG] 0.876

Cov[E(CTR), DCG] 0.662

Better!
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Experiments 2   -- estimating DCG

 Experiment 2-2

without vs. with additional two manual judgments on documents 

recommended by the system  

Confidence in ΔDCG: P(ΔDCG<0)
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Summary

 Propose a method to evaluate search engines by 

modeling the relationship between relevance and clicks

 Predict relevance using clicks

 Dependence model

 Estimate DCG with the predicted relevance

 Compare different rankings 
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Questions?

Thank you !
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Select Documents to Judge
 What if confident estimates are low?

Obtain more relevance judgments from human.

Intuitions:

1.                         ignore

2.                                                    informative

3.  

Appendix 
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